JPS59108278A - Laminated type fuel cell - Google Patents
Laminated type fuel cellInfo
- Publication number
- JPS59108278A JPS59108278A JP57217169A JP21716982A JPS59108278A JP S59108278 A JPS59108278 A JP S59108278A JP 57217169 A JP57217169 A JP 57217169A JP 21716982 A JP21716982 A JP 21716982A JP S59108278 A JPS59108278 A JP S59108278A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- uneven
- flow path
- fuel cell
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0289—Means for holding the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、積層形燃料電池、特にその積層体の側面を
落下する余剰の電解質を受けるものに関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stacked fuel cell, particularly one that receives excess electrolyte falling down the side of the stack.
従来、積層形燃料”心地のガス分庫板としては第1図及
び第2図に示すものがあった。第21図は第1図を裏側
から見た平面図であり、■(hl (cl(ロ)は第1
図と第2図との同じ位置を示している。図において、(
1)は凹凸状ガス流路部の凸部、(2)は凹凸状ガス流
路部の凹部、(3)はシール部分である。Conventionally, there have been gas storage plates for stacked fuel cores as shown in Figures 1 and 2. Figure 21 is a plan view of Figure 1 seen from the back, and (b) is the first
The same position as in FIG. 2 is shown. In the figure, (
1) is a convex portion of the uneven gas flow path portion, (2) is a recessed portion of the uneven gas flow path portion, and (3) is a seal portion.
槓11形燃料電池の、回層は、燃料゛直棒、電解質マト
リックス及びi投化剤電極を有し、上記゛電極周縁部を
シール材で構成した単電池と上記ガス分離板とを交互に
積層することによシ行なわれる。第3図は4 /Jまで
積層を終えたFITを示したものであり(4)は単電池
、(5)はガス分離板、(6)はシール材を示している
。私1p’iする1片あるいは積層した読、゛d解質マ
トリックスに゛電解質が含浸されるが、このとき含浸す
る電解質が多すぎると外部に余剰の電解j・1が流れ出
し、凹凸状ガス流路部の凹部(2)をふさいでしまうな
どの好ましくない状態になる。また逆に電解質が少なす
ぎると電池の特性が悪くなる。The circuit layer of the 11-type fuel cell has a fuel straight rod, an electrolyte matrix, and an injection agent electrode, and the unit cells in which the periphery of the electrode is made of a sealing material and the gas separation plate are alternately arranged. This is done by laminating layers. FIG. 3 shows the FIT that has been laminated up to 4/J, with (4) showing the single cell, (5) the gas separation plate, and (6) the sealing material. When using a single piece or a stack of layers, the electrolyte matrix is impregnated with electrolyte, but if too much electrolyte is impregnated at this time, excess electrolyte flows out to the outside, creating an uneven gas flow. This results in an undesirable situation such as blocking the recess (2) in the road. On the other hand, if there is too little electrolyte, the characteristics of the battery will deteriorate.
従って含浸させる’+’ji解質のMは厳密に一部 H
5する必要がある。以上のようにして槓Hされた燃料電
池の積層体には燃料、酸化剤両反応ガス供給様構である
マニホールドが収り付けられ1反応ガス及び電気系統の
配管、配線を終えた後、反応ガスを供給することにより
4L′1層形燃斜°市池の運転が行なわれる。リン酸f
:屯解質として使用するリン酸形燃料電池の場合には2
00℃11n後で、また炭酸塩を電解質として使用する
浴融炭酸塩形燃料電池の場合には650 ’C前後で運
転される。また、この動作温度の制御のために、積層体
には数)・増ごとに冷却板が側j入され、液冷または空
冷による温度制御が行なわれる。なお、この場合は冷却
板がガス分離板(5)の機能も兼ねる。Therefore, M of the '+'ji solute to be impregnated is strictly a part of H
It is necessary to do 5. A manifold, which is a structure for supplying both fuel and oxidant reaction gases, is installed in the stacked structure of the fuel cell that has been assembled as described above. By supplying gas, the 4L' single-layer combustion tank is operated. phosphoric acid f
: 2 in the case of phosphoric acid fuel cells used as sludge
After 00°C 11n, and in the case of bath-molten carbonate fuel cells using carbonate as electrolyte, it is operated at around 650'C. Further, in order to control the operating temperature, cooling plates are installed in the laminated body for each number, and temperature control is performed by liquid cooling or air cooling. In this case, the cooling plate also functions as the gas separation plate (5).
