JPS59101571A - Exhaust-gas purification controller for engine - Google Patents
Exhaust-gas purification controller for engineInfo
- Publication number
- JPS59101571A JPS59101571A JP57211101A JP21110182A JPS59101571A JP S59101571 A JPS59101571 A JP S59101571A JP 57211101 A JP57211101 A JP 57211101A JP 21110182 A JP21110182 A JP 21110182A JP S59101571 A JPS59101571 A JP S59101571A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- exhaust gas
- sensor
- egr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1493—Details
- F02D41/1495—Detection of abnormalities in the air/fuel ratio feedback system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はエンジンの混合気の空燃比を目標値近傍にフィ
ードバック制御するとともに排気ガスの一部を吸気系に
返流させる制御において、空燃比を目標値近傍にフィー
ドバック制御できない場合に作動する補正装置を備えた
エンジンの排気ガス浄1ヒ制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides feedback control of the air-fuel ratio of the air-fuel mixture of an engine to near the target value, and control for returning part of exhaust gas to the intake system. The present invention relates to an exhaust gas purification control device for an engine, which is equipped with a correction device that operates when the purification is not possible.
従来より、エンジンの混合気の空燃比を検出する空燃比
センサにより、空燃比を目標値近傍にフィードバック制
御する一方、エンジンの運転状態に応じて吸気系に還流
する排気ガス量を制御するエンジンの排気ガス浄fヒ制
御装僧が知られている。Conventionally, an air-fuel ratio sensor that detects the air-fuel ratio of the air-fuel mixture in the engine has been used to feedback control the air-fuel ratio to near a target value, and an engine sensor that controls the amount of exhaust gas recirculated to the intake system depending on the engine operating state. Exhaust gas purification control systems are known.
一般に、上記空燃比制御を行なう場合、制御信号は空燃
比センサの検出16号に依存する。そのため該検出信号
が正常でない場合、エンジンの正常な動作に必要な燃料
流量(空燃比)の調整が困難となる◇このように空燃比
のフィードバック制filが不可能になった場合の対処
の方法として、例えばエンジンの作動の不安定を防ぐ意
味から、空燃比センサの検出信号に基づくフィードバッ
ク制御を中断して、オープンループ制御するようにした
ものが知られている(特公昭54−25973)。Generally, when performing the above air-fuel ratio control, the control signal depends on the detection number 16 of the air-fuel ratio sensor. Therefore, if the detection signal is not normal, it becomes difficult to adjust the fuel flow rate (air-fuel ratio) necessary for normal operation of the engine. ◇What to do when feedback control of the air-fuel ratio becomes impossible For example, in order to prevent instability in engine operation, a system is known in which feedback control based on a detection signal from an air-fuel ratio sensor is interrupted and open-loop control is performed (Japanese Patent Publication No. 54-25973).
しかしながら、このように空燃比セ/すの検出flに基
づくフィードバック制御を中断し王、オーブンループ制
御を行なうようにしても空燃比は目標空燃比にはならず
、目標空燃比よりもリーン側またはリッチ側になる。こ
のため、リーン側になった場合1こおいては燃焼性が心
1ヒし、エンジン作動は不安定になり、またリッチ側に
なった場合は燃費が悪化する傾向にある0
特に、吸気系に排気ガスを還流するようにした排気ガス
還流装置を備えたものにおいては、空燃比がリーン側に
なっているところに、正常な空燃比制御が行なわれてい
るものとして、予め設定されている排気ガス危が還流さ
れるため、不活性な排気ガスの供給によって、素焼性が
さらeこ悪(ヒし、走行不能となることがある0また、
空燃比がリッチ側になっている七ころに排気ガスを還流
すると、より燃費の尼゛1ヒが著しくなる。However, even if the feedback control based on the air-fuel ratio detection fl is interrupted and oven loop control is performed, the air-fuel ratio does not reach the target air-fuel ratio, and the air-fuel ratio is leaner or leaner than the target air-fuel ratio. Be on the rich side. For this reason, if it is on the lean side, the combustibility will be poor and the engine operation will become unstable, and if it is on the rich side, fuel efficiency will tend to deteriorate.Especially, the intake system For vehicles equipped with an exhaust gas recirculation device that recirculates exhaust gas, the air-fuel ratio is preset to the lean side, assuming that normal air-fuel ratio control is being performed. Since the exhaust gas is recirculated, the supply of inert exhaust gas may worsen the bisque firing properties and make it impossible to drive.
