[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5896848A - High hardness sintered body for tool and its manufacture - Google Patents

High hardness sintered body for tool and its manufacture

Info

Publication number
JPS5896848A
JPS5896848A JP19277281A JP19277281A JPS5896848A JP S5896848 A JPS5896848 A JP S5896848A JP 19277281 A JP19277281 A JP 19277281A JP 19277281 A JP19277281 A JP 19277281A JP S5896848 A JPS5896848 A JP S5896848A
Authority
JP
Japan
Prior art keywords
sintered body
diamond
binder
less
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19277281A
Other languages
Japanese (ja)
Inventor
Tetsuo Nakai
哲男 中井
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19277281A priority Critical patent/JPS5896848A/en
Priority to SE8204983A priority patent/SE457537B/en
Priority to FR8215073A priority patent/FR2512430B1/en
Priority to US06/414,821 priority patent/US4505746A/en
Priority to DE19823232869 priority patent/DE3232869A1/en
Priority to GB08225302A priority patent/GB2107298B/en
Publication of JPS5896848A publication Critical patent/JPS5896848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a high-hardness sintered body for a tool with superior wear and welding resistances by mixing a specified percentage of diamond particles having a specified particle size with a specified percentage of a binder composed of hyper-fine diamond particles, carbide or the like of a specified metal and an iron group metal. CONSTITUTION:A sintered body is manufactured using a powdered mixture consisting of 20-85vol% diamond particles having 3-10mum particle size and the balance binder. The binder is composed of 20-95vol% hyper-fine diamond particles having <=1mum average particle size, carbide, nitride or carbonitride of a IVa, Va or VIa group transition metal in the periodic table, a solid soln. or a crystal mixture thereof having <=1mum particle size, and an iron group metal. The powdered mixture is hot pressed at high temp. and pressure at which diamond is stable with a superhigh pressure and high temp. apparatus. The resulting signtered body shows superior wear and welding resistances.

Description

【発明の詳細な説明】 現在非鉄合金やプラスチック、セラミックの切削に、ダ
イヤモンドが70容量%を越し結合材としてCo  f
主成分とする金属が用いられた焼結体部が超硬合金母材
上に接合された工具材が市販されている。この工具材は
価格が高いにもかかわらすSi  i多く含むA1  
合金や硬度の高い銅合金などの切削工具として一部好評
を博している。
[Detailed Description of the Invention] Currently, diamond is used as a bonding material for cutting non-ferrous alloys, plastics, and ceramics in an amount exceeding 70% by volume.
There are commercially available tool materials in which a sintered body part made of metal as a main component is bonded onto a cemented carbide base material. Although this tool material is expensive, A1 contains a lot of Si.
It is popular as a cutting tool for some alloys and high hardness copper alloys.

本発明者らもこの工具材についてその特性などを種々調
査した。そして確かに従来用いられていた超硬合金に対
してははるかに耐摩耗性に富むこと、ダイヤモンドが主
成分でありしかもこのダイヤモンド結晶は互いに隣接し
たスケルトン構造をなしていることを認識した。このよ
うな優れたダイヤモンド焼結体にも種々の欠点がある。
The present inventors also conducted various investigations into the characteristics of this tool material. They realized that the material had much higher wear resistance than the conventionally used cemented carbide, and that the main component was diamond, and that the diamond crystals formed a skeleton structure in which they were adjacent to each other. Even such an excellent diamond sintered body has various drawbacks.

その第1は耐摩耗性に富んでいるメリットの裏側として
、高価格であることと、更に重量なことは再研削コスト
が大変高いというデメリットを有することである。
First, although it has the advantage of being highly abrasion resistant, it has the disadvantage of being expensive and, furthermore, being heavy and requiring very high re-grinding costs.

このチップそのものは高価格である為、現在超硬合金で
主流をなしている如く、スローアウェイ方式をとり摩耗
したら再研削することなく廃棄するということは出来な
い。
Since this tip itself is expensive, it is not possible to use the throw-away method, which is currently the mainstream for cemented carbide, and to discard it without re-grinding it when it wears out.

