[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59107337A - Transmission screen - Google Patents

Transmission screen

Info

Publication number
JPS59107337A
JPS59107337A JP57218613A JP21861382A JPS59107337A JP S59107337 A JPS59107337 A JP S59107337A JP 57218613 A JP57218613 A JP 57218613A JP 21861382 A JP21861382 A JP 21861382A JP S59107337 A JPS59107337 A JP S59107337A
Authority
JP
Japan
Prior art keywords
convex portion
parabola
transparent plate
cross
screen according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57218613A
Other languages
Japanese (ja)
Inventor
Yoshito Miyatake
義人 宮武
Yoshitomi Nagaoka
長岡 良富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57218613A priority Critical patent/JPS59107337A/en
Publication of JPS59107337A publication Critical patent/JPS59107337A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

PURPOSE:To obtain a transmission screen having a large horizontal view angle, which is suitable for a slide projector, etc. by forming repeatedly a slender projecting part on which the contour of a cross section is formed by a parabola along the plane of a transparent plate, on one surface of a thin transparent plate. CONSTITUTION:A Fresnel lens 3 for changing a diverging luminous flux from a light source to a parallel luminous flux or a converging luminous flux is formed on the surface of a light source 2 side of one thin transparent plate 1 in which an optical diffusing material is mixed, and a lot of slender projecting parts 13 on which the cross section is formed by a parabola or a rough parabola along the plane formed by the transparent plate 1 are formed in parallel at prescribed intervals on the other surface, bywhich a transmission screen is obtained. In this way, parallel beams going toward the surface of the projecting part 13 from the inside of the transparent plate 1 are curved in the lateral direction and are made incident to the surface near the top of the projecting part 13, and a beam diverging to the outside from the surface near the top is emitted, by which a horizontal view angle can be widened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、スライドプロジェクタ−や投写型テレビジョ
ン装置に使用して有効なスクリーン、さらに詳細には、
スクリーンの矢面から投写し、前面から映像を見る透過
型のスクリーンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a screen that is effective for use in slide projectors and projection television devices, and more specifically,
This relates to a transmissive screen in which images are projected from the front of the screen and images are viewed from the front.

従来例の構成とその問題点 従来のこの種のスクリーンとして、第1図に示すような
ものがある。これを説明すると、薄い透明板1aの一方
の面に光源2からの発数光束を平行光束または収束光束
に変えるだめのフレネルレンズ3を形成し、他方の面に
か一41¥:こ状凸レンズ4を観察者に対して水平方向
に繰返しだレンティキーラーレンズを形成し、この透明
板の内部に投写画像を映出するための光拡散材を混入し
たものである。かまぼこ状凸レンズ4を繰返し形成した
レンティキュラーレンズは、水平方向にのみ光を効率良
く拡散することができるので、垂直視野角をlトさく、
水平視野角を大きくすることができる。
Conventional Structure and Problems There is a conventional screen of this type as shown in FIG. To explain this, a Fresnel lens 3 for converting the emitted light beam from the light source 2 into a parallel light beam or a convergent light beam is formed on one surface of the thin transparent plate 1a, and a convex lens 41 is formed on the other surface. 4 is repeated in the horizontal direction with respect to the viewer to form a lenticular lens, and a light diffusing material for projecting a projected image is mixed inside this transparent plate. A lenticular lens in which semicylindrical convex lenses 4 are repeatedly formed can efficiently diffuse light only in the horizontal direction, so it reduces the vertical viewing angle.
The horizontal viewing angle can be increased.