If the exhaust gas is recirculated at around 7, where the air-fuel ratio is on the rich side, the fuel consumption will be significantly reduced.
そこで、本発明はこれに鑑みてなされたもので。Therefore, the present invention has been made in view of this.
空燃比を目標空燃比近傍にフィードバック制御できない
場合、吸気系に還流する排気ガスのitを正常時よりも
、減少させることtこよつ工走行性及び燃費を確保する
ことが可能なエンジンの排気ガス浄1ヒ制御装置を提供
することを目的とする。If the air-fuel ratio cannot be feedback-controlled to near the target air-fuel ratio, it is possible to reduce the amount of exhaust gas that recirculates to the intake system compared to normal conditions.Engine exhaust gas that can ensure driving performance and fuel efficiency An object of the present invention is to provide a cleaning control device.
以下、本発明の実施例を図面にもとづいて説明する。第
1.2図は気化器により燃料を理論空燃比近傍に制御し
、運転状態に応じて吸気通路に還流する排気ガスの量を
制御する実施例の構成図である。Embodiments of the present invention will be described below based on the drawings. FIG. 1.2 is a configuration diagram of an embodiment in which the fuel is controlled to be near the stoichiometric air-fuel ratio by a carburetor, and the amount of exhaust gas recirculated to the intake passage is controlled depending on the operating state.
第1図において、ガソリンエンジン9の吸気通路10に
空燃比制御ソレノイド弁(図示せず)によって燃料を調
整する気化器3が設けられている。In FIG. 1, an intake passage 10 of a gasoline engine 9 is provided with a carburetor 3 that adjusts fuel using an air-fuel ratio control solenoid valve (not shown).
排気通路11には排気ガス中の酸素濃度を検出する空燃
比センサとしての02センサ2と排気ガス浄fヒ装置(
触媒)13が設けられている。上記吸気通路10と上記
排気通路11を連結する還流通路12に上記還流通路1
2の通路面積を変えるEGRパルプ4が設けられている
。上記EGRパルプ4は上記還流通路120通路面積を
変える弁4bと該弁4bのリフト量を検知するEGRバ
ルブ開度センサ4aと上記弁4bを作動させるEGRバ
ルブ負圧室4cから構成される。上記E G Rバルブ
負圧室4Cの負圧を制御するEGRンレノイド弁5を上
記EGRパルプ4の近くに設ける。また、ガソリンエン
ジ/9の運転状態を検知するセンサとして、冷却水温セ
ンサ6、エンジン回転セフ”f7、負圧センサ8が設け
られている。コントロールユニットlは第2図に示すよ
う1こ空燃比制御回路13%EGR量制御回路1b、故
障検出回路IC,記憶回路1dおよびEGRt補正回路
1eから構成され又いる。上記故障検出回路ICは空燃
比フィードバンク制御が不能となる状態を検出する制?
j11不能検出装置として機能するもので、上記02セ
ンサ2の出力信号Aを処理して故障を検出し、上記空燃
比制御回路18%EGR1Th制御回路1bおよびEG
Rjit補正回路1eには号■を出力する。上記空燃比
?ti制御回路1aは上記02センサ2の信号Aおよび
上記故障検出回路1Cの信号Iをうけて、供給する燃料
を調整する上記空燃比制御ソレノイド弁に制御信号Bを
出力する。上記E G R量制御回路1bは上記故障検
出回路IC。The exhaust passage 11 includes an 02 sensor 2 as an air-fuel ratio sensor for detecting the oxygen concentration in the exhaust gas and an exhaust gas purification device (
A catalyst) 13 is provided. The recirculation passage 12 connects the intake passage 10 and the exhaust passage 11.