この考えから再研削テストをしてみると、研削するとい
うよりも研削用のダイヤモンド砥石をドレッシングして
いるという如きでその再研削の能率は極めて低く、又砥
石の消耗が極めて高く々ることが分った0 第2の欠点は、例えば非鉄合金を切削した場合の被加工
面を観察すると、天然ダイヤモンド単石工具に比較して
面粘度が粗く、鏡面と呼ばれる美麗な仕上面が得られな
いことであるo7た時計部品等の小物、薄肉の被加工物
を切削加工する場合、切削抵抗が大きく、加工物が変形
したり、寸法精度が維持できないといった問題点がある
0市販のダイヤモンド焼結体は前述した如く、ダイヤモ
ンド結晶同志が互いに、接合してスケルトン構造をなし
ているが、ダイヤモンド粒度は5〜8霧でその粒子間に
は結合材としてCOが存在する。この焼結体を用いたノ
くイトの刃先を観1察すると結晶粒子の大きさにほぼ近
い凹凸が見られ、天然ダイヤモンド工具の如く鋭い刃先
ではない。このことが美麗な仕上加工面が得られ難い理
由の一つと考えられる。またダイヤモンド粒子間に存在
する金属CO結合相は被剛材金属との凝着を起こすこと
があり、これは鏡面のような仕上加工面が要求される場
合には問題となる。これらの問題を解決すべく、本発明
者等の1人はダイヤモンド粒子の含有量を少なくした焼
結体や1μ以下のダイヤモンド粒子よりなる焼結体を開
発し、特許出願(特開昭53−136790号公報、特
開昭55−71671号公報)した0確かにこれらの材
質は被研削性は改良されたり、あるいは刃先の鋭さは優
れているものの、被削材によっては耐摩耗、耐溶着性に
問題があることがわかった0本発明者等は被研削性の良
さ、あるいは刃先の鋭さを得ることができ、かつ耐摩耗
性、耐溶着性の優れた材質を開発すべく研究を重ねた。
When we conducted a re-grinding test based on this idea, we found that the re-grinding efficiency was extremely low, as it was like dressing a diamond grinding wheel rather than grinding, and the wear of the grinding wheel was extremely high. Got it 0 The second drawback is that, for example, when observing the machined surface when cutting nonferrous alloys, the surface viscosity is rougher than that of natural diamond single stone tools, and a beautiful finished surface called a mirror surface cannot be obtained. When cutting small or thin workpieces such as watch parts, there are problems such as large cutting resistance, deformation of the workpiece, and inability to maintain dimensional accuracy. As mentioned above, the diamond crystals are bonded together to form a skeleton structure, and the diamond particle size is 5 to 8, with CO present as a binder between the particles. When observing the cutting edge of a nokuite using this sintered body, it is found that there are irregularities that are approximately the size of crystal grains, and the cutting edge is not as sharp as that of a natural diamond tool. This is considered to be one of the reasons why it is difficult to obtain a beautiful finished surface. Further, the metal CO binding phase existing between the diamond particles may cause adhesion with the metal to be stiffened, which becomes a problem when a mirror-like finished surface is required. In order to solve these problems, one of the present inventors developed a sintered body with a reduced content of diamond particles and a sintered body made of diamond particles of 1μ or less, and filed a patent application (Japanese Patent Application Laid-Open No. 136790, Japanese Unexamined Patent Publication No. 55-71671) It is true that these materials have improved grindability or excellent cutting edge sharpness, but depending on the workpiece material, wear resistance and welding resistance may be poor. The inventors of the present invention have conducted extensive research in order to develop a material that has good grindability or a sharp cutting edge, as well as excellent wear resistance and welding resistance. .

その結果、3μm以上のダイヤモンド粒子を容量で20
%以上85チ以下含有し、残部の結合材が20〜95容
量チの平均粒度1μm以下の超微粒ダイヤモンド粒子、
周期律表第4a、5a。
As a result, the capacity of diamond particles of 3 μm or more was 20
% or more and 85% or less, and the remaining binder is 20 to 95% by volume, ultrafine diamond particles with an average particle size of 1 μm or less,
Periodic Table 4a and 5a.

