[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59109296A - Anaerobic digestion treatment - Google Patents

Anaerobic digestion treatment

Info

Publication number
JPS59109296A
JPS59109296A JP57219081A JP21908182A JPS59109296A JP S59109296 A JPS59109296 A JP S59109296A JP 57219081 A JP57219081 A JP 57219081A JP 21908182 A JP21908182 A JP 21908182A JP S59109296 A JPS59109296 A JP S59109296A
Authority
JP
Japan
Prior art keywords
sludge
concentration
digestion
line
digestion tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57219081A
Other languages
Japanese (ja)
Other versions
JPH0254160B2 (en
Inventor
Akira Suzuki
昭 鈴木
Yasuaki Nagashima
長島 康明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Air Conditioning Co Ltd
Original Assignee
Shinryo Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Air Conditioning Co Ltd filed Critical Shinryo Air Conditioning Co Ltd
Priority to JP57219081A priority Critical patent/JPS59109296A/en
Publication of JPS59109296A publication Critical patent/JPS59109296A/en
Publication of JPH0254160B2 publication Critical patent/JPH0254160B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To enable operation under high load and to reduce the size of a digestion tank by removing the digested sludge from the digestion tank during a digestion period, introducing the same into a floatation thickening stage or centrifugal thickening stage and returning the separated and thickened sludge to the digestion tank. CONSTITUTION:Excess activated sludge is introduced through a line 1 into a mixing zone 32. Air bubble is introduced through a line 38 in the zone 32, and the air bubble-sludge mixture is fed through a line 34 into a floatation zone 35. The thickened sludge is deaerated and is supplied through a line 6 into a digestion tank 7. The formed gas is stored in a gas holder 38 and the digested sludge 39 is supplied intermittently through a line 7 into the zone 32, where the sludge is similarly thickened as mentioned above. The thickened and digested sludge is deaerated and returned through the line 6 into the tank 7. The separated water is discharged through a line 31 to the outside of the system. A valve VI is adequately opened or closed to avoid overload in the case of subjecting the sludge 39 to floatation thickening under the atm. pressure.

Description

【発明の詳細な説明】 本発明は下水処理場から発生する生汚泥、余剰活性汚泥
、混合汚泥の外、し尿、家畜糞尿、バルブ廃液等の有機
性汚泥を嫌気性消化処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for anaerobically digesting organic sludge such as raw sludge, excess activated sludge, mixed sludge, human waste, livestock manure, and valve waste generated from sewage treatment plants.

有機性汚泥の処理方法の1つに峰気性消化処理法が知ら
れている。嫌気性消化反応は主として可溶化反応とガス
反応からなる。用溶化反応においては通性■気性閑の作
用により炭水化物、脂肪。
A pneumatic digestion method is known as one of the methods for treating organic sludge. Anaerobic digestion reactions mainly consist of solubilization reactions and gas reactions. In the solubilization reaction, carbohydrates and fats are separated by the action of facultative.

タンパク質等の有機物を低分子化してギ酸、酢酸、グロ
ピオン酸等の低級脂肪酸を生成する。ガス化反応におい
ては絶対嫌気性菌によりこれら低級脂肪酸をメタン、炭
酸ガス等に分解する。生成ガスは消化槽の加温用エネル
ギー源となり、さらに余剰のガスは二次エネルギーとし
て回収する。このように嫌気性消化方法は省エネルギー
型であるため広く普及しつつある。
It reduces the molecular weight of organic substances such as proteins to produce lower fatty acids such as formic acid, acetic acid, and gropionic acid. In the gasification reaction, these lower fatty acids are decomposed into methane, carbon dioxide, etc. by obligate anaerobic bacteria. The generated gas becomes an energy source for heating the digester, and excess gas is recovered as secondary energy. As described above, anaerobic digestion methods are energy-saving and are becoming widespread.

(2) しかし、この方法は消化日数が20〜40日と長期間ケ
要し、消化率はろ0ないし40係しか得られない。
(2) However, this method requires a long period of time for digestion, 20 to 40 days, and yields a digestibility of only 0 to 40.

コノタメ、消化日数低減による装置の小型化オよび消化
率増大によるガス収率向上が渇望されている。
There is a strong desire to reduce the size of the equipment by reducing the number of days required for digestion, and to improve the gas yield by increasing the digestibility.