EGR pulp 4 that changes the passage area of 2 is provided. The EGR pulp 4 is composed of a valve 4b that changes the area of the recirculation passage 120, an EGR valve opening sensor 4a that detects the lift amount of the valve 4b, and an EGR valve negative pressure chamber 4c that operates the valve 4b. An EGR valve 5 for controlling the negative pressure in the EGR valve negative pressure chamber 4C is provided near the EGR pulp 4. In addition, as sensors for detecting the operating state of the gasoline engine 9, a cooling water temperature sensor 6, an engine rotation speed sensor 7, and a negative pressure sensor 8 are provided. The control circuit consists of a 13% EGR amount control circuit 1b, a failure detection circuit IC, a memory circuit 1d, and an EGRt correction circuit 1e.The failure detection circuit IC is a system for detecting a state in which air-fuel ratio feedbank control is disabled.
j11 failure detection device, which processes the output signal A of the 02 sensor 2 to detect a failure, and detects the air-fuel ratio control circuit 18% EGR1Th control circuit 1b and the EG
No. 2 is output to the Rjit correction circuit 1e. Above air fuel ratio? The ti control circuit 1a receives the signal A from the 02 sensor 2 and the signal I from the failure detection circuit 1C, and outputs a control signal B to the air-fuel ratio control solenoid valve that adjusts the fuel to be supplied. The EGR amount control circuit 1b is the failure detection circuit IC.
冷却水泥センサ6、回転センサ7、負圧センサ8、EG
Rバルブ閂度センサ4a、上記記憶回路1dの各々の1
1号1.c、D、E、F、Jをうけて還流する排気ガス
の量が適切になるようtこ上記EGRソレノイド弁5に
制御信号G、Hを出力する。Cooling water mud sensor 6, rotation sensor 7, negative pressure sensor 8, EG
1 of each of the R valve deflection sensor 4a and the memory circuit 1d.
No. 1 1. Control signals G and H are output to the above EGR solenoid valve 5 so that the amount of exhaust gas that is recirculated in response to the EGR solenoid valves 5 and 5 is adjusted to be appropriate.
上記記憶回路1dは運転状態ごとに上記弁4bの目標リ
フト量を記憶する。上記EGR量補正補正回路は空燃比
フィードバック制御が不能となるとき、排気ガス還流量
を減少方向に補正する補正装置として機能するもので、
上記故障検出信号Iを受けて、排気ガスの還流を停止さ
せる。The storage circuit 1d stores the target lift amount of the valve 4b for each operating state. The EGR amount correction correction circuit functions as a correction device that corrects the exhaust gas recirculation amount in a decreasing direction when air-fuel ratio feedback control becomes impossible.
Upon receiving the failure detection signal I, the recirculation of exhaust gas is stopped.
ここにおいて、上記02センサ2、空ffi比制御ソレ
ノイド弁、空燃比制御回路1aによって空燃比フィード
バック制御装置が構成され、上記冷却本編センサ6、エ
ンジン回転センサ7、負圧センサ8、EGRバルブ4、
EGRソレノイド弁5、還流管12、EGR量制御回路
1bによってυ1気ガス還流装置が構成される0
このようtこ構成したエンジンの排気ガス浄1ヒ制御装
置を有するエンジンにおいて、空燃比が理論空燃比に制
御されている時の作動を示す。02セノザ2の出力Aは
良く知られているように理論空燃比近傍でΩ激に変fヒ
するオンオフ信号である。Here, an air-fuel ratio feedback control device is constituted by the above-mentioned 02 sensor 2, air-FFI ratio control solenoid valve, and air-fuel ratio control circuit 1a, and the above-mentioned cooling main sensor 6, engine rotation sensor 7, negative pressure sensor 8, EGR valve 4,
The EGR solenoid valve 5, the recirculation pipe 12, and the EGR amount control circuit 1b constitute an exhaust gas recirculation device. This shows the operation when the fuel ratio is controlled. As is well known, the output A of the 02 Cenoza 2 is an on/off signal that fluctuates dramatically near the stoichiometric air-fuel ratio.