6a族遷移金属の炭化物、炭窒化物、窒化物またはこれ
らの固溶体もしくは混合物結晶及び第2図において、1
は工具材、2はダイヤモンド粒子、3は超微粒ダイヤモ
ンドを含有した結合材、4は砥石、5は砥石中のダイヤ
モンド結晶を表わす。
In FIG. 2, carbide, carbonitride, nitride or solid solution or mixture crystals of group 6a transition metal,
2 is a tool material, 2 is a diamond particle, 3 is a binding material containing ultrafine diamond, 4 is a grindstone, and 5 is a diamond crystal in the grindstone.

鉄、コバルト、ニッケル等の鉄族金属より成る焼結体が
目標を達成することを発見した。
They discovered that sintered bodies made of iron group metals such as iron, cobalt, and nickel achieve this goal.

まず、本発明焼結体の被研削性が優れているのは次の如
く考えられる。第1図は、本発明焼結体の代表的な組織
顕微鈍写真であるが、5μm以上のダイヤモンド粒子の
周囲を結合材である、1μm以下のダイヤモンド粒子と
周期律表第4a、5a、6a族の炭化物、窒化物、炭窒
化物及び鉄族金属が存在する。この焼結体を研削する場
合、第2図に示すように、鋭いダイヤモンド砥粒の刃が
接触するが、ダイヤモンド結晶に比べ削られ易い結合材
部が存在し、この部分が研削されるため5μm以上のダ
イヤモンド結晶がスケルトンを構成した焼結体よりも、
被研削性は向上するものと考えられる。次に刃立性が優
れている理由について考察する。3〜8μmのダイヤモ
ンド粒子より成り、ダイヤモンド粒子同志が互いにスケ
ルトン構造全なし、結合材がco  より成る市販の焼
結体は前述した如く、結合材であるCOが容易に取り除
かれてしまうため、結晶粒子の大きさにほぼ近い凹凸が
刃先に存在する。−志木発明焼結体は結合材中に微粒ダ
イヤモンド粒子を含有しているため、COが結合材であ
るときのように取り除かれず刃先の一部を構成する。こ
のため、刃先には凹凸が少なく、刃立性に優れるものと
考えられる。
First, the reason why the sintered body of the present invention has excellent grindability is considered to be as follows. FIG. 1 is a typical microscopic photograph of the structure of the sintered body of the present invention. There are carbides, nitrides, carbonitrides and iron group metals. When this sintered body is ground, as shown in Figure 2, a sharp diamond abrasive blade comes into contact with it, but there is a bonding material part that is easier to grind than the diamond crystal, and this part is ground, so it is 5 μm in diameter. Compared to the sintered body whose skeleton is composed of the above diamond crystals,
It is thought that the grindability is improved. Next, we will discuss the reasons why the blade has excellent sharpness. Commercially available sintered bodies are made of diamond particles of 3 to 8 μm in size, and the diamond particles do not have any skeleton structure with each other, and the binding material is CO. As mentioned above, the binding material, CO, is easily removed, so the crystals do not form. There are irregularities on the cutting edge that are approximately the same size as the particles. - Since the Shiki invention sintered body contains fine diamond particles in the binder, it is not removed like when CO is the binder, but forms part of the cutting edge. Therefore, the cutting edge has few irregularities and is considered to have excellent sharpness.

また、ダイヤモンド焼結体の強度は、第3図に示す如く
粒度の増加に伴い低下する。
Furthermore, the strength of the diamond sintered body decreases as the grain size increases, as shown in FIG.