ところで、第1図に示すような迅過型スクIJ−ンの水
平視野角を拡げるためには、かまぼこ状凸レンズ4の曲
率中心5から見た見込み角2θを大きくすればよい。し
かし、この見込み角2θをあ1り大きくすると、透過型
スクリーンの光軸6に平行な光線7はかまぼこ状凸レン
ズ4の表面で全反射を生じる場合がある。薄い透明板1
aとしてアクリル樹脂(屈折率: 1.491 )  
を使った場合、全反射の臨界角は42.10となるので
、見込み角2θの最大値は84.2° となる。このと
き出9J傾角β(出射光?fM8と光軸6のなす角)の
最大値は47.9°となる。1だ、光線が屈折するとき
、入射角がブリュ−スター角を越えると、屈折面におけ
る反射率がしだいに大きくなるので、水平視野角を大き
くするために見込み角2θを大きくすると効率が低下し
てしまう。たとえば、屈折率が1.491の場合、ブリ
ュースター角は33.80となり、このときの出射ス1
角はβ−22,30となる。
By the way, in order to widen the horizontal viewing angle of a fast-pass type screen IJ as shown in FIG. 1, the viewing angle 2θ as viewed from the center of curvature 5 of the semicylindrical convex lens 4 may be increased. However, if the viewing angle 2θ is increased by a certain amount, the light rays 7 parallel to the optical axis 6 of the transmission screen may be totally reflected on the surface of the semicylindrical convex lens 4. thin transparent plate 1
Acrylic resin (refractive index: 1.491) as a
When using , the critical angle for total reflection is 42.10, so the maximum value of the angle of view 2θ is 84.2°. At this time, the maximum value of the output 9J inclination angle β (the angle formed by the output light?fM8 and the optical axis 6) is 47.9°. 1. When a ray of light is refracted, if the angle of incidence exceeds the Brewster angle, the reflectance at the refracting surface gradually increases, so if the viewing angle 2θ is increased to increase the horizontal viewing angle, the efficiency will decrease. I end up. For example, when the refractive index is 1.491, the Brewster angle is 33.80, and the exit angle is 1.491.
The angle will be β-22,30.

このため、第1図に示すような透過型スクリーンは水平
視野角をあまり大きくできないという四鵬があった。
For this reason, there was a problem that the horizontal viewing angle of the transmissive screen shown in FIG. 1 could not be made very large.

また、第2図に示すように、2枚の薄い透明板9.10
で構成し、透明板9の一方の面にフレネルレンズ3を形
成し、透明板10の光源2の側の面11にかまIYこ状
凸レンズ4を繰返し、透明板10の欽察者側の而12に
光拡散ノーを設けた透過型スクリーンがある。この透過
型スクリーンは、光軸6に平行に入射した光線7がかま
ぼこ状凸レンズ4で折り曲げられ、観察者側の而12で
さらに折り曲けられるので、出射傾角βの最大値を第1
図に示したものより大きくすることができ、従って水平
視野角を大きくすることができる。
In addition, as shown in Figure 2, two thin transparent plates 9.10
A Fresnel lens 3 is formed on one surface of the transparent plate 9, a hook-shaped convex lens 4 is repeatedly formed on the surface 11 of the transparent plate 10 on the light source 2 side, and 12 is a transmissive screen provided with a light diffusion screen. In this transmission screen, the light ray 7 incident parallel to the optical axis 6 is bent by the semicylindrical convex lens 4, and further bent by the lens 12 on the observer's side, so that the maximum value of the exit angle β is set to the first
It can be made larger than shown in the figure, thus allowing for a larger horizontal viewing angle.

しかし、第2図に示した透過型スクリーンは2枚構成で
あるために、2枚の透明板9,10の間に隙間を生じや
すく、隙間が大きくなると二重像やボケを生じる。また
、2枚の透明板9,10を隙間がないように貼り合わせ
る工程が必要となるので、コスト高となる。
However, since the transmission screen shown in FIG. 2 has a two-layer structure, a gap is likely to occur between the two transparent plates 9 and 10, and if the gap becomes large, double images or blurring will occur. Furthermore, a process of bonding the two transparent plates 9 and 10 together without any gaps is required, resulting in high costs.

発明の目的 本発明は、水平視野角が従来のものよシ大きい1枚構成
の透過型スクリーンを提供しようとするものである。
OBJECTS OF THE INVENTION The present invention seeks to provide a single-panel transmissive screen that has a larger horizontal viewing angle than conventional screens.

発明の構成 本発明の透過型スクリーンは、薄い透明板の一方の面に
その透明板のつくる平面に沿って横断面の輪郭の一部ま
たは全部が放物線または略放物線でつくられている細長
い凸部を繰返し形成したものであシ、透明板の内側から
凸部の表面に向かって平行光線が入射したときに、まず
全反射により横方向に光線を曲げて凸部の頂点伺近の入
団に入射させ、頂点付近の表面から外部に発散する光線
を出射させることにより、水平視野角を非常に広くした
ものである。
Composition of the Invention The transmission screen of the present invention has a thin, thin transparent plate on one side of which a long and narrow convex part whose cross-sectional profile is partially or entirely formed as a parabola or a substantially parabola along the plane formed by the transparent plate. When a parallel ray of light enters the surface of the convex part from the inside of the transparent plate, the light ray is first bent in the horizontal direction by total reflection and then enters the beam near the apex of the convex part. The horizontal viewing angle is made extremely wide by emitting light rays that diverge to the outside from the surface near the apex.