空燃比制御回路1aは上記の出力14号Aを積分処理し
て積分16号を求め、該積分信号に応じたパルス1g@
Bを望燃比制御ソレノイド弁に出力する。The air-fuel ratio control circuit 1a performs integral processing on the above output No. 14A to obtain an integral No. 16, and generates a pulse 1g@ according to the integral signal.
B is output to the desired fuel ratio control solenoid valve.
空燃比制御ソレノイド弁は上記パルス信号Bをうけて、
気1ヒ器3に燃料の供船を調整させる。それによって、
空燃比は理論空燃比近傍に制御される。The air-fuel ratio control solenoid valve receives the above pulse signal B,
Have Ki 1hi device 3 adjust the supply of fuel to the ship. Thereby,
The air-fuel ratio is controlled near the stoichiometric air-fuel ratio.
一方、EGR制御回路1bは冷却水温センサ6、エンジ
ン回転センサ7、負圧センサ8の検出信号C,D、Eに
より、運転状態を検知し、上記記憶回路1dから、弁4
bの目標リフト量tこ値する信号Jを求める。該値は冷
却水温が所定湿度以上の場合は、運転性を確保するため
、還流する排気ガス歌を停止するようにし、冷却水温が
所定湿度以上の場合は最適な排気ガス量となるような目
P リフト量が第3図に示すごとく運転区分ごとに記憶
(マツプ(ヒ)されている〇
また一方では、EGRパルプ開度センサ4aの1b号F
を入力し、弁4bの実測リフト量を求める。On the other hand, the EGR control circuit 1b detects the operating state based on the detection signals C, D, and E of the cooling water temperature sensor 6, the engine rotation sensor 7, and the negative pressure sensor 8.
A signal J corresponding to the target lift amount t of b is determined. This value is set so that when the cooling water temperature is above the specified humidity, the recirculating exhaust gas is stopped to ensure operability, and when the cooling water temperature is above the specified humidity, the amount of exhaust gas is optimized. P The lift amount is memorized (mapped) for each operation category as shown in Fig. 3. On the other hand, the EGR pulp opening sensor 4a No. 1b F
is input to obtain the measured lift amount of the valve 4b.
ここで、ソレノイド弁5のうち大気側ソレノイド弁5a
は通電すると、EGRパルプ負圧室4Cを大気に対して
遮断し、通電をやめるとEGRバルブ室4cを大気に開
放するタイプのソレノイド弁である。一方、負圧側ソレ
ノイド弁5bは通電するとEGR負圧室4cを吸気通路
10に連通し、通電をやめるとEGRパルプ室4cを吸
気通路1(:に対してパ断するタイプのンレノイドであ
る。そのために例えば、実損すしたリフト量が目標リフ
ト量よりも大きい場合、実際のリフト量を減少させるた
めに、大気側ソレノイド弁5aと負圧側ソレノイド弁5
bに通電を停止してEGRパルプ負圧室4Cの負圧を下
げればよく、実測したリフトAftが小さい場合、実際
のリフ)tを増加させるために、大気側ソレノイド弁5
aと負圧側ソレノイド弁5bに通電してEGRパルプ負
圧室4cを高めればよい。これらの操作を50〜100
m5EC間隔で行なうことにより、実際のリフト量を目
標リフト量に保持することができる。Here, among the solenoid valves 5, the atmospheric side solenoid valve 5a
is a type of solenoid valve that shuts off the EGR pulp negative pressure chamber 4C from the atmosphere when energized, and opens the EGR valve chamber 4c to the atmosphere when the energization is stopped. On the other hand, the negative pressure side solenoid valve 5b is a type of solenoid that communicates the EGR negative pressure chamber 4c with the intake passage 10 when energized, and cuts off the EGR pulp chamber 4c from the intake passage 1 (:) when the energization is stopped. For example, if the actual lift amount lost is larger than the target lift amount, the atmospheric side solenoid valve 5a and the negative pressure side solenoid valve 5 are activated to reduce the actual lift amount.