微粒ダイヤモンド焼結体は、抗折力が高く、靭性に優れ
ているため、刃先は欠損しないものの、個々の粒子は小
さなスケルトンにより保持されているので、個々の粒子
の結合力は弱い0したがって、切削中に個々の粒子が脱
落しやすいため、耐摩耗性が劣るものと考えられる。一
方粗粒ダイヤモンド焼結体は大きなスケルトンにより保
持されており、個々のダイヤモンド粒子の結合力は強い
ため、耐摩耗性は優れるものの、スケルトン部が大きい
ので、一度クラックが発生すると、伝播しやすぐ、刃先
が欠損するものと考えられる。本発明焼結体は、3μm
以上10μm以下のダイヤモンド粒子を超微粒ダイヤモ
ンド焼結体で保持しているものであるため、6μm以上
10μm以下のダイヤモンド粒子の耐摩耗性の良さと、
超微粒ダイヤモンド焼結体の靭性の高さを有するもので
ある。さらに本発明の焼結体は結合材として超微粒のダ
イヤモンド粒子と、周期律表第4a、5a、6a族の炭
化物、窒化物、炭窒化物を含有しているため、耐溶着性
も非常に優れている。
Fine-grained diamond sintered bodies have high transverse rupture strength and excellent toughness, so the cutting edge will not break, but since each particle is held by a small skeleton, the bonding force between individual particles is weak. It is thought that wear resistance is poor because individual particles tend to fall off during cutting. On the other hand, coarse-grained diamond sintered bodies are held by a large skeleton, and the bonding force between individual diamond particles is strong, so they have excellent wear resistance, but because the skeleton is large, once a crack occurs, it is difficult to propagate. , the cutting edge is thought to be damaged. The sintered body of the present invention has a thickness of 3 μm.
Since the diamond particles of 10 μm or less are held in the ultrafine diamond sintered body, the diamond particles of 6 μm or more and 10 μm or less have good wear resistance.
It has the high toughness of an ultra-fine diamond sintered body. Furthermore, since the sintered body of the present invention contains ultrafine diamond particles as a binder and carbides, nitrides, and carbonitrides of groups 4a, 5a, and 6a of the periodic table, it has very high welding resistance. Are better.

本発明焼結体に用いる粗粒のダイヤモンド粒子は5μm
以上が良い。3μm以下になると耐摩耗性に問題を生じ
る。特に非鉄金属類の切削工具用途で単結晶ダイヤモン
ドと同等の被削面を得るにはダイヤモンド粒度は5〜1
0μの範囲が良い010μmk越えると被削面の粗さが
悪くなったり被研削性が低下する。5μm 以上10μ
m以下のダイヤモンドの含有量は容量で20〜85%が
好ましい。特に耐摩耗性が必要な場合は、5μm以上1
0μm以下のダイヤモンド粒子の含有量を増せば良いが
、この含有量が、焼結体中の容量係で85チを越えると
被研削性が悪くなるとともに切削中刃光が欠損したりす
る。また、含有量全少なくすれば良いが、容積で20%
未満となると耐摩耗性が問題となる。結合材中の超微粒
のダイヤモンド粒子の粒度は1μm以下、好ましくは0
.5μm以下が良い。微粒のダイヤモンド粒子の粒度が
1μmk越すと被研削性が低下するとともに靭性は低下
する。結合材中の微粒ダイヤモンド粒子の含有量は容積
で20〜95%が好ましい。微粒ダイヤモンド粒子の含
有量が20%未満であると、結合相の耐摩耗性が低下し
、結合相が研削中に削られ、鋭い刃先が得られなくなっ
たり、あるいは切削中に結合相が早期に摩耗し、3μm
以上のダイヤモンド粒子が脱落する。
The coarse diamond particles used in the sintered body of the present invention have a diameter of 5 μm.
The above is good. When the thickness is less than 3 μm, problems arise in wear resistance. In order to obtain a work surface equivalent to that of single crystal diamond, especially for cutting tools for non-ferrous metals, the diamond grain size is 5 to 1.
If the range of 0 μm exceeds 010 μmk, the roughness of the machined surface becomes poor and the grindability deteriorates. 5μm or more 10μm
It is preferable that the content of diamonds less than m is 20 to 85% by volume. In particular, if wear resistance is required, 5 μm or more 1
It is possible to increase the content of diamond particles with a diameter of 0 μm or less, but if this content exceeds 85 cm in terms of the capacity of the sintered body, the grindability deteriorates and the blade light may be damaged during cutting. In addition, it is possible to reduce the total content, but by 20% by volume.
If it is less than that, wear resistance becomes a problem. The particle size of the ultrafine diamond particles in the binder is 1 μm or less, preferably 0.
.. The thickness is preferably 5 μm or less. When the particle size of the fine diamond particles exceeds 1 μmk, the grindability and toughness decrease. The content of fine diamond particles in the binder is preferably 20 to 95% by volume. If the content of fine diamond particles is less than 20%, the wear resistance of the binder phase will decrease, and the binder phase will be removed during grinding, making it impossible to obtain a sharp cutting edge, or the binder phase will be removed prematurely during cutting. Worn, 3μm
More diamond particles fall off.