−次に動作について説明する。反応ガスの供給を行なう
と、燃料および酸化剤はそれぞれのマニホールドを涌じ
て凹凸状ガス流路部の凹部(2)を流れ、単電池(4)
に供給される。このとき単電池(4)には起電力が生じ
、外部負荷につなぐことにより電力として取り出さ丸る
。反応ガスが水素と空気の場合には生成物としては水蒸
気が発生するが、これは残シの反応ガスとともに凹凸状
ガス流路部の凹部(2)を流れマニホールドを通じて外
部へ排出される。- Next, the operation will be explained. When the reaction gas is supplied, the fuel and oxidizer flow through the respective manifolds and through the concave portion (2) of the uneven gas flow path, and the fuel and oxidizer flow through the concave portion (2) of the uneven gas flow path, and
supplied to At this time, an electromotive force is generated in the cell (4), which is extracted as electric power by connecting it to an external load. When the reaction gases are hydrogen and air, water vapor is generated as a product, which flows through the recesses (2) of the uneven gas flow path together with the remaining reaction gas and is discharged to the outside through the manifold.
また反応ガスが外部に漏れないようにシール材(6)を
用いて層間のシールが行なわれるが、リン酸形燃料電池
の場合にはこの部分にリン酸を保持させることによるシ
ーμ方式すなわちウェットシーμ方式が一般的に行なわ
れている。従ってシー7し材(6)の部分には十分な量
のリン酸が保持されてぃなけばならない。しかしリン酸
の体積は温度変化や潤度によって大きく、変化する。従
って電解質マトリックスやシール材(6)の保持能力を
超える体積にまで膨張した場合には外部にリン酸が流れ
出し凹凸状ガス流路部の凹部(2)にたまって1反応ガ
スの流れを阻害する。あるいはマニホールドにたまって
マニホールドを腐食するなどの好ましくない状態になる
。このような現象は燃):S1電池の運転初期や運転休
止時に起こる。従ってこのような場合にはマニホールド
を取!1はすし、マニホールドや凹凸状ガス流路部の凹
部(2)などに流れ出したリン酸を取り除いてやる必”
jjJ’があった。またこのような現象(はリン酸形燃
料電池に限らず他の電解質を用いた場合にも同様に起こ
りうる現象である。In addition, a sealing material (6) is used to seal between the layers to prevent the reaction gas from leaking to the outside, but in the case of phosphoric acid fuel cells, phosphoric acid is retained in this area, which is called the wet sealing method. The C μ method is commonly used. Therefore, a sufficient amount of phosphoric acid must be retained in the sealing material (6). However, the volume of phosphoric acid is large and changes depending on temperature changes and moisture content. Therefore, if the electrolyte matrix or sealing material (6) expands to a volume that exceeds its holding capacity, phosphoric acid flows out to the outside and accumulates in the recesses (2) of the uneven gas flow path, obstructing the flow of the reactant gas. . Alternatively, it may accumulate in the manifold and lead to undesirable conditions such as corrosion of the manifold. Such a phenomenon occurs at the beginning of operation of the S1 battery or when the operation is stopped. Therefore, in this case, remove the manifold! 1. It is necessary to remove the phosphoric acid that has flowed out into the manifold and the recesses (2) of the uneven gas flow path.
There was jjJ'. Moreover, such a phenomenon can occur not only in phosphoric acid fuel cells but also when other electrolytes are used.
このように従来の槓)・A形燃斜電池には電解質を電解
質マトリックスに含浸する際、あるいは運転初期や運転
休止時において電解質が外部に流れ出し、凹凸状ガス流
路部の凹部(2)をふさいだフ、マニホールドを腐食し
たりするという欠点があった。In this way, in conventional A-type combustion batteries, the electrolyte flows out to the outside when the electrolyte is impregnated into the electrolyte matrix, or at the beginning of operation or when the operation is stopped, and the concave portion (2) of the uneven gas flow path is caused to flow out. It had the drawback of clogging and corroding the manifold.
特に4*層の1祭の電解質の流れ出しは、g(4:ヴを
行なう作朶者にとって工程上あるいは健康上、非常に好
ましくない状■であった。In particular, the outflow of electrolytes in the 4* layer was extremely undesirable for the producers who carried out the 4* process, both from a process and health standpoint.
