[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5899811A - Temperature controller of turbo-refrigerating machine - Google Patents

Temperature controller of turbo-refrigerating machine

Info

Publication number
JPS5899811A
JPS5899811A JP19682881A JP19682881A JPS5899811A JP S5899811 A JPS5899811 A JP S5899811A JP 19682881 A JP19682881 A JP 19682881A JP 19682881 A JP19682881 A JP 19682881A JP S5899811 A JPS5899811 A JP S5899811A
Authority
JP
Japan
Prior art keywords
temperature
control action
water outlet
integral control
integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19682881A
Other languages
Japanese (ja)
Inventor
Michihiko Aoki
青木 通彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19682881A priority Critical patent/JPS5899811A/en
Publication of JPS5899811A publication Critical patent/JPS5899811A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To execute an automatic operation without overshoot from the time of start of its operation, by utilizing the fact that an inlet vane opening of a compressor in case when a temperature of a cooling water outlet has reached a set value becomes a function of a temperature of a cooling water inlet. CONSTITUTION:As for a temperature controller provided on a cooling water outlet 6, an integral control action separation type PID temperature controller 10 is used. Also, at the time of integral control action separation, the reset rate of the integral control action is set so as to become an optimum vane opening (an inlet vane opening of a compressor 2) corresponding to a temperature of a cooling water inlet, by an output of a function generator 9. Subsequently, when a temperature of the cooling water outlet 6 has reached a set value, an integral control action separating contact 11 is closed, and the temperature controller 10 is set to an integral control action turn-on state. In this case, since the reset rate of the integral control action is set to an optimum value in advance by an output of the function generator 9, the vane opening in case when the integral control action has been turned on becomes an optimum value. In this way, the automatic operation can be executed without overshoot from the time of start of its operation.

Description

【発明の詳細な説明】 本発明はターボ冷凍機の温度制御装置に係り、時に運転
開始時からオーバーシュートなしに自動運転できるよう
にするのに好適なターボ冷凍機の温度制御i&置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device for a centrifugal chiller, and relates to a temperature control device for a centrifugal chiller that is suitable for enabling automatic operation without overshoot from the start of operation. be.

第1図は従来のターボ冷凍機の41成図で、冷媒は蒸発
器1内でガス化され、このガス化された冷媒は圧縮機2
に吸い込まれて圧縮される。次に、この圧縮されたガス
化冷媒は#@器3に送られて冷却されることにより液化
される。この液化冷媒はエコノマイザ4に送られて威圧
、減温された後、再び蒸発器lに送られてガス化される
。すなわち、冷媒は、冷凍機内において蒸発、圧縮、凝
砿、威圧の4過程を順次反復し、蒸発過程における気化
潜熱により、冷水入口5より供給される供給水が冷却さ
れて、冷水出口6より出て行く。ところで、このときの
冷媒の沸騰温度は、蒸発器l内の圧力により一義的に決
まるため、冷水出口6に設は友@f−節計7により圧嘲
機2の入ロペーン開fを調節し、圧縮機2の吸入量、す
なわち、蒸発器lの内圧を制御して、冷水の温度を制御
するようにしている。しかし、このような冷水出口温度
の制御にお−では、冷水出口温度が設定値より大#AK
高輪ときには、設定値に違する時点でオーバーシニート
して一旦設定値以下の温度に下って蒸発器lが凍結す名
という重大事故を発生する。そのため、このようなこと
が起らないようにするため、冷水出口温度が一旦設定値
まで冷却されるまでは手動運転として、設定値に達して
から自動に切り替えて運転するようにしていた。その九
め、運転上非常に不便であう友、なお、8は圧縮機駆動
装置である。
Figure 1 is a 41 diagram of a conventional centrifugal refrigerator, in which the refrigerant is gasified in the evaporator 1, and this gasified refrigerant is transferred to the compressor 2.
is sucked into and compressed. Next, this compressed gasified refrigerant is sent to #@ container 3, where it is cooled and liquefied. This liquefied refrigerant is sent to the economizer 4 where it is pressurized and reduced in temperature, and then sent again to the evaporator 1 where it is gasified. That is, the refrigerant sequentially repeats the four processes of evaporation, compression, condensation, and coercion in the refrigerator, and the latent heat of vaporization in the evaporation process cools the supply water supplied from the cold water inlet 5, and the water flows out from the cold water outlet 6. Go. By the way, the boiling temperature of the refrigerant at this time is uniquely determined by the pressure inside the evaporator 1, so the inlet opening f of the pressurizer 2 is adjusted by the setting meter 7 at the cold water outlet 6. The temperature of the cold water is controlled by controlling the suction amount of the compressor 2, that is, the internal pressure of the evaporator 1. However, when controlling the chilled water outlet temperature in this way, the chilled water outlet temperature is higher than the set value.
In Takanawa, a serious accident occurs when the evaporator l freezes due to oversineating when the set value is exceeded and the temperature drops below the set value. Therefore, in order to prevent this from happening, manual operation is performed until the chilled water outlet temperature is cooled to a set value, and once the set value is reached, operation is switched to automatic operation. Number nine, which is extremely inconvenient for operation, is the compressor drive device.