It is sufficient to reduce the negative pressure in the EGR pulp negative pressure chamber 4C by stopping power supply to b, and if the actually measured lift Aft is small, in order to increase the actual lift) t, the atmospheric side solenoid valve 5
A and the negative pressure side solenoid valve 5b are energized to increase the EGR pulp negative pressure chamber 4c. 50-100 of these operations
By performing this at m5EC intervals, the actual lift amount can be maintained at the target lift amount.
次に02センサ2が故障した場合の作動を示す。Next, the operation when the 02 sensor 2 fails will be described.
空燃比が理論空燃比近傍に制御されている場合02セン
サ2からの(g号Aはオンとオフを繰り返すが、02セ
ンサ2が破損した場合、信号Aは直ちtこオフになって
、オンtこなることはないOこの時、故障検出回路IC
では入力した上記信号へが所定時間内で、再びオンとオ
フとを繰り返さないことを検知して、空燃比制御回路1
a 、EGR量制御回路1bおよびEGR量補正補正
回路1e障検出信号1を出力する。When the air-fuel ratio is controlled near the stoichiometric air-fuel ratio, the signal A from the 02 sensor 2 repeats on and off, but if the 02 sensor 2 is damaged, the signal A immediately turns off. At this time, the failure detection circuit IC
Then, the air-fuel ratio control circuit 1 detects that the input signal does not turn on and off again within a predetermined period of time.
a, EGR amount control circuit 1b and EGR amount correction correction circuit 1e output fault detection signal 1;
該故障検出信号Iをうけて、空燃比制御回路la &t
空燃比かり一ン側になるような固定パルス信号を空燃
比ilj制御ソレノイド弁5に出力する0空燃比をリー
ン側にしたのは第4図に示しであるように排気ガス中の
NOx1HC%CO(第41ΔtこおいてC・・NOx
1d・・lIC1e・・CO)を同時に減少させて排気
ガス浄fヒ装置(触媒)の負担を少なくするとともに燃
費を悪化させないためである〇
一方で、上記故障検出信号1をうけて、EGR所制御回
路1bは作動を中断し、EGRjt補正回路1eは還流
する排気ガスをカントするために、大気側ソレノイド5
aと負圧側ソレノイド5bに通電を停止する。In response to the failure detection signal I, the air-fuel ratio control circuit la&t
A fixed pulse signal that makes the air-fuel ratio on the lean side is output to the air-fuel ratio ilj control solenoid valve 5.The reason why the zero air-fuel ratio is made on the lean side is because NOx1HC%CO in the exhaust gas (At the 41st Δt, C...NOx
1d...lIC1e...CO) to reduce the load on the exhaust gas purification device (catalyst) and to prevent deterioration of fuel efficiency. On the other hand, in response to the above failure detection signal 1, The EGRjt correction circuit 1e interrupts the operation of the atmospheric side solenoid 5 in order to cant the recirculating exhaust gas.
energization is stopped to a and the negative pressure side solenoid 5b.
以上に示した本実施例から明らかなように、02センサ
2が破損して空燃比を理論空燃比tこ制御できない時で
も、空燃比をリーン側に制御して、有害な排気ガスの排
出を防ぐ一方で、排気ガスの還流を停止するようにした
ために、燃焼性の悪1ヒを防ぎ、しいては走行性が不安
定になるのを防止することができる。As is clear from this embodiment shown above, even when the 02 sensor 2 is damaged and the air-fuel ratio cannot be controlled to the stoichiometric air-fuel ratio, the air-fuel ratio is controlled to the lean side to prevent harmful exhaust gas from being emitted. On the other hand, since the recirculation of the exhaust gas is stopped, it is possible to prevent poor combustibility and unstable running performance.
なお、上記実施例においては、空燃比のフィードバック
制御が不能になった場合、排気ガスの還流を停止するよ
うにしたが、もちろん完全に停止するのではなく、減量
して、若干は還流するようにしてもよい。その程度は走
行性等からの関係で適宜設定すればよい。In the above embodiment, when the feedback control of the air-fuel ratio becomes impossible, the recirculation of exhaust gas is stopped, but of course it is not completely stopped, but the amount is reduced and the recirculation is made to some extent. You may also do so. The degree may be appropriately set depending on the running performance and the like.