実施例の説明 以下に、本発明の実施例について、図面を参照して説明
する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第3図は、本発明に係る透過型スクリーンの−実施例に
ついて、その@断面を示したものでめる光拡散材を混入
した1収の博い透明板1の光源2の側の面には、光源2
からの発散光束を平行光束または収束光束に変えるため
のフレネルレンズ3が形成され、他方の面には、横断面
が数′l/li!S捷たは略放′aJ線で透明板1のな
す平面に沿って側長い凸部13が所定間隔あけて平行に
多数形成されている。この透過型スクリーンは凸部13
の長手方向がmW者から見て垂直方間になるように配置
して使われる。
FIG. 3 shows a cross-section of an embodiment of a transmission screen according to the present invention. is light source 2
A Fresnel lens 3 is formed on the other surface to convert a diverging light beam from the rays into a parallel light beam or a convergent light beam, and the cross section is several'l/li! A large number of side-long protrusions 13 are formed parallel to each other at predetermined intervals along the plane formed by the transparent plate 1 in the direction of S or approximately radial aJ. This transmission type screen has a convex portion 13
It is used by arranging it so that the longitudinal direction of the mW is perpendicular to the mW operator.

第4図は凸部13の横断■を拡大して示したものである
。凸部13の+j4vfjT面の輪郭は外部に同かって
凸の放9勿緋となっており、その中l1yln 14r
J、透明板1のなす平面と垂直になっている。
FIG. 4 shows an enlarged cross-sectional view of the convex portion 13. The outline of the +j4vfjT surface of the convex portion 13 is the same as the outside, and has a convex shape of 9,000 mm, among which l1yln 14r
J, perpendicular to the plane formed by the transparent plate 1.

1ず、第4図に示した凸部13の表面に中心線14に平
行な光線15が入射した場合の作用について説明する。
First, the effect when a light ray 15 parallel to the center line 14 is incident on the surface of the convex portion 13 shown in FIG. 4 will be explained.

入射光線15と中心線14の間隔が小さい場合には、屈
折により外部に出射する成分16と、反射により内側に
戻る成分17に分割される。凸部13は外部に同かって
凸となっているので、入射光線15と中心線140間隔
が大きくなるほど凸部130表面における入射角aが大
きくな一す、入射角αの増大に伴って反射成分17の光
強度の割合が大きくなる。そして、入射光線15と中心
線140間隔が一定値より犬きくなると、透過成分16
がなくなり、反射成分17だけ、つまり全反射となる。
When the distance between the incident light ray 15 and the center line 14 is small, the light is divided into a component 16 that exits to the outside by refraction and a component 17 that returns to the inside by reflection. Since the convex portion 13 is convex in the same way as the outside, the larger the distance between the incident light ray 15 and the center line 140, the larger the incident angle a on the surface of the convex portion 130. As the incident angle α increases, the reflected component The ratio of the light intensity of 17 increases. When the distance between the incident ray 15 and the center line 140 becomes wider than a certain value, the transmitted component 16
is eliminated, and only the reflected component 17, that is, total reflection occurs.

このことから、入射光線16が凸部13の表面に入射す
るとき、全)y、荊を生じる場合と、全反射を生じない
場合の2つの場合に分類することができる。従って、凸
部13の表面は、全反射の始まる境界18により、境界
18より上にある土面19と、境界18より下にある側
面20に分けることができ、中心線14に平行な入射光
線16も入射する場所によって、」二面入射光線21と
側面入射光線22の2つに分けることができる。上面入
射光?llI21は上面19で屈折し外部に出射するが
、上面19が曲面であるために、入射位置により出射傾
角β(中心線14と出射光線16がなす角9が異なる。
From this, when the incident light ray 16 is incident on the surface of the convex portion 13, it can be classified into two cases: a case in which total reflection occurs, and a case in which total reflection does not occur. Therefore, the surface of the convex portion 13 can be divided into a soil surface 19 above the boundary 18 and a side surface 20 below the boundary 18 by the boundary 18 where total reflection begins, and the incident light parallel to the center line 14 16 can also be divided into two types, a double-incident ray 21 and a side-incident ray 22, depending on the incident location. Top incident light? The llI21 is refracted by the upper surface 19 and emitted to the outside, but since the upper surface 19 is a curved surface, the output inclination β (the angle 9 between the center line 14 and the output beam 16) differs depending on the incident position.