本発明者らは姉気性消化反応を鋭意検削した結果、可溶
化反応が律速であり、ガス化反応は早く低級脂肪酸はメ
タン等のガスに分解されろことを見出した。可溶化反応
は通性嫌気性菌により行なワレテいるので、この菌体濃
度を増加させることにより可溶化反応を促進することが
できろ。
As a result of intensive investigation of the gaseous digestive reaction, the present inventors found that the solubilization reaction is rate-determining and that the gasification reaction is rapid and lower fatty acids are decomposed into gases such as methane. Since the solubilization reaction is carried out by facultative anaerobes, the solubilization reaction can be promoted by increasing the bacterial cell concentration.

すなわち本発明は、有機性汚泥を浮上濃縮又は遠心濃縮
による第1巖縮工程に導入して第1濃縮汚泥と第1分離
水とに分離し、第1譲縮汚泥を消化槽に導入して嫌気性
消化2行う方法であって;消化期間中、消化槽から消化
汚泥ケ引き抜いて浮−ヒ1消縮又は遠心濃縮による第2
濃縮工程に導入し。
That is, the present invention introduces organic sludge into a first shrinking step by flotation concentration or centrifugal concentration to separate it into first concentrated sludge and first separated water, and introduces the first compacted sludge into a digestion tank. A method of performing anaerobic digestion 2; during the digestion period, the digested sludge is pulled out from the digestion tank and the
Introduced into the concentration process.

第2濃縮工程にて分離された第2濃縮汚泥を消化槽に返
送することからなる。有機性汚泥の嫌気性(3) 消化処理方法である。
The second thickened sludge separated in the second thickening step is returned to the digestion tank. Anaerobic (3) Digestion treatment method for organic sludge.

消化反応に影響?与えるり子は多(あるが、ここにF/
M比により消化反応の状態を近似的に説明できる。Fは
1日当りの投入原料の有機物量であるが、ここでは有機
物量のがわりに固形分計で表わす、また、Mは消化槽内
θ)菌体量であるが、ここでは菌体量のかわりに消化槽
内のMLSS量と固液分離を行なう二種型の消化槽が多
いが、ここでは消化反応の説明のため二種型では第1槽
について論じることにする。また、汚泥の投入方法は連
続式、回分式等があるが、ここでは説明を簡単にするた
めに1回分式投入方法Vこより、1日1回汚泥投入を行
なうものとする。よって、汚泥投入前に行なわれる消化
汚泥の引抜き(二種型の場合には第2槽への移送)も1
日1回とする。こうしたモデル乞設定した場合、Fは投
入汚泥中の固形分量であり、Mは汚泥投入が行なわれる
前で、消化汚泥の引抜きが行なわれた後の消化槽内のM
LSS(4) 量である。1日当りの収支ケ考えれば、連続式投入も1
日数回に分けて投入する回分式投入も、このモデルで説
明することができろ。
Does it affect the digestive response? There are many children to give (there are F/
The state of the digestive reaction can be approximately explained by the M ratio. F is the amount of organic matter in the raw material input per day, but here it is expressed as a solid content meter instead of the amount of organic matter, and M is the amount of bacterial cells in the digester (θ), but here, instead of the amount of bacterial cells, There are many two-type digesters that perform solid-liquid separation based on the amount of MLSS in the digester, but here, in order to explain the digestion reaction, we will discuss the first tank of the two-type digester. Furthermore, although there are continuous methods, batch methods, etc. for introducing sludge, here, for the sake of simplicity, it is assumed that sludge is introduced once a day using the single-time method V. Therefore, the extraction of digested sludge (transferred to the second tank in the case of type 2 type) before sludge input is also 1.
Once a day. When such a model is set, F is the amount of solids in the input sludge, M is the amount of solids in the digester before sludge is introduced, and M is the amount of solids in the digester after the digested sludge is extracted.
LSS(4) is the amount. Considering the daily income and expenditure, continuous feeding is also 1
This model can also be used to explain batch-type injections that are divided into several doses per day.

今、100Aの消化槽が、消化日数10日で運転されて
いるとして、従来法と本発明の方法とを比較する。
Assuming that a 100A digester is being operated for a digestion period of 10 days, the conventional method and the method of the present invention will be compared.

第1図は本発明の一例を示すフローシート図である。従
来、消化槽では流入汚泥の固形分濃度が3〜4チ、投入
汚泥の処理率である汚泥減少率は30〜50係である場
合が多く、消化槽内のMLSS6〜4 % 、F/M比
として、0.1t1になるように運転管理されている。
FIG. 1 is a flow sheet diagram showing an example of the present invention. Conventionally, in the digestion tank, the solid content concentration of the inflowing sludge is 3 to 4%, and the sludge reduction rate, which is the processing rate of the input sludge, is often 30 to 50%, and the MLSS in the digestion tank is 6 to 4%, F/M. The operation is managed so that the ratio is 0.1t1.

ここで(工、従来法として。Here (engineering, as a conventional method.