この発明は上記のような従来のものの欠点を除去するた
めになされ之もので、単電池とガス分離板とを交互に複
数個積層した4吉1fflη体の側面を落下する余剰゛
電解質を受ける受は体を上記(jj11面より張シ出し
て1役けることによシ、上記余刺゛屯解質が凹凸状ガス
流路部の凹部lに流れ込んだり、マニホールドにたまっ
たりすることのないような積層形燃利電池を提供するこ
とを目的としている。This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it is a receiver for receiving excess electrolyte falling down the side of a 4-piece 1fflη body in which a plurality of unit cells and gas separation plates are laminated alternately. By extending the body above (JJ11), the above-mentioned extra stimulant solute will not flow into the concave part l of the uneven gas flow path or accumulate in the manifold. The purpose of this research is to provide a stacked fuel cell.
以下、この発明の一実施例を図をもとに説明する。第4
1Ma 、第5図はこの発明にかかわるガス分離板(5
)を示す平面図であり、第5図は第4図を裏側から見た
図である。藺において、(7)は凹凸状ガス流路部の端
部に設けられ、他の凸部(1)よりも低くした凸部であ
る。っi!υこの部分(7)は対向するシール材(6)
との間に隙間ができることになる。シール材(6)側が
平滑な凹凸状ガス流路部のカバーである受は体(8)を
上記隙間に挿入したものが第6図及び第7図である。こ
の受は体(8)の挿入部分を拡大して示したのが第81
図゛々び第91喜1であり、第8図は受は体(8)を挿
入する前の状態を示し、第9図は受は体(8)を挿入し
単°シ池(4)を積層した状態を一部切欠いて示してい
る。なお第8図、第9図はガス流路部の凹凸部(1)
(2)の数を誠に示している。また、第1oi図は4層
まで積層を終えた所を示したものである。なお1反応ガ
スの入口及び出口付近つ″!シ凹凹凸状ガス流郡部端部
で、他の凸部(1)よシも低くした凸部(7)の形状を
三角形にしたのは。An embodiment of the present invention will be described below with reference to the drawings. Fourth
1 Ma, Figure 5 shows the gas separation plate (5
), and FIG. 5 is a view of FIG. 4 seen from the back side. In this case, (7) is a convex portion that is provided at the end of the uneven gas flow path portion and is lower than the other convex portions (1). I! υThis part (7) is the opposite sealing material (6)
There will be a gap between the two. FIGS. 6 and 7 show a receiver body (8), which is a cover for an uneven gas flow path portion with a smooth side facing the sealing material (6), inserted into the above-mentioned gap. This receiver is shown in the 81st enlarged view of the inserted part of the body (8).
Figure 8 shows the state of the receiver before inserting the body (8), and Figure 9 shows the state of the receiver after inserting the body (8). The layered state is shown with a portion cut away. Note that Figures 8 and 9 show the uneven portion (1) of the gas flow path.
(2) really shows the number. Furthermore, Figure 1 shows the state where up to four layers have been laminated. Note that the shape of the protrusion (7), which is lower than the other protrusion (1) at the end of the uneven gas flow region near the inlet and outlet of the reactant gas, is triangular.
反応ガスの流れを良くするためで“どる。また、第11
図は凹凸状流路部が単電池(4)の下になる場合の受は
体(8)の挿入位i市を、第12図は流路部が単電池(
4)の上になる場合の受は体(8)の挿入位置をそれぞ
れ示す断面図である。受け1本(8)には* !IF−
り出し部分の上面に凹部を設けておシ、積層体の側面を
落下する余剰電解質を受けてためておくことができるよ
うになっている。In order to improve the flow of the reaction gas,
The figure shows the insertion position of the receiver body (8) when the uneven channel section is below the cell battery (4), and Figure 12 shows the insertion position of the receiver body (8) when the channel section is below the cell cell (4).
4) is a sectional view showing the insertion position of the body (8) when the receiver is on top. One receiver (8) has *! IF-
A recessed portion is provided on the upper surface of the protruding portion so that excess electrolyte falling down the side surface of the stack can be collected and stored.