上面入射光#21に対する出#:11頃角βは凸部13
の頂点23に入射する場合に最小となり、境界18に人
別する場合に最大となる。側面入射光線22は側面20
で全反射した後、上面19に入射する。この場合、後述
のように、凸部13の横断面の輪郭が放物線ならば、土
面19に入射した光?fM24は全反射を生じないで外
部に出射する。この場合も、上■19が曲面であるため
に入射位置により出IJv +FA角が異なる。側面入
射光線22に対する出射1頃角は凸部13の下端25に
入射した場合に最小とkす、境界18に入射した場合に
最大となる。以上のような原理によって、中心軸14に
平行な光束を凸部13の表面に入射して光を拡散させる
ことかできる。
Output # for top incident light #21: around 11 Angle β is the convex portion 13
It becomes the minimum when it is incident on the vertex 23 of , and becomes the maximum when it is separated into the boundary 18 . Side-incident ray 22 is incident on side 20
After total reflection, the light enters the upper surface 19. In this case, as described later, if the outline of the cross section of the convex portion 13 is a parabola, then the light incident on the soil surface 19? fM24 is emitted to the outside without causing total internal reflection. In this case as well, since the upper part 19 is a curved surface, the output IJv +FA angle differs depending on the incident position. The output angle for the side incident light ray 22 is minimum when it is incident on the lower end 25 of the convex portion 13, and maximum when it is incident on the boundary 18. Based on the principle described above, it is possible to make a light beam parallel to the central axis 14 enter the surface of the convex portion 13 and diffuse the light.

第3図、第4図に示したような構成にすると、中心線1
4に直角な方向に出射する光線も存在するので、第1図
に示した構成の透過型スフIJ ’−7に比べて水平視
野角を大きくすることができ、また第2図に示した構成
の透過型スクリーンと同等の水平視野角にすることがで
きる。
With the configuration shown in Figures 3 and 4, the center line 1
Since there are also light rays emitted in a direction perpendicular to 4, the horizontal viewing angle can be made larger compared to the transmission-type Sufu IJ'-7 with the configuration shown in Figure 1, and the horizontal viewing angle can be increased compared to the configuration shown in Figure 2. horizontal viewing angle equivalent to that of a transmissive screen.

次に、凸部13の横断面の輪郭を放物線とじていること
について、3つの意義があるので説明する。
Next, the reason why the cross-sectional profile of the convex portion 13 is shaped like a parabola will be explained as it has three significances.

第1−の意義は凸部13から光線が外部に出射するとき
の位置についてである。物理学の分野では放物面鏡に向
かってその中心軸に平行な光線が入射するとき、反射光
線は必らす放物血続の焦点を通過することが知られてい
る。亮4図に示すような構成の場合も、中心線14上の
頂点23の近くに焦点26が存在する。そして、側面2
0で全反射した俊の光線24はすべて焦点26を通過し
、しかも上面19から外部に光線を出射することになる
。ところで、出射傾角の大きな光線を凸部13の1端2
5に近い、ところから出射させると、隣りにある凸部1
3にじゃへいされてしまい、実際の水平視野角を大きく
することはできない。従って、水平視野角を大きくする
ためには、出射1唄角の大きな光線は凸部13の先端2
3に近いところから出射させる必要がある。そこで、第
4図に示すように凸部13の横断面の輪郭を外部に向か
って凸の放物線にしておけば、全反射後の光線24がす
べて焦点26に集中するので、外部に出射する出射傾角
の大きな光線を凸部13の先端23に近いところから出
射させることができる。
The first meaning is the position at which the light beam exits from the convex portion 13 to the outside. In the field of physics, it is known that when a ray of light is incident on a parabolic mirror parallel to its central axis, the reflected ray will pass through the focal point of the parabolic mirror. Also in the case of the configuration shown in FIG. 4, the focal point 26 exists near the vertex 23 on the center line 14. And side 2
All of Shun's light rays 24 that are totally reflected at zero pass through the focal point 26 and are emitted to the outside from the upper surface 19. By the way, the light beam with a large emission angle is transmitted to one end 2 of the convex portion 13
When emitted from a place close to 5, the adjacent convex part 1
3, and it is not possible to increase the actual horizontal viewing angle. Therefore, in order to increase the horizontal viewing angle, the light beam with a large output angle should be directed to the tip of the protrusion 13.
It is necessary to emit the light from a location close to 3. Therefore, if the outline of the cross section of the convex part 13 is made into a parabola convex toward the outside as shown in FIG. A light beam with a large inclination angle can be emitted from a location close to the tip 23 of the convex portion 13.