投入汚泥の固形分濃度6係、消化槽内のMLSS3係と
し、また1本発明では固形分濃度6%の流入汚泥馨第1
常圧浮上濃縮装置2にて、例えば固形分濃度5チに眼縮
して投入し、第2常圧浮上濃縮装置9にて、消化汚泥返
送後の消化槽内のM 1.、 S Sが5%になるよう
に濃縮率8係で運転するものとし、汚泥減少率を50係
とすれば、運転開始から61目までの消化槽状態は表1
に示すようになる。
The solid content concentration of input sludge is 6%, the MLSS in the digestion tank is 3rd unit, and in the present invention, the inflow sludge with a solid content concentration of 6% is
In the normal pressure flotation concentrator 2, the solid content is reduced to a solid content of 5 cm, for example, and then the M1. Assuming that the operation is performed at a concentration ratio of 8 so that S S becomes 5%, and the sludge reduction rate is 50, the state of the digester from the start of operation to the 61st is shown in Table 1.
It becomes as shown in .

(5) 第1表より、従来法では日数が経過するに従い、F/M
比が増加してしまうことがわかる。これはFは一定であ
るのに対し5Mが減少してしまうからであり、このため
ガス発生量および消化効率は低下′fろことになる。こ
うした状態を改善するためには、投入量を減らすことに
よりF7下げ。
(5) From Table 1, in the conventional method, F/M
It can be seen that the ratio increases. This is because while F remains constant, 5M decreases, resulting in a decrease in the amount of gas generated and the efficiency of digestion. To improve this situation, lower the F7 by reducing the amount of input.

F/M比馨改良することになる。これに対し、本発明で
は投入汚泥を従来法に比べ、固形分量で約1.7倍増加
することができろと同時に、F/M比を一定に保持でき
ることから、ガス発生計および消化効率は常に一定に維
持でき、安定運転が可能である。また、消化槽への流入
汚泥侶°か固形分としてOlろに9以上に増やせない場
合には、消化槽への投入汚泥量は、64(88濃度5係
)となり消化日数が10日から17日に増やすことがで
きる。
The F/M ratio will be improved. On the other hand, in the present invention, compared to the conventional method, the solid content of the input sludge can be increased by about 1.7 times, and at the same time, the F/M ratio can be kept constant, so the gas generator and digestion efficiency can be improved. It can always be maintained constant and stable operation is possible. In addition, if the amount of sludge flowing into the digestion tank cannot be increased to 9 or more as a solid content, the amount of sludge input to the digestion tank will be 64 (88 concentration 5 parts), and the number of days for digestion will be 10 to 17 days. It can be increased daily.

消化日数と消化効率との関係?第2図に示す。このよう
7こ消化日数10日と17日ではガス発生量で約1.5
倍となることから、汚泥減少率等の消化効率もほぼ同程
度に増加できることになる。
Is there a relationship between the number of days for digestion and digestion efficiency? Shown in Figure 2. In this way, the amount of gas generated is approximately 1.5 in the case of 10 days and 17 days for 7 days of digestion.
Since the amount is doubled, the digestion efficiency such as the sludge reduction rate can also be increased to almost the same extent.

以上のように2本発明によれは、F/M比の安(6) 定運転ができろと同時に消化槽への投入汚泥固形分量ケ
増加できろ。また、前工程での汚泥処理の関係から投入
汚泥固形分量の増加ができない場合には5消化日数?増
やせることから、ガス発生計および〈白化効率を飛躍的
に増加させろことかで昶6、さらに本発明の方法では、
従来よりも高負荷運転が可能となるため消化槽を小型化
することができる。
As described above, two advantages of the present invention are that it is possible to maintain a constant operation with a low F/M ratio (6), and at the same time, it is possible to increase the solid content of sludge fed into the digestion tank. Also, if it is not possible to increase the solid content of input sludge due to sludge treatment in the previous process, the number of days required for digestion is 5? Since it is possible to increase the amount of water produced by a gas generator,
Since it is possible to operate at a higher load than before, the digester can be made smaller.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

有機性汚泥として、下水処理場から発生する生汚泥、余
剰活性汚泥、混合汚泥の外、し尿、家畜酋尿、パルプ廃
液あるいは農水産加工工程から抽出される各種汚泥等を
用いろ。
As organic sludge, use raw sludge, surplus activated sludge, mixed sludge generated from sewage treatment plants, human waste, livestock excrement, pulp waste liquid, or various sludge extracted from agricultural and fishery processing processes.