次に動作について説明する。電解質を゛電解質マ)IJ
ラックス含浸する際、あるいは運転初期において゛電解
質が流れ出した場合にも、凹凸状ガス流路部やマニホー
ルドには流れ込まず、受は体(8)の凹部にfCまる。Next, the operation will be explained. Electrolyte (IJ)
Even if the electrolyte flows out during Lux impregnation or at the beginning of operation, it does not flow into the uneven gas flow path or manifold, and the receiver remains in the recessed part of the body (8).
したがって反応ガスの流れを妨げることはなく、またマ
ニホールドを腐食することもない。また、電解質を”−
解質マトリックスに含浸する場合にも、過剰に含葎して
も受は体(8)の外へは流れ出さないので1.含浸i・
i′は従来はど厳密に調節する必要がなくなる。Therefore, the flow of the reaction gas is not obstructed, and the manifold is not corroded. Also, electrolytes
Even when impregnating the solute matrix, the uke will not flow out of the body (8) even if it is impregnated in excess, so 1. Impregnation i・
It is no longer necessary to precisely adjust i' as in the past.
なお、上記実施例では受は体(8)の挿入部分の凹凸状
ガス流路部の凸部(7)を三角形とすることにより反応
ガスの流れの改善を行なったが、これは第13図に示す
ように受は体(8)の挿入部分の凹凸状ガス流路部の凹
部(9)を他の凹部(2)よりも低くしてもよく、上巳
実施例と同様の効果を奏する。In the above embodiment, the flow of the reactant gas was improved by making the convex part (7) of the concave-convex gas flow path part of the insertion part of the receiver body (8) triangular. As shown in FIG. 3, the concave portion (9) of the uneven gas flow path portion of the insertion portion of the body (8) may be made lower than the other concave portions (2), and the same effect as in the Uami embodiment can be obtained.
また、上記′−J、施例では凹凸状ガス梳路部の端部と
シール材(6)との間に別個に受は体(8)全挿入した
場合を示したが、ガス分離板(5)の−’1risを積
1d体の側110よシ張シ出して受は体とした(ニア4
成でもよい。In addition, in the example '-J above, a case is shown in which the receiver body (8) is completely inserted between the end of the uneven gas passage section and the sealing material (6), but the gas separation plate ( 5) -'1ris was stretched out from the side 110 of the product 1d body and the receiver was made a body (near 4
It may be completed.
以上、ガス分浦板(5)に反応ガス流路部が形成されて
いる場合について述べたが、燃料型(l箕及びに他剤電
極に反応ガス流り部が形成された場合(リグ付電極)に
もそれぞれの流路部について上”己笑施例と同:菓の1
14造を設けることによυ上’iF!実施例と同様の効
果が期待される。The case where the reactive gas flow path is formed on the gas distribution plate (5) has been described above, but the case where the reaction gas flow path is formed on the fuel type (litter) and other gas electrodes (with rig) has been described. (electrode) as well as for each flow path section.Same as the example above:
By establishing 14 structures, υ上'iF! Effects similar to those of the example are expected.
以上のように、この発明によれば単゛1b:池とガス分
離板とを交互に神敵飼積層した積層体の側面を落下する
余剰電解質を受ける受は体を上記側面よυ張り出して設
けたので、上記余剰電解質が凹凸状ガス流να部の四部
に流れ込んだり、マニホールドにたまったりすることの
ないような)liN膚形1然料゛直池が得られる効果が
ある。As described above, according to the present invention, the receiver for receiving surplus electrolyte falling down the side surface of the laminate in which ponds and gas separation plates are alternately stacked is provided with its body protruding beyond the side surface. Therefore, it is possible to obtain a straight pond in which the excess electrolyte does not flow into the four parts of the uneven gas flow να or accumulate in the manifold.