本発明は上記に鑑みてなされ九もので、その目的とする
ところは、ターボ冷凍機の運転開始時からオーバーシュ
ートなしに自動運転できるターボ冷凍機の温度制御装置
を提供することにある。
The present invention has been made in view of the above, and an object of the present invention is to provide a temperature control device for a centrifugal chiller that can automatically operate the centrifugal chiller without overshoot from the time the centrifugal chiller starts operating.

本発明は、ターボ冷凍機の冷水出口温度か設定置になつ
九ときの圧縮機式ロベー7開度(@度調節計の出力信号
)が冷水入口温度の関数になることに着目してなされた
もので、ターボ冷凍機の冷水出口Ill!度で動作する
温度調節針を積分動作分離形PIDeA節針とし、積分
動作分離時に積分動作のリセット率を冷水入口温度信号
を入力とする関数発生器の出力で積分動作投入時に上記
圧縮機入口ぺ一7開度が最適になる値に設定し、上記温
度調節計は上記冷水出口温度が設定値に達したときに積
分動作分離用接点を閉路させて積分動作を投入する構成
としたことを##漱としている。
The present invention was made by focusing on the fact that the opening degree of the compressor type lobby 7 (output signal of the degree controller) when the chilled water outlet temperature of the centrifugal chiller reaches the set point is a function of the chilled water inlet temperature. This is the cold water outlet of the centrifugal chiller! The temperature control needle that operates at 150°C is an integral action separated type PIDeA pointer, and when the integral action is separated, the reset rate of the integral action is determined by the output of a function generator that takes the chilled water inlet temperature signal as input, and when the integral action is turned on, the compressor inlet The temperature controller is configured to close the integral operation separation contact and enter the integral operation when the chilled water outlet temperature reaches the set value. #I'm sober.

以下本発明を第2図に示した実施例2よび第3図を用い
て詳細に説明する。
The present invention will be explained in detail below using Example 2 shown in FIG. 2 and FIG. 3.

第2図は本発明に係る温度制御装置を1111えたター
ボ冷凍機の一実施例を示す構成図、第1図と同一部分は
同じ符号で示し、ここでは説明を省略する。第2図にお
いては、冷水入口温度(冷水人口5における供給水温度
)を信号として取り出して関数発生器9の入力信号とし
、関数発生器9にて、冷水入口温度に対応した最適ベー
ン開度を演算するようにしている。また、冷水出口6に
設ける温度調節針は、積分動作分離形PID温度調節計
lOとし、積分動作分離時のリセット率は、冷水入口温
度の関数となるように、関数発生器9の出力によって設
定するようにしである。なお、冷水入口温度に対応した
最適ベーン開度(圧縮機2の入口ベーン開度)は、冷凍
機の冷凍能力によって一義的に定まり、一般には、第3
図に示すように1冷水式口@度と最適ベーン開度、すな
わち、温度調節針の積分動作の最適リセット率との関係
が1次曲線となるものとして関数発生器9の出力が演算
される。
FIG. 2 is a block diagram showing an embodiment of a centrifugal chiller equipped with a temperature control device according to the present invention. The same parts as in FIG. In FIG. 2, the chilled water inlet temperature (supply water temperature at chilled water population 5) is extracted as a signal and used as an input signal to the function generator 9, and the function generator 9 calculates the optimum vane opening corresponding to the chilled water inlet temperature. I am trying to calculate. The temperature control needle provided at the cold water outlet 6 is an integral action separated type PID temperature controller lO, and the reset rate when the integral action is separated is set by the output of the function generator 9 so that it becomes a function of the cold water inlet temperature. That's what I do. Note that the optimum vane opening degree (inlet vane opening degree of the compressor 2) corresponding to the cold water inlet temperature is uniquely determined by the refrigerating capacity of the refrigerator, and is generally determined by the third
As shown in the figure, the output of the function generator 9 is calculated on the assumption that the relationship between the chilled water outlet @ degree and the optimum vane opening degree, that is, the optimum reset rate of the integral operation of the temperature control needle is a linear curve. .