この有機性汚泥を第1濃縮工程にて濃縮し第1濃縮汚泥
?得るうこの工程においては従来の浮上濃縮方法又は遠
心濃縮方法を適用できるが、特に常圧浮上濃縮方法が好
ましい。その理由は、濃縮汚泥の固形分濃度馨安定して
一定の値に保持する必要があること、および後述するよ
うに第2濃縮工程は常圧浮上濃縮方法が好ましいことか
ら、両工程を同一の装置で構成することによりプロセス
の簡素化を図れることによる。常圧浮上濃縮方法は;起
泡剤・液体および気体の混合により気泡を発生させ、気
泡?流入して(ろ汚泥と混合して気泡−汚泥混合物乞形
成し、気泡−汚泥混合物乞浮の陽イオン界面活性剤であ
り、気体としては空気(9) を用いることができろ。また、気泡と汚泥との結合性イ
ど向上させるため高分子凝集剤を併用することが好まし
い。
This organic sludge is concentrated in the first concentration step and the first concentrated sludge is concentrated. In the step of obtaining, conventional flotation concentration method or centrifugal concentration method can be applied, but atmospheric flotation concentration method is particularly preferred. The reason for this is that the solid content concentration of the thickened sludge must be stably maintained at a constant value, and as will be explained later, it is preferable to use the normal pressure flotation concentration method in the second concentration step. This is because the process can be simplified by configuring it with equipment. The atmospheric flotation concentration method is to generate bubbles by mixing a foaming agent, liquid, and gas. It is a cationic surfactant that flows in (mixes with filtered sludge to form a bubble-sludge mixture and forms a bubble-sludge mixture, and air (9) can be used as the gas. It is preferable to use a polymer flocculant together in order to improve the bond between the sludge and the sludge.

得られろ濃縮汚泥の固形分濃度を3ないし10頻になる
ように浮上濃縮条件を設定するう常圧浮上濃縮法では浮
」二帯域の滞留時間、気固比等を適宜調整して所定の濃
縮汚泥欠得る。濃縮汚泥の固形分濃度10%以上では消
化槽内において汚泥の流動性が悪くなり完全混合ができ
なくなるためガス発生数が低下するので好ましくない。
In the normal pressure flotation concentration method, the flotation concentration conditions are set so that the solid content concentration of the thickened sludge becomes 3 to 10 times. Thickened sludge is lacking. If the solid content concentration of the thickened sludge is 10% or more, the fluidity of the sludge in the digestion tank becomes poor and complete mixing becomes impossible, resulting in a decrease in the number of gases generated, which is not preferable.

流入汚泥のlj、′i形分濃度および消化槽の容量にも
よるが、おおむね固形分濃度4ないし8%の濃縮汚泥に
するのが好ましいう 濃縮汚泥馨消化槽に投入して嫌気性消化するつ嫌気性消
化方法は、特に限定されろものではなく、任意σ)周知
技術7使用できろ。消化槽温度は60〜67Cの中温あ
るいは5O−57tZ’の高温であってよく、槽内ケ機
械攪拌、ポンプ者拌あるいはガス攪拌等により均一に保
ち菌体と汚泥の接触を行う。有機酸の生成速度が早<p
Hの低下がみも(]0) れる時は消石灰等のアルカリな槽内に加えて消化汚泥の
pHを中性に維持する。これによりガス化反応速度の低
下を防ぐことができる。
Although it depends on the lj, 'i form concentration of the inflowing sludge and the capacity of the digestion tank, it is preferable to make it into a thickened sludge with a solids concentration of 4 to 8%.The thickened sludge is fed into the digestion tank and subjected to anaerobic digestion. The anaerobic digestion method is not particularly limited, and any known technique can be used. The temperature of the digestion tank may be a medium temperature of 60-67C or a high temperature of 5O-57tZ', and the temperature in the tank is kept uniform by mechanical stirring, pumper stirring, gas stirring, etc. to bring the bacterial cells into contact with the sludge. The rate of organic acid production is fast <p
When a decrease in H is detected, add slaked lime or other alkaline material to the tank to keep the pH of the digested sludge neutral. This can prevent a decrease in the gasification reaction rate.