第11図、第2図は従来のガメ′分l;;:tl板を示
す平面図で、第2図は第1図を裏側から見たものである
。
第3図は従来の槓、i−1形燃料電池を承す斜視図、第
41図、第51図i、J:この発明の一実ノ埴例にかか
わるガス分1諭板を示す平面1図で、第5図は第41図
をシ、≦側から見たものである。第6図、第7図は第4
1Aおよび第5図のガス分14.:板に受は体を挿入し
た状態を示す平面図、第81部は第51図のガス分向5
板の凹凸状流路部の端部を拡大して示す斜視図、第9図
は第8図の力゛ス分跋板に受は体をJY(i人し単電池
を積層した状態を一部切欠いて示す拡大斜視図、第10
図はこの発明の一実施例による積層形燃料電池を示す斜
視図、第11図%第12図は第10図の積:護形燃料゛
戒池の受は体、挿入部分を拡大して示す1新面図、第1
3図はこの発明の他の実施例にかかわるガス分M板の凹
凸状流路部の端部を拡大して示す斜視図である。
図において、(1)は凹凸状ガス流路部の凸部、(2)
は凹凸状ガス流路部の凹部、(3)は凹凸状ガス流路部
のシーJV部、(4)は単電池、(5)はガス分1i4
G板、(6)は単′−池(4)のシール材、(7)はシ
ー1し材(6)に対向す−る凹凸状ガス壌路部の凸部(
1)の端部、(8)は受は体である。
な膠、1肉中同−符号は同一または(・「1当、1[5
分を示すものとする。
代理人 葛 野 信 −
第1図
第2図
第4図
第5図
第6図
第7図
第8図
7
第9は;
第11図
第12図
第131旬FIG. 11 and FIG. 2 are plan views showing the conventional turtle board, and FIG. 2 is a view of FIG. 1 from the back side. Fig. 3 is a perspective view of a conventional turret and I-1 type fuel cell; Figs. 41 and 51; In the figure, FIG. 5 is a view of FIG. 41 from the ≦ side. Figures 6 and 7 are the 4th
1A and gas component 14 in FIG. : A plan view showing the state in which the body is inserted into the plate, and part 81 is the gas direction 5 in Fig. 51.
FIG. 9 is a perspective view showing an enlarged view of the end of the concave-convex channel portion of the plate. Enlarged perspective view with partial cutaway, No. 10
The figure is a perspective view showing a stacked fuel cell according to an embodiment of the present invention. 1 new surface map, 1st
FIG. 3 is a perspective view showing an enlarged end of the concavo-convex channel portion of a gas portion M plate according to another embodiment of the present invention. In the figure, (1) is the convex part of the uneven gas flow path part, (2)
(3) is the sea JV part of the uneven gas flow path, (4) is a cell, (5) is the gas portion 1i4
G plate, (6) is the sealing material of the single pond (4), and (7) is the convex part (of the uneven gas well path part) opposite to the sealing material (6).
The end of 1), (8) is the body. Glue, the same sign in one meat is the same or (・``1 hit, 1[5
shall indicate the minutes. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 7 Figure 9; Figure 11 Figure 12 Figure 131
Claims (3)
を有し、上記電極周縁部をシール材で構成した単電池、
ガス分跡板、上記燃料電極とガス分離板間で両者のいず
れか一方の面に複数の溝にて形成した凹凸状燃料ガス流
路部、並びに上記酸化剤電極とガス分1雛板間で両者の
いずれか一方の面に複数の溝にて形成した凹凸状酸化剤
ガス流路部を備え、上記単電池とガス分離板とを交互に
複数個積層して相層体を構成する積層形燃料電池におい
て上記積層体の側面を落下する余剰電解質を受ける受は
体を上記側面より張シ出して設けたことを特徴とする積
層形燃料電池。(1) A unit cell having a fuel electrode, an electrolyte matrix, and an oxidizing agent, and having a sealing material at the periphery of the electrode,
a gas distribution plate, an uneven fuel gas flow path portion formed with a plurality of grooves on either one of the surfaces between the fuel electrode and the gas separation plate, and between the oxidizer electrode and the gas separation plate; A laminated type comprising an uneven oxidant gas flow path formed by a plurality of grooves on one side of both, and a plurality of the above-mentioned unit cells and gas separation plates are alternately laminated to form a phase layered body. A stacked fuel cell characterized in that a receiver for receiving excess electrolyte falling down the side surface of the stacked body in the fuel cell is provided with a body extending out from the side surface.
張り出したものであることを特徴とする特許請求の範囲
第1項記載の積層形燃料電池。(2) The body of the receiver is a part of the gas separation plate that is stacked on the side of the four body.
The stacked fuel cell according to claim 1, wherein the stacked fuel cell has an overhanging structure.