第2の意mは、側面入射光線22が側面20で全反射し
た後の一]二面19に入射する光線24が外部に出射す
るか否かについてである。前述の放物面鏡の反射に関す
る性質から、放物面鏡の焦点を通過する光線は放物面鏡
で反射した後、必らず中心軸に平行に進むことがわかる
。第4図に示すような構成の場合も、側面入射光線22
が側面20で全反射した後、焦点26を通過するから、
その後上面19に入射したとき、反射成分の光線27の
進む方向は必らず中ノし・線14と平行になる。つまり
、反射成分の光線27は」二面入射光線21と平行であ
る。そして、上面入射光線21がに1面19に入射する
ときの入射角は全反射を生じない入射角であることを考
えると、側面入射光線21が全反射した後に上面19に
到達したとき全反射とはならず、必らず外部に光を出射
することがわかる。
The second meaning m concerns whether the light ray 24 incident on the 1]2 surface 19 after the side-incident light ray 22 is totally reflected on the side surface 20 is emitted to the outside. From the aforementioned reflection properties of a parabolic mirror, it can be seen that a ray of light passing through the focal point of a parabolic mirror always travels parallel to the central axis after being reflected by the parabolic mirror. Also in the case of the configuration shown in FIG.
After being totally reflected on the side surface 20, it passes through the focal point 26, so
Thereafter, when the light ray 27 enters the upper surface 19, the traveling direction of the reflected component light ray 27 is always parallel to the center line 14. In other words, the reflected component ray 27 is parallel to the dihedron incident ray 21. Considering that the angle of incidence when the top surface incident ray 21 is incident on the first surface 19 is an incident angle that does not cause total reflection, when the side surface incident ray 21 reaches the top surface 19 after being totally reflected, it is totally reflected. It can be seen that the light is not always emitted to the outside.

第3の意義は、第4図に示すような形状の凸部13は比
較的細長い形状になってはいるが、下端25を除けば鋭
く折れ曲がる部分を含んでいないことである。そのため
凸部13の加工が特に困難となることはなく、従来のか
まぼこ状凸レンズを加工する技術を用いて加工すること
が可能である。
The third significance is that although the convex portion 13 having the shape shown in FIG. 4 has a relatively long and narrow shape, it does not include any sharply bent portions except for the lower end 25. Therefore, machining the convex portion 13 is not particularly difficult, and it is possible to process the convex portion 13 using conventional techniques for machining semicylindrical convex lenses.

なお、凸部13の横断面の輪郭は正確な放物線とする必
要はなく、凸部13の先端23付近に光線を集中させる
ことができ、かつ側面入射光線22が」二面19に到達
したときに全反射を生じないならば、放物線から多少ず
れた形状でもかまわない。
Note that the outline of the cross section of the convex portion 13 does not need to be an exact parabola, and the light rays can be concentrated near the tip 23 of the convex portion 13, and when the side incident light ray 22 reaches the second surface 19. A shape slightly deviated from a parabola may be used as long as it does not cause total internal reflection.

卯、下に本発明の他の実施例について説明゛する。Other embodiments of the present invention will be described below.

第5図は凸部13の形状を第4図に示す形状から少し変
形したもので、同一の放物線を横力向に少しずらして重
ねたときに中央にできる形状となっている。この場合、
焦点が2つあり、左側の面28に関する焦点29と、右
側の而30に関する焦点31がある。こうすると、第4
図に示した凸部13の場合に比べて上面入射光線21の
光量の割合が減るので、配光特性の出射1頭角の小さい
部分を制御することができる。
In FIG. 5, the shape of the convex portion 13 is slightly modified from the shape shown in FIG. 4, and the shape is formed in the center when the same parabola is overlapped with a slight shift in the direction of lateral force. in this case,
There are two focal points, a focal point 29 regarding the left surface 28 and a focal point 31 regarding the right surface 30. In this way, the fourth
Since the proportion of the light amount of the upper surface incident light ray 21 is reduced compared to the case of the convex portion 13 shown in the figure, it is possible to control the portion of the light distribution characteristic where the output angle is small.