消化期間中、継続的又は間欠的に消化汚泥乞槽外に引き
抜き、第2濃縮工程にて濃縮して濃縮消化汚泥と分離水
を得る。濃縮消化汚泥を消化槽に返送し1分離水は放流
しあるいは二次処理工程に導く。余剰の消化汚泥は、濃
縮汚泥の一部を系外に引き抜いてもよく、又、他の方法
により糸外に引き抜いてもよい。この第2濃縮工程では
気体として空気を用いた前述の常圧浮上濃縮法を適用で
きる。第2IA縮工程にてこの常圧浮上−縮法な使用す
る本発明の方法は、従来の知見からは予想すらつかなか
ったことである。従来の知見によれば嫌気性消化反応は
ガス化反応が律速といわれており、ガス化反応乞行うガ
ス死菌は絶対嫌気性菌であることから、消化槽内に空気
が混入するとガス死菌が不活性化して消化反応& l5
14害するといわれていた。本発明の方法によれば第2
濃縮工程にて空気を用℃・た常圧浮上濃縮法を適用して
も消化反(11) 応?妨げない。これは、常圧浮」二濃縮方法では、界面
活性剤の働きにより、浮上に用いろ空気が固型分表面の
自由水へ溶解するのを妨げ、固型分周囲が常に嫌気性を
保つためである。従って浮上に用いる気体に空気以外の
ガスを用いる必要もないっ又1本発明では第2濃縮工程
において6〜10%の任意の濃度に安定して濃縮する必
要があるが、常圧浮上濃縮方法以外の浮」二濃縮方法で
は、このよ5なA濃縮を安定して行うことはできないの
で好ましくない。その他、イニシャルコスト及びランニ
ングコストの面で常田浮」二濃縮法には及ばないが、遠
心濃縮法も適用できろ。
During the digestion period, the digested sludge is continuously or intermittently drawn out of the tank and concentrated in a second concentration step to obtain concentrated digested sludge and separated water. The concentrated digested sludge is returned to the digestion tank, and the separated water is discharged or led to a secondary treatment process. Excess digested sludge may be partially drawn out of the thickened sludge, or may be drawn out of the thread by another method. In this second concentration step, the above-mentioned normal pressure flotation concentration method using air as the gas can be applied. The method of the present invention, which uses this normal pressure flotation-compression method in the second IA compression step, is something that could not even be expected based on conventional knowledge. According to conventional knowledge, the gasification reaction is said to be rate-limiting in the anaerobic digestion reaction, and the gas-killed bacteria that perform the gasification reaction are absolutely anaerobic, so if air gets into the digestion tank, the gas-killed bacteria will die. is inactivated and the digestive reaction &l5
It was said to cause 14 harm. According to the method of the present invention, the second
Does the digestion reaction (11) still occur even if the normal pressure flotation concentration method using air at °C in the concentration process is applied? Not hinder. This is because in the atmospheric pressure floating double concentration method, the action of surfactants prevents the air used for flotation from dissolving into the free water on the surface of the solid, and the area around the solid remains anaerobic at all times. be. Therefore, there is no need to use a gas other than air as the gas used for flotation.Also, in the present invention, it is necessary to stably concentrate to an arbitrary concentration of 6 to 10% in the second concentration step, but the normal pressure flotation concentration method Other floating concentration methods are not preferred because they cannot stably perform such 5-A concentration. In addition, the centrifugal concentration method can also be applied, although it is not as good as the Tsuneta Uki double concentration method in terms of initial cost and running cost.

本発明を、添付図面ケ用いさらに詳細に説明する。The present invention will be explained in more detail with reference to the accompanying drawings.

第6図は本発明の好適な嫌気性消化処理法を示すフロー
シート図である。
FIG. 6 is a flow sheet diagram showing a preferred anaerobic digestion method of the present invention.

余剰活性汚泥をライン1を経て混合帯域62に導入する
。この混合帯域52には気泡がライン68から導入され
ており、気泡−汚泥混合物はラインろ4かも浮上帯域3
5に送られろ。ここで濃縮汚(12) 泥は脱気された後ライン6より消化槽7に供給されろ。
Excess activated sludge is introduced into mixing zone 62 via line 1. Air bubbles are introduced into this mixing zone 52 from line 68, and the air bubble-sludge mixture is passed through line 4 or flotation zone 3.
Get sent to 5. Here, the concentrated sludge (12) is deaerated and then supplied to the digestion tank 7 from the line 6.

生成ガスはガスホルダー6B(fこ*I”(r’lさハ
七−0哨化汚泥ろ9はライン8から間欠的に混合帯域3
2に供給され、前述と同様に濃縮して濃縮消化汚泥は脱
気された後ライン6より消化槽7に返送さ牙[るっ分離
水はライン61より糸外に排出されろ。
The generated gas is intermittently passed through the mixing zone 3 from the line 8 to the gas holder 6B (fko*I"(r'lsaha7-0)
2, the concentrated digested sludge is concentrated in the same manner as described above, and after being deaerated, it is returned to the digestion tank 7 through line 6.The separated water is discharged outside through line 61.

消化汚泥69を常圧浮上濃縮する場合はバルブv1を適
宜開閉して浮上工程が過負荷にならないよう調整する。
When the digested sludge 69 is concentrated by flotation at normal pressure, the valve v1 is opened and closed as appropriate to prevent the flotation process from becoming overloaded.