、受は体は、その一部が、シール材に対向する凹凸状ガ
ス流路部の端部に設けられ、上記シーμ材側が平滑な上
記凹凸状流路部のカバーであることを特徴とする特許請
求の範囲第1項又は第2項記載の積層形燃料電池。(3) The uneven gas passage section is formed on the gas separation plate, and the receiving body is partially provided at the end of the uneven gas passage section facing the sealing material, 3. The stacked fuel cell according to claim 1, wherein the cover for the uneven flow path portion has a smooth material side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57217169A JPS59108278A (en) | 1982-12-10 | 1982-12-10 | Laminated type fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57217169A JPS59108278A (en) | 1982-12-10 | 1982-12-10 | Laminated type fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59108278A true JPS59108278A (en) | 1984-06-22 |
JPH0160898B2 JPH0160898B2 (en) | 1989-12-26 |
Family
ID=16699935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57217169A Granted JPS59108278A (en) | 1982-12-10 | 1982-12-10 | Laminated type fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59108278A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0171346A2 (en) * | 1984-08-06 | 1986-02-12 | United Technologies Corporation | Method and apparatus for adding electrolyte to a fuel cell stack |
JPS628454A (en) * | 1985-07-05 | 1987-01-16 | Hitachi Ltd | Fuel cell |
JPS62152362U (en) * | 1986-03-19 | 1987-09-26 | ||
US4910101A (en) * | 1987-12-02 | 1990-03-20 | Mitsubishi Denki Kabushiki Kaisha | Stacked type fuel cell |
US5258240A (en) * | 1991-10-11 | 1993-11-02 | Westinghouse Electric Corp. | Solid oxide fuel cell generator |
JPH0724183U (en) * | 1993-10-18 | 1995-05-09 | スーパー株式会社 | Curtain weight |
-
1982
- 1982-12-10 JP JP57217169A patent/JPS59108278A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0171346A2 (en) * | 1984-08-06 | 1986-02-12 | United Technologies Corporation | Method and apparatus for adding electrolyte to a fuel cell stack |
JPS628454A (en) * | 1985-07-05 | 1987-01-16 | Hitachi Ltd | Fuel cell |
JPS62152362U (en) * | 1986-03-19 | 1987-09-26 | ||
US4910101A (en) * | 1987-12-02 | 1990-03-20 | Mitsubishi Denki Kabushiki Kaisha | Stacked type fuel cell |
US5258240A (en) * | 1991-10-11 | 1993-11-02 | Westinghouse Electric Corp. | Solid oxide fuel cell generator |
JPH0724183U (en) * | 1993-10-18 | 1995-05-09 | スーパー株式会社 | Curtain weight |
Also Published As
Publication number | Publication date |
---|---|
JPH0160898B2 (en) | 1989-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6350540B1 (en) | Fuel cell with gas diffusion layer flow passage | |
US5846668A (en) | Fuel cell, electrolytic cell and process of cooling and/or dehumidifying same | |
US9099693B2 (en) | Fuel cell and fuel cell separator | |
CN104064785A (en) | Fuel Cell Resin Frame Equipped Membrane Electrode Assembly | |
JPH0286071A (en) | Solid polymer fuel cell | |
JP2001506399A (en) | Integrated Reactant and Coolant Fluid Region Layer for Fuel Cell with Membrane Electrode Assembly | |
CN100557870C (en) | The method and the fuel cell of the dividing plate of fuel cell, joint dividing plate | |
US20080220311A1 (en) | Pem Fuel Cell with Charging Chamber | |
JPH0238377Y2 (en) | ||
JPS59108278A (en) | Laminated type fuel cell | |
JP2007134206A (en) | Fuel cell stack | |
JP2510676B2 (en) | Fuel cell | |
JP3454837B2 (en) | How to install a fuel cell | |
JPS6240831B2 (en) | ||
JP4692001B2 (en) | Fuel cell separator | |
JP3673252B2 (en) | Fuel cell stack | |
JPS6160548B2 (en) | ||
JPH11176457A (en) | Solid high polymer electrolyte fuel cell | |
JPH0775166B2 (en) | Molten carbonate fuel cell | |
JP2504522B2 (en) | Molten carbonate fuel cell | |
JP2005071763A (en) | Fuel cell separator | |
JP4498681B2 (en) | Polymer electrolyte fuel cell | |
JPS59217958A (en) | Device for supplying electrolyte for matrix-type fuel cell | |
JPH04206361A (en) | Fuel cell | |
JP2000195530A (en) | Fuel cell and separator |