第6図は凸部13の形状を第5図に示した構成からさら
に2つの焦点29,31の間隔を広げ、2つの焦点29
.31が凸部13の外に出るようにしたものである。焦
点29.31が凸部13の外部にある場合には、側面入
射光束32が側面28で全反射した後に反対側の側面3
0に収束光束となって入射する。この光束は側面30で
さらに収束されるので、収束点33を通過後は発散角の
大きな光束となる。一方、焦点29.31が凸部13の
内部にある場合には、側面入射光束32が側面28で全
反射した後に反対側の側面30に発散光束となって入射
するので、側面30で収束の方向の作用を受けても、発
散角の大きな光束とならない。このように、2つの焦点
29.31が凸部の内部にあるか外部にあるかによって
側面入射光線に対する出射傾角を制御することができる
In FIG. 6, the shape of the convex portion 13 is further widened from the configuration shown in FIG.
.. 31 is arranged to protrude outside the convex portion 13. When the focal point 29.31 is outside the convex portion 13, the side-incident light beam 32 is totally reflected on the side surface 28 and then reflected on the opposite side surface 3.
0 as a convergent light beam. Since this light beam is further converged at the side surface 30, it becomes a light beam with a large divergence angle after passing through the convergence point 33. On the other hand, when the focal point 29.31 is inside the convex portion 13, the side-incident light beam 32 is totally reflected on the side surface 28 and then enters the opposite side surface 30 as a divergent light beam. Even if it is affected by the direction, it does not become a luminous flux with a large divergence angle. In this way, the outgoing inclination angle for the side incident light beam can be controlled depending on whether the two focal points 29, 31 are located inside or outside the convex portion.

焦点29.31が凸部13の外部にある状態で2つの焦
点29.31の間隔を変えると、配光特性の出射傾角の
大きな部分を制御することができる。
By changing the distance between the two focal points 29.31 while the focal point 29.31 is outside the convex portion 13, it is possible to control a large part of the light distribution characteristic with an exit angle.

第7図は、凸部13の横断面の輪郭を、境界34を境に
して側面35を放物線で構成し、上面36を円弧で構成
したものである。本発明で凸部13の横断面の輪郭を放
物線としているのは、側面で全反射させた光線を凸部1
3の頂点23付近に集中させるためであるから、頂点2
3付近に集中した光線が外部に出射し、かつ」二面入射
光線21を種々の出射傾角で出射させることができるな
ら、上面36の形状は放物線に限る必要はない。
In FIG. 7, the outline of the cross section of the convex portion 13 is such that the side surface 35 is formed by a parabola and the upper surface 36 is formed by a circular arc with the boundary 34 as the boundary. In the present invention, the outline of the cross section of the convex portion 13 is a parabola because the light rays totally reflected on the side surface of the convex portion 13 are
This is because the purpose is to concentrate near the vertex 23 of vertex 2.
The shape of the upper surface 36 does not need to be limited to a parabola as long as the light rays concentrated around 3 can be emitted to the outside and the double-incident light rays 21 can be emitted at various exit inclinations.

第7図は」−而36の形状を外側に向かって凸の円弧と
した例であるが、」二面36の形状を外側に向かって凹
の円弧としてもか捷わない。た蛇し、上面36の形状に
よって、配光特性が変わる。このことを利用して、配光
特性を制御することも1」」能である。
Although FIG. 7 shows an example in which the shape of the second surface 36 is an outwardly convex arc, it is also possible to change the shape of the second surface 36 to be an outwardly concave arc. The light distribution characteristics change depending on the shape of the upper surface 36. Utilizing this fact, it is also possible to control the light distribution characteristics.

第8図は、第3図に示すような凸部13を繰返し形成し
た構成を変形し、瞬り合う凸部13のj旬に、第1図に
示したようなかまぼこ状凸レンズ4を形成したものであ
る。このようにすると、出射傾角が小さい部分の配光特
性を強くすることができる。凸部13とかまぼこ状凸レ
ンズ4への入射光量の比を適当に選ぶことにより、配光
特性を制御することができる。
FIG. 8 shows a modification of the configuration in which convex portions 13 are repeatedly formed as shown in FIG. 3, and semicylindrical convex lenses 4 as shown in FIG. It is something. In this way, it is possible to strengthen the light distribution characteristics in the portion where the exit angle is small. By appropriately selecting the ratio of the amount of light incident on the convex portion 13 and the semicylindrical convex lens 4, the light distribution characteristics can be controlled.