起泡帯域67には起泡剤6ろと空気66馨供給し1発生
した気泡はライン乙8から混合帯域ろ2に送る。
A foaming agent 6 and air 66 are supplied to the foaming zone 67, and the generated bubbles are sent to the mixing zone 2 from line Otsu 8.

実施例 1 某下水処理場の余剰活性汚泥(全固形分29560m!
j/l、肩棟鈴24151m?/l)を第6図に示す常
圧浮上濃縮法lこより濃縮して濃縮汚泥(全固形分49
285η#−、*aI/1j404o4Iuy#、)v
得た。常圧浮上濃縮において(ま汚泥の固形分に対し0
.2曹1%の凝集剤および口ろwt、%の界面活性剤を
用いた。この濃縮汚泥&10011び7日の割合で1t
の消化槽に投入したつ某下水処理場の消化汚(13) 泥(全固形分28,527nlW/l 、肩棟物15.
596m?/l)を種汚泥とし、この種汚泥を前記余剰
活性汚泥にて2週間培養し、さらに上述の常圧浮上濃縮
して得られた汚泥(固形分50.010m9/l 。
Example 1 Excess activated sludge from a certain sewage treatment plant (total solid content: 29,560 m!)
j/l, shoulder ridge 24151m? /l) is concentrated using the normal pressure flotation concentration method shown in Figure 6 to obtain thickened sludge (total solids content: 49
285η#-, *aI/1j404o4Iuy#,)v
Obtained. In normal pressure flotation concentration (zero for the solid content of sludge)
.. A flocculant of 1% disodium carbonate and a surfactant of 1% wt. 1 ton of this thickened sludge & 10011 and 7 days
Digested sewage from a certain sewage treatment plant (13), which was put into the digestion tank of 15.
596m? /l) was used as seed sludge, and this seed sludge was cultured in the surplus activated sludge for 2 weeks, and then the sludge obtained by flotation and concentration at atmospheric pressure as described above (solid content: 50.010 m9/l).

摘棟’lo27,606mq/l ) 900 r#を
実験に先立ち消化1曹に装填した。6日に1回の割合で
消化槽から汚泥ケ引と抜いて前述の常圧浮J: 711
4 M ’x行って消化槽内の汚泥諧度を5%に調整し
F/M値ケ0111に保持した。消化槽を恒温槽に浸し
て消化槽をろ7′Cに保持した。消化日数は10日であ
り。
900 r# was loaded into the digester 1st tank prior to the experiment. The sludge is removed from the digestion tank once every 6 days, and the above-mentioned atmospheric pressure floating J: 711
The sludge density in the digestion tank was adjusted to 5% by 4 M'x, and the F/M value was maintained at 0111. The digester was kept at 7'C by immersing it in a constant temperature bath. The number of days for digestion is 10 days.

消@物貞荷はll、Of−vSs/l −Elであった
Disposal@thingsadago was ll, Of-vSs/l -El.

一方、比較実験においては、上記余剰活性汚泥を濃縮せ
ずに直接消化槽に投入したこと、実験に先立ち消化槽に
装填された汚泥は常圧浮上濃縮されていないことおよび
汚泥の引抜き量は10[1mg/日であったことケ除き
上記と同様に行なった。比較実験におけろ哨機讃負荷は
2.午f −vss / l・日であった。
On the other hand, in the comparative experiment, the surplus activated sludge was directly charged into the digestion tank without being concentrated, the sludge loaded into the digestion tank prior to the experiment was not concentrated by atmospheric flotation, and the amount of sludge extracted was 10%. [Same as above except that the dose was 1 mg/day. In the comparative experiment, the sentry load was 2. It was pm f-vss/l day.

結果を第4図に示す。平均ガス発生量は、比較実験にお
いては0. 、? t /Hに対し本発明では:1J(
14) t/日である。また、投入有機物当りのガス発生量は、
比較実験においては335me / f −vssであ
るのに対し本発明においては410 me/ff−vs
sと消化率が高いことがわかる。また、ガス発生量の経
時変化ケ見ると5本発明においてはそσ)変動が少ない
っすなわち本発明の方法では処理が安定して(・る。こ
れはF/M値が常に一定であることによる。
The results are shown in Figure 4. The average amount of gas generated was 0.0 in the comparative experiment. ,? In the present invention, compared to t/H: 1J(
14) t/day. In addition, the amount of gas generated per input organic matter is
In the comparative experiment, it was 335 me/f-vss, whereas in the present invention, it was 410 me/ff-vss.
It can be seen that the digestibility is high. In addition, when looking at the change over time in the amount of gas generated, in the present invention there is little variation (σ), that is, with the method of the present invention, the processing is stable (・).This means that the F/M value is always constant. by.