次に動作について説明する。ターボ冷凍機の起動時点か
ら冷水出口温度(冷水出口6における冷水温度)が設定
値に達するまでは、温度調節計10は積分動作を分離し
た状態で動作させ、積分動作分離時に積分動作のリセッ
ト率を関数発生器9の出力によって、冷水入口温度に対
応した最適ベーン開度となるように設定しておき、冷水
出口温度が設定値に違したら、冷水温度検出出力によっ
て積分動作分離用接点11t−閉路させて外部信号ft
温度調節計10に与えて、温度調節計10を積分動作投
入状態とする。このときは、積分動作のリセット率は関
数発生器9の出力によって最適値に設定されているから
、積分動作投入時のベーン一度が最適値とな′す、以後
、オーバーシュートなしにスムーズに設定値に温度制御
される。
Next, the operation will be explained. From the start of the centrifugal chiller until the chilled water outlet temperature (chilled water temperature at the chilled water outlet 6) reaches the set value, the temperature controller 10 operates with the integral operation separated, and when the integral operation is separated, the reset rate of the integral operation is changed. is set to be the optimum vane opening corresponding to the chilled water inlet temperature by the output of the function generator 9, and if the chilled water outlet temperature differs from the set value, the integral operation separation contact 11t- is set according to the chilled water temperature detection output. Close the circuit and send the external signal ft
This is applied to the temperature controller 10 to put the temperature controller 10 into the integral operation state. At this time, the reset rate of the integral operation is set to the optimum value by the output of the function generator 9, so the vane once when the integral operation is turned on becomes the optimum value, and from then on, the reset rate is set smoothly without overshoot. Temperature controlled to value.

以上説明したように、本発明によれば、ターボ冷凍機の
運転開始時から温度が設定値に達したときにオーバーシ
ュートすることなしに自動運転することができるという
効果がある。
As explained above, according to the present invention, there is an effect that automatic operation can be performed without overshooting when the temperature reaches a set value from the start of operation of the centrifugal chiller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のターボ冷凍機の構成図、第2図は本発明
に係る温度制御装置を備えたターボ冷凍機の一実施例を
示す構成図、第3図は冷水入口温度と温度調節計の積分
動作の最適リセット率との関係を示す線図である。 1・・・蒸発器、2・・・圧縮機、3・・・凝縮器、4
・・・エコノマイザ、5・・・冷恢入口、6・・・冷水
出口、9・・・関数発生器、10・・・積分動作分離形
PID温度調節ニド−// 男、3 図 冷水入口温度 (’c)
Fig. 1 is a block diagram of a conventional centrifugal chiller, Fig. 2 is a block diagram showing an embodiment of a centrifugal chiller equipped with a temperature control device according to the present invention, and Fig. 3 is a diagram showing chilled water inlet temperature and temperature controller. FIG. 3 is a diagram showing the relationship between the integral operation and the optimal reset rate. 1... Evaporator, 2... Compressor, 3... Condenser, 4
...Economizer, 5...Cooling inlet, 6...Cold water outlet, 9...Function generator, 10...Integral action separate PID temperature control unit -// Male, 3 Figure Chilled water inlet temperature ('c)

Claims (1)