本実施例では、空燃比を理論空燃比に制御できない故障
の原因として、02センサ2の破損ニついてのみ述べた
が、02センサ2の信号線、燃料供給系(気化器・イン
ジェクタ等)の故障に対しても同様なことが言える。In this embodiment, only damage to the 02 sensor 2 was described as the cause of the failure in which the air-fuel ratio could not be controlled to the stoichiometric air-fuel ratio, but failure in the signal line of the 02 sensor 2 and the fuel supply system (carburizer, injector, etc.) The same can be said for .
さらに、本実施例では故障検出時、空燃比をリーン側に
制御したが、HC%C00j口加が許される範囲で、運
転性を重視する意味がら空燃比をリッチ側に制御しても
良い。しかし、この場合にも、排気ガスの還流を停止す
ればより燃費が悪化するといった問題を対策することが
できる。Furthermore, in this embodiment, when a failure is detected, the air-fuel ratio is controlled to the lean side, but the air-fuel ratio may be controlled to the rich side within a range where the HC%C00j increase is allowed, with the aim of emphasizing drivability. However, even in this case, if the recirculation of exhaust gas is stopped, the problem of further deterioration of fuel efficiency can be solved.
以上から明らかなように、本発明によれば、空燃比のフ
ィードバック制御が不能となって、空名比がリーン側ま
たはリッチ側に変化してしまい、走行性または燃費性能
に支障をきたすような場合、υ1気ガスの還流を停止も
しくは産流債を減少さぜるようにしているので、その支
1&icの度合を可及的に軽減でき、実用上問題となら
ないレベルに抑えることができる。As is clear from the above, according to the present invention, feedback control of the air-fuel ratio becomes impossible, and the air-fuel ratio changes to the lean side or rich side, which may impede driving performance or fuel efficiency. In this case, since the reflux of υ1 gas is stopped or the output debt is reduced, the degree of support 1&ic can be reduced as much as possible, and it can be suppressed to a level that does not pose a problem in practice.
8141図は本発明に係る実施例の全体構成図、第2図
はフントロールユニットのブaツク図、第3図は94b
の目標リフトにと与えるための運転領域、第4図は有害
ガスijS度と空燃比の関係を示す特性図である。
1・・・コントロールユニット、la・・・空燃比制御
回路、lb・・・EGRt制御回路、1c・・・故障検
出回路、le・・・EGR@補正回路、2・・・o2セ
ンサ、3・・・気(ヒ器、4・・・EGRパルプ、5・
・・EGRパルプソレノイド弁。
特許出相人 東洋工業株式会社Figure 8141 is an overall configuration diagram of the embodiment according to the present invention, Figure 2 is a book diagram of the hunt roll unit, and Figure 3 is 94b.
FIG. 4 is a characteristic diagram showing the relationship between the degree of harmful gas ijS and the air-fuel ratio. DESCRIPTION OF SYMBOLS 1... Control unit, la... Air-fuel ratio control circuit, lb... EGRt control circuit, 1c... Failure detection circuit, le... EGR@ correction circuit, 2... O2 sensor, 3...・・Ki (Heki, 4・EGR pulp, 5・
...EGR pulp solenoid valve. Patent agent Toyo Kogyo Co., Ltd.