実施例 2 消化槽内の消化汚泥濃度を3.7%+2.84Y変化さ
せたことを除き、実施例1と同様に行った。
Example 2 The same procedure as in Example 1 was carried out except that the concentration of digested sludge in the digestion tank was changed by 3.7% + 2.84Y.

結果を第5図に示す。F1M値の増加にイキいガス発生
量は低下することがわかる。
The results are shown in Figure 5. It can be seen that as the F1M value increases, the amount of gas generated decreases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第6図は本発明の方法?示すフローシート
であり、第2図は消化日数とガス発生量の関係?示す説
明図であり、第4図は実施例1の結果を示す図であり、
第5図は実施例2の結果を示す図である。 2.9・・・常圧浮上濃紺装置 7・・・消化槽(15
) ろ2・・・混合帯域    66・・・起泡剤65・・
・浮上帯域    ろ6・・・空気37・・・起泡帯域 特許出願人 新菱冷熱工業株式会社 (16) 第4図 01  23456789 第5図
1 and 6 are the methods of the present invention? This is a flow sheet showing the relationship between the number of days for digestion and the amount of gas generated. FIG. 4 is a diagram showing the results of Example 1,
FIG. 5 is a diagram showing the results of Example 2. 2.9...Normal pressure flotation dark blue device 7...Digestion tank (15
) Filter 2... Mixing zone 66... Foaming agent 65...
・Floating zone Filter 6... Air 37... Foaming zone Patent applicant Shinryo Corporation (16) Figure 4 01 23456789 Figure 5

Claims (1)

【特許請求の範囲】 1、有機性汚泥を浮上濃縮又は遠心濃縮による第1濃縮
工程に導入して第1濃縮汚泥と第1分離水とに分離し、
前記第1a縮汚泥乞消化槽に導入して嬌気性消化を行う
方法であって;消化期間中、前記消化槽から消化汚泥を
引き抜いて浮上濃縮又は遠心濃縮による第2濃縮工程に
導入し、第2濃縮工程にて分離された算2濃縮汚泥を前
記消化槽に返送することからなる、有機性汚泥の嫌気性
消化処理方法。 2 第1および第2の濃縮工程は同一の装置からなる特
許請求の範囲第1項記載の方法っ6、第1および第2の
濃縮工程は;起泡剤、液体および気体の混合により気泡
を発生させ、前記気泡を流入してくる汚泥と混合して気
泡−汚泥混合物を形成し、前記気泡−汚泥混合物を浮上
帯域に導いて濃縮汚泥?得ろ、各浮上濃縮工程からな(
1) る特許請求の範囲第1項又は第2項記載の方法。 4 前記気体は空気である特許請求の範囲第6項記載σ
)方法。
[Claims] 1. Organic sludge is introduced into a first concentration step by flotation concentration or centrifugal concentration to separate it into first concentrated sludge and first separated water;
A method for performing pneumatic digestion by introducing the 1a reduced sludge into the digestion tank; during the digestion period, the digested sludge is pulled out from the digestion tank and introduced into a second concentration step by flotation concentration or centrifugal concentration; A method for anaerobic digestion of organic sludge, which comprises returning a total of 2 concentrated sludge separated in 2 concentration steps to the digestion tank. 2. The method according to claim 1, wherein the first and second concentration steps are comprised of the same device. 6. The first and second concentration steps are: generating a bubble, mixing the bubbles with incoming sludge to form a bubble-sludge mixture, and directing the bubble-sludge mixture to a flotation zone to form a thickened sludge. Obtained from each flotation concentration process (
1) The method according to claim 1 or 2. 4. σ according to claim 6, wherein the gas is air.
)Method.
JP57219081A 1982-12-14 1982-12-14 Anaerobic digestion treatment Granted JPS59109296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57219081A JPS59109296A (en) 1982-12-14 1982-12-14 Anaerobic digestion treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57219081A JPS59109296A (en) 1982-12-14 1982-12-14 Anaerobic digestion treatment

Publications (2)

Publication Number Publication Date
JPS59109296A true JPS59109296A (en) 1984-06-23
JPH0254160B2 JPH0254160B2 (en) 1990-11-20

Family

ID=16729958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57219081A Granted JPS59109296A (en) 1982-12-14 1982-12-14 Anaerobic digestion treatment

Country Status (1)