【特許請求の範囲】 1、 負荷に応じて圧縮機人口ベーン開度を調節するこ
とにより冷凍機冷水出口温度を制御するようにしてなる
ターボ冷凍機の温度制御装置において、前記冷凍機の冷
水出口温度信号を入力とする積分動作分離形P I D
@R114節計と、前記冷凍機の冷水出口温度が設定値
に達しtときに閉路して前記【晶度調節針の分離された
積分動作を投入する積分動作分離用接点と、前記冷凍機
の冷水入口温度信号を入力として前記温度調節針の積分
動作が分離中に該積分動作のリセット率を、積分動作投
入時の前記圧縮機人口ベーン開度を最適にする値に設定
する関数発生器とよりなることを特徴とするターボ冷凍
機の温度制御装置。
[Scope of Claims] 1. A temperature control device for a centrifugal chiller configured to control chiller cold water outlet temperature by adjusting compressor artificial vane opening according to load, wherein Integral action separated type PID that takes temperature signal as input
@R114 moderator, an integral action separation contact that closes when the chilled water outlet temperature of the refrigerator reaches a set value and inputs the separated integral action of the crystallinity adjustment needle; a function generator that receives a cold water inlet temperature signal as input and sets a reset rate of the integral operation of the temperature control needle while the integral operation is separated to a value that optimizes the opening degree of the compressor artificial vane when the integral operation is started; A temperature control device for a centrifugal chiller, characterized by the following.
JP19682881A 1981-12-09 1981-12-09 Temperature controller of turbo-refrigerating machine Pending JPS5899811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19682881A JPS5899811A (en) 1981-12-09 1981-12-09 Temperature controller of turbo-refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19682881A JPS5899811A (en) 1981-12-09 1981-12-09 Temperature controller of turbo-refrigerating machine

Publications (1)

Publication Number Publication Date
JPS5899811A true JPS5899811A (en) 1983-06-14

Family

ID=16364333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19682881A Pending JPS5899811A (en) 1981-12-09 1981-12-09 Temperature controller of turbo-refrigerating machine

Country Status (1)

Country Link
JP (1) JPS5899811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137160A (en) * 1987-11-24 1989-05-30 Daikin Ind Ltd Turbo refrigerator
CN102741624A (en) * 2008-02-27 2012-10-17 三菱重工业株式会社 Turbo-refrigerator, refrigerating system, and control method thereof
JP2018004097A (en) * 2016-06-27 2018-01-11 荏原冷熱システム株式会社 Heat source system and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137160A (en) * 1987-11-24 1989-05-30 Daikin Ind Ltd Turbo refrigerator
CN102741624A (en) * 2008-02-27 2012-10-17 三菱重工业株式会社 Turbo-refrigerator, refrigerating system, and control method thereof
JP2018004097A (en) * 2016-06-27 2018-01-11 荏原冷熱システム株式会社 Heat source system and control method thereof

Similar Documents

Publication Publication Date Title
EP0558095A2 (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US5220806A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US5056328A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US5150583A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US5109678A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
JPS5899811A (en) Temperature controller of turbo-refrigerating machine
WO2021223530A1 (en) Control method for inverter air conditioner
JPS62196555A (en) Refrigerator
US3059444A (en) Freezing apparatus
KR100188989B1 (en) Method for controlling an absorption system
JPH05258164A (en) Cooling device for vending machine
JPS6342175B2 (en)
JP3080802B2 (en) Subcooled ice thermal storage device
JPS6144125Y2 (en)
JP7362031B2 (en) cold water production system
JP2918648B2 (en) Variable flow control device for cold / hot water / cooling water in absorption chiller / hot / cold water machine
JP4690574B2 (en) Control method and control device for expansion valve in refrigerator
JP2769423B2 (en) Refrigeration device temperature control method and device
JPH0355745B2 (en)
JPH05223378A (en) Helium liquefying/freezing apparatus and operation thereof
CN115682542A (en) Refrigerator and method for the same
JPS62106261A (en) Refrigerator
CN112611032A (en) Central air-conditioning system
JPH065570Y2 (en) Refrigeration equipment
JP2024110824A (en) Cooling device