発明の効果 以上の説明から明らかなように本発明によれば、水平視
野角が従来のものより大きい1枚構成の透過型スクリー
ンを得ることができる。また、効率良く水平方向の光拡
散を行なうことができる。さらに、凸部の構成はパラメ
ータの裡類が多いので、配光特性の制御が可能であるな
どの数々のすぐれた効果を有する。
Effects of the Invention As is clear from the above description, according to the present invention, it is possible to obtain a single-panel transmissive screen having a larger horizontal viewing angle than conventional screens. Further, horizontal light diffusion can be performed efficiently. Furthermore, since the configuration of the convex portion depends on many parameters, it has many excellent effects such as being able to control light distribution characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は透過型スクリーンの従来例を示す
要部断面図、第3図は本発明に係る透過型スクリーンの
一実施例を示す要部断面図、第4図は第3図に示した凸
部の拡大的「面図、第6図。 第6図および第7図は凸部の他の例を示す拡大断面図、
第8図は本発明に係る透過型スクリーンの他の実施例を
示す要部断面図である。 1・・・・・・a切板、3・・・・・・フレネルレンズ
、4・・・・・・かまぼこ状凸レンズ、13・・・・・
・凸部、19.36・・・・・・土面、20.28,3
0.35・・・・・側面、26.29.31・・・・・
・焦点。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第4
図 第5図 第 6 図
1 and 2 are sectional views of main parts showing a conventional example of a transmission screen, FIG. 3 is a sectional view of main parts showing an embodiment of a transmission screen according to the present invention, and FIG. FIG. 6 is an enlarged plan view of the convex portion shown in FIG. 6. FIGS. 6 and 7 are enlarged sectional views showing other examples of the convex portion,
FIG. 8 is a sectional view of a main part showing another embodiment of a transmission type screen according to the present invention. 1...A cutting plate, 3...Fresnel lens, 4...Kamaboko-shaped convex lens, 13...
・Protrusion, 19.36...Soil surface, 20.28,3
0.35...Side, 26.29.31...
·focus. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 4
Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 (])  薄い透明板の一方の面に、前記透明板のつく
る略平面に沿って横断面の輪郭の一部または全部が放物
線または略放物線でつくられている細長い凸部を繰返し
形成したことを特徴とする透過型スクリーン。 (2)凸部の横断面の輪郭の一部または全部を外部に向
かって凸の放物線または略放物線としたことを特徴とす
る特許請求の範囲第(1)項記載の透過型スクリーン。 (3)凸部の横断面の輪郭をつくる前記放物線の中心軸
が前記透明板のつくる略平面に沿って垂直となるように
形成したことを特徴とする特許請求の範囲第(2)項記
載の透過型スクリーン。 (4)凸部の横断面の輪郭の一部または全部を中心軸の
ずれた2つの放物線または略放′PDnとしたことを特
徴とする特許請求の範囲第(2)項記載の透過型スクリ
ーン。 (5)凸部の横断面の輪郭の内部に前記放物線の焦点を
含まないように形成したことを特徴とする特許請求の範
囲第(4)JA記載の透過型スクリーン。 (6)凸部の横断面の輪郭のうち角点イ」近の形状を放
物線とは異なる曲線としたことを特徴とする特許請求の
範囲第(2)項記載の透過型スクリーン。 (7)凸部の横断面の輪郭のうち頂点付近の形状を外部
に向かって凸または凹の円弧としたことを特徴とする特
許請求の範囲第(6)項記載の透過型スクリーン。 (8)隣り合う凸部の間に前記凸部と異なる構成の凸部
オたは凹部を構成したことを特徴とする特許請求の範囲
第(1)項記載の透過型スクリーン。 (9)隣り合う凸部の間に外部に向かって凸の略同筒面
を形成したことを特徴とする特許請求の範囲第(8)項
記載の透過型スクリーン。 (10)透明板の前記凸部を形成しない側の面に7し・
ネルレンズを形成したことを特徴とする特許請求の範囲
第(1)項記載の透過型スクリーン。 (11)透明板の内部に光拡散材を分布させたことを特
徴とする特許請求の範囲第(1)項記載の透過型スクリ
ーン。
[Scope of Claims] (]) An elongated protrusion on one surface of a thin transparent plate, whose cross-sectional profile is partially or entirely formed as a parabola or a substantially parabola along a substantially plane formed by the transparent plate. A transparent screen characterized by repeatedly forming the following. (2) The transmissive screen according to claim (1), wherein a part or all of the outline of the cross section of the convex portion is a parabola or a substantially parabola convex toward the outside. (3) Claim (2) characterized in that the central axis of the parabola defining the profile of the cross section of the convex portion is perpendicular to the substantially plane formed by the transparent plate. Transparent screen. (4) A transmissive screen according to claim (2), characterized in that a part or all of the contour of the cross section of the convex portion is formed into two parabolas or approximately radial PDn whose central axes are shifted from each other. . (5) The transmissive screen according to claim 4, wherein the transmissive screen is formed so that the focus of the parabola is not included within the contour of the cross section of the convex portion. (6) The transmissive screen according to claim (2), wherein the shape of the cross-sectional profile of the convex portion near the corner point A is a curve different from a parabola. (7) The transmissive screen according to claim (6), characterized in that the shape near the apex of the cross-sectional profile of the convex portion is an arc convex or concave toward the outside. (8) The transmission screen according to claim (1), wherein a convex portion or a concave portion having a different configuration from the convex portion is formed between adjacent convex portions. (9) The transmission screen according to claim (8), characterized in that substantially the same cylindrical surface that is convex toward the outside is formed between adjacent convex portions. (10) 7 on the side of the transparent plate where the convex portion is not formed.
A transmission type screen according to claim (1), characterized in that a flannel lens is formed. (11) A transmission screen according to claim (1), characterized in that a light diffusing material is distributed inside the transparent plate.
JP57218613A 1982-12-13 1982-12-13 Transmission screen Pending JPS59107337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218613A JPS59107337A (en) 1982-12-13 1982-12-13 Transmission screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218613A JPS59107337A (en) 1982-12-13 1982-12-13 Transmission screen