Country Link
JP (1) JPS59109296A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263699A (en) * 1985-05-17 1986-11-21 Mikurotetsuku Tsuu Wan:Kk Method and apparatus for generating gaseous methane
JPH04210300A (en) * 1990-12-12 1992-07-31 Baiotetsuku:Kk High-temp. methane fermentation equipment and fermentation method using the same
JPH04225900A (en) * 1990-12-27 1992-08-14 Ngk Insulators Ltd Method for anaerobically digesting organic sludge
JP2007098273A (en) * 2005-10-04 2007-04-19 Sumitomo Heavy Ind Ltd Method and apparatus for producing organic acid
JP2010227876A (en) * 2009-03-27 2010-10-14 Osaka Gas Co Ltd Composite treatment method for wastewater and organic residue
JP2019141778A (en) * 2018-02-20 2019-08-29 水ing株式会社 Anaerobic digestion tank startup method and anaerobic digestion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691898A (en) * 1979-12-25 1981-07-25 Nishihara Environ Sanit Res Corp Condensation of digested sludge
JPS56126497A (en) * 1980-03-07 1981-10-03 Kubota Ltd Water treatment
JPS57144099A (en) * 1981-02-28 1982-09-06 Hitachi Plant Eng & Constr Co Ltd Anaerobic digestive method for organic sludge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691898A (en) * 1979-12-25 1981-07-25 Nishihara Environ Sanit Res Corp Condensation of digested sludge
JPS56126497A (en) * 1980-03-07 1981-10-03 Kubota Ltd Water treatment
JPS57144099A (en) * 1981-02-28 1982-09-06 Hitachi Plant Eng & Constr Co Ltd Anaerobic digestive method for organic sludge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263699A (en) * 1985-05-17 1986-11-21 Mikurotetsuku Tsuu Wan:Kk Method and apparatus for generating gaseous methane
JPH04210300A (en) * 1990-12-12 1992-07-31 Baiotetsuku:Kk High-temp. methane fermentation equipment and fermentation method using the same
JPH04225900A (en) * 1990-12-27 1992-08-14 Ngk Insulators Ltd Method for anaerobically digesting organic sludge
JP2007098273A (en) * 2005-10-04 2007-04-19 Sumitomo Heavy Ind Ltd Method and apparatus for producing organic acid
JP2010227876A (en) * 2009-03-27 2010-10-14 Osaka Gas Co Ltd Composite treatment method for wastewater and organic residue
JP2019141778A (en) * 2018-02-20 2019-08-29 水ing株式会社 Anaerobic digestion tank startup method and anaerobic digestion system
JP2022000304A (en) * 2018-02-20 2022-01-04 水ing株式会社 Anaerobic digestion tank startup method and anaerobic digestion system

Also Published As

Publication number Publication date
JPH0254160B2 (en) 1990-11-20

Similar Documents

Publication Publication Date Title
CN106915883A (en) A kind of minimizing of endogenous FNA pretreating sludges and process for reclaiming
KR101536000B1 (en) equipment and method for making liquid fertilizer of livestocks&#39; excrements rapidly
JP3762668B2 (en) Anaerobic fermentation method and apparatus
JPS59109296A (en) Anaerobic digestion treatment
JP7228653B2 (en) Anaerobic digestion tank start-up method and anaerobic digestion system
JP2000218288A (en) Batch anaerobic treatment and device therefor
JP3846138B2 (en) Method and apparatus for anaerobic treatment of liquid containing starch particles
JP2001347296A (en) Method and apparatus for treating sludge, and method and apparatus for treating sewage by utilizing the same
JP2006272138A (en) Organic waste treatment method
JP3970163B2 (en) Organic waste treatment method and apparatus
JP2005193146A (en) Method for treating organic waste and the treating system
JP3971657B2 (en) Method and apparatus for treating organic waste liquid
JPS62279899A (en) Method and apparatus for treating sewage of excretion system
JP4365617B2 (en) Organic waste liquid processing method and processing apparatus
JP2002224686A (en) Anaerobic treatment method and equipment for starch particle-containing liquid
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP2004298688A (en) Method for treating organic waste, biogas system and method for producing methane fermentation residual liquid concentrate
JPH091178A (en) Anaerobic treatment of high-concentration organic waste liquid
JP4010733B2 (en) Organic wastewater treatment method and apparatus
JP2017121603A (en) Waste treatment method and waste treatment system
JPH06142685A (en) Method and device for treating waste fluid containing organic nitrogen
JP2001070915A (en) Device and method for organic waste disposal
JP3800990B2 (en) Anaerobic digestion method and apparatus of organic sludge
JP4693337B2 (en) Method and apparatus for treating organic waste liquid
JP2001070983A (en) Method and apparatus for treating wastewater