Claims (1)
空燃比センサの出力にもとづいて空燃比を目標値にフィ
ードバック制御する空燃比フィードバッタ制御装Rと、
運転状態に応じて吸気系に還流する排気ガス爪を制御す
る排気ガス還流装置とを備えるエンジンの排気ガス浄化
制御装置において、空燃比フィードバック制御の制御不
能状態を検出して検出信号を出力する制御不能検出装置
と、上記制御不能検出装置の検出信号をうけて、空勿比
フィードバック制御が不能時上記排気ガス還流装置によ
り制御される排気ガス還流量を減少させる補正装置とを
備えたことを特徴とするエンジンの排気ガス浄化1li
11両装置。(1) an air-fuel ratio feed batter control system R that feedback-controls the air-fuel ratio to a target value based on the output of an air-fuel ratio sensor that detects the air-fuel ratio of the air-fuel mixture supplied to the engine;
Control for detecting an uncontrollable state of air-fuel ratio feedback control and outputting a detection signal in an engine exhaust gas purification control device comprising an exhaust gas recirculation device that controls an exhaust gas claw that recirculates to an intake system according to operating conditions. The present invention is characterized by comprising a failure detection device, and a correction device that receives a detection signal from the failure detection device and reduces the amount of exhaust gas recirculation controlled by the exhaust gas recirculation device when the air-to-air ratio feedback control is not possible. Exhaust gas purification for engines with 1li
11-car device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57211101A JPS59101571A (en) | 1982-11-30 | 1982-11-30 | Exhaust-gas purification controller for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57211101A JPS59101571A (en) | 1982-11-30 | 1982-11-30 | Exhaust-gas purification controller for engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59101571A true JPS59101571A (en) | 1984-06-12 |
Family
ID=16600419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57211101A Pending JPS59101571A (en) | 1982-11-30 | 1982-11-30 | Exhaust-gas purification controller for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59101571A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63134842A (en) * | 1986-11-25 | 1988-06-07 | Toyota Motor Corp | Failure diagnostic device for exhaust gas recirculation equipment |
JPH01145973U (en) * | 1988-03-30 | 1989-10-06 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5198432A (en) * | 1975-02-26 | 1976-08-30 | ||
JPS55161933A (en) * | 1979-06-04 | 1980-12-16 | Toyota Motor Corp | Fuel-air ratio feedback control for internal combustion engine |
JPS5793669A (en) * | 1980-12-02 | 1982-06-10 | Toyota Motor Corp | Air fuel ratio control system for internal combustion engine |
-
1982
- 1982-11-30 JP JP57211101A patent/JPS59101571A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5198432A (en) * | 1975-02-26 | 1976-08-30 | ||
JPS55161933A (en) * | 1979-06-04 | 1980-12-16 | Toyota Motor Corp | Fuel-air ratio feedback control for internal combustion engine |
JPS5793669A (en) * | 1980-12-02 | 1982-06-10 | Toyota Motor Corp | Air fuel ratio control system for internal combustion engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63134842A (en) * | 1986-11-25 | 1988-06-07 | Toyota Motor Corp | Failure diagnostic device for exhaust gas recirculation equipment |
JPH01145973U (en) * | 1988-03-30 | 1989-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5406927A (en) | Air-fuel ratio control apparatus for internal combustion engine | |
JPS6339783B2 (en) | ||
JPS6346264B2 (en) | ||
JPS6229631B2 (en) | ||
JPS647217B2 (en) | ||
JPH04339147A (en) | Control device for air-fuel ratio of internal combustion engine | |
JPS59101571A (en) | Exhaust-gas purification controller for engine | |
JPS6256346B2 (en) | ||
JPS61132745A (en) | Air-fuel ratio controller of internal-conbustion engine | |
JPH0228699B2 (en) | ||
JPH08158927A (en) | Method and device for suppressing knocking of internal combustion engine | |
JPS60192845A (en) | Air-fuel ratio control device | |
JPS5898637A (en) | Air-fuel ratio controlling device for internal combustion engine | |
JPH0110421Y2 (en) | ||
JPS6321018B2 (en) | ||
JPS62174543A (en) | Exhaust gas recirculation controller | |
JPS60122259A (en) | Exhaust recycling quantity controlling device for diesel engine | |
JPS58176436A (en) | Control device for engine | |
JPS6095150A (en) | Air-fuel ratio control device for internal-combustion engine | |
JPH02275055A (en) | Exhaust gas recirculation controller for engine | |
JPS63117138A (en) | Adjusting method for air fuel ratio of engine | |
JPS59224433A (en) | Air-fuel ratio controller for gas engine | |
JP2816437B2 (en) | Internal combustion engine fuel control device | |
JPH079227B2 (en) | Engine exhaust purification device | |
JPS61232353A (en) | Air-fuel ratio controller for internal-combustion engine |