Publications (1)

Publication Number Publication Date
JPS59107337A true JPS59107337A (en) 1984-06-21

Family

ID=16722695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218613A Pending JPS59107337A (en) 1982-12-13 1982-12-13 Transmission screen

Country Status (1)

Country Link
JP (1) JPS59107337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260131A (en) * 1986-05-07 1987-11-12 Mitsubishi Rayon Co Ltd Back projection screen
JP2003504657A (en) * 1999-07-02 2003-02-04 トムソン ライセンシング ソシエテ アノニム Projection screen for television

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165830A (en) * 1981-04-07 1982-10-13 Mitsubishi Rayon Co Ltd Lenticular lens for screen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165830A (en) * 1981-04-07 1982-10-13 Mitsubishi Rayon Co Ltd Lenticular lens for screen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260131A (en) * 1986-05-07 1987-11-12 Mitsubishi Rayon Co Ltd Back projection screen
JP2003504657A (en) * 1999-07-02 2003-02-04 トムソン ライセンシング ソシエテ アノニム Projection screen for television

Similar Documents

Publication Publication Date Title
US7253954B2 (en) Flat valley fresnel lens
JP4149978B2 (en) Fresnel lens and lighting device
US3523717A (en) Composite back projection screen
US4531812A (en) Rear projection screen
JPH09265092A (en) Side light type surface light source device
KR0144686B1 (en) Rear projection screen
JPS63132228A (en) Rear projection screen
JPH04323633A (en) Rear projection screen
US3578841A (en) Rear projection screen
JPS6219837A (en) Transmission type screen
US20210294098A1 (en) Image display device
JPS59107337A (en) Transmission screen
JPH02135332A (en) Lenticular lens for rear projection type projection television
JPS59111138A (en) Light transmitting type screen
CN1231810C (en) Projection screen for TV
JP3842121B2 (en) Fresnel lens sheet and transmissive projection screen
JP2000347009A (en) Lens sheet and transmission type screen
JPS6210637A (en) Rear projection screen
JPH04240838A (en) Reflection type screen
JPS58211748A (en) Transmission type screen
JP3407764B2 (en) Transmission screen
CN114755752B (en) Backlight module
JPH10333147A (en) Back light
JP2009047883A (en) Screen
JPH0272340A (en) Reflection type screen