一方、微粒ダイヤモンド粒子の含有量が95%を越すと
、結合材が脆くなったり、あるいは周期律表第4a、5
a、6a族の炭化物、窒化物、硼化物等の含有量が減る
ため、1μm以下のダイヤモンドが粒成長し、靭性が低
下する。
On the other hand, if the content of fine diamond particles exceeds 95%, the binder becomes brittle or
Since the content of carbides, nitrides, borides, etc. of groups A and VIA decreases, diamond grains of 1 μm or less grow and the toughness decreases.

また、本発明の焼結体は靭性に富むため、断続部を有す
る非鉄金属の切削してもその効果を発揮する。
Further, since the sintered body of the present invention has high toughness, it exhibits its effect even when cutting non-ferrous metals having interrupted portions.

本発明の焼結体に使用するダイヤモンド原料粉末として
Ifi3μm以上のダイヤモンド粒子と1μm以下好ま
しくは05μm以下のミクロパウダーでちる。合成ダイ
ヤモンド、天然ダイヤモンドのいずれでも良い。
The diamond raw powder used in the sintered body of the present invention is made of diamond particles with Ifi of 3 μm or more and micropowder with Ifi of 1 μm or less, preferably 0.5 μm or less. Either synthetic diamond or natural diamond may be used.

このダイヤモンド粉末と前記化合物粉末の1種又は2種
以上及びFe 、 C+) 、 Nl  の鉄族金属粉
末を均一にボールミル等の手段を用いて混合する。この
鉄族金属は予め混合せずに焼結時に溶浸せしめても良い
。また発明者等の先願特願昭52−51381号の如く
ボールミル時のポットとボールを混入する炭化物等の化
合物と鉄族金属の焼結体で作成しておき、ダイヤモンド
粉末をボールミル粉砕すると同時にポットとボールから
炭化物等の化合物と鉄族金属の焼結体の微細粉末を混入
せしめる方法もある。
This diamond powder, one or more of the above compound powders, and iron group metal powders such as Fe, C+), and Nl are uniformly mixed using a means such as a ball mill. This iron group metal may be infiltrated during sintering without being mixed in advance. In addition, as disclosed in the inventor's earlier patent application No. 52-51381, the pot and balls used in a ball mill are made of a sintered body of a compound such as a carbide and an iron group metal, and the diamond powder is ground at the same time as the ball mill. There is also a method in which a compound such as a carbide and fine powder of a sintered body of an iron group metal are mixed in from a pot and a ball.

混合した粉末を超高圧装置に入れ、ダイヤモンドが安定
な条件下で焼結する。このとき使用した鉄族金属と炭化
物等の化合物間に生じる共晶液相の出現温度以上で焼結
する必要がある。
The mixed powder is placed in an ultra-high-pressure device and sintered under conditions where the diamond is stable. At this time, it is necessary to sinter at a temperature higher than the temperature at which a eutectic liquid phase appears between the iron group metal and the compound such as carbide used.

例えば化合物としてTiCを用b、鉄族金属としてCO
を用いた場合は常圧下では約1280℃で液相が生じる
。高圧下ではこの共晶温度は数十℃程度上昇するものと
考えられている。従ってこの場合は1300℃以上の温
度で焼結される。焼結体中のダイヤモンドの結合材とな
る炭化物等の化合物と鉄族金属の割合は一義的には定め
られないが、少(とも焼結時に化合物が固体として存在
するだけの素は必要であり、例えばWCヲ化合物として
用いCo  f結合金属とした場合はwe  とCOの
量的割合は前者を重責で50%以上含む必要がある。
For example, TiC is used as a compound, and CO is used as an iron group metal.
When using , a liquid phase occurs at about 1280° C. under normal pressure. It is believed that this eutectic temperature increases by several tens of degrees Celsius under high pressure. Therefore, in this case, sintering is performed at a temperature of 1300° C. or higher. Although the ratio of compounds such as carbides and iron group metals, which serve as binding materials for diamond in the sintered body, cannot be unambiguously determined, it is necessary to have a small amount (at least enough material for the compound to exist as a solid during sintering). For example, when WC is used as a compound and used as a Co f binding metal, the quantitative ratio of we and CO must be 50% or more, with the former being a heavy burden.

本発明の焼結体の用途としては、切削工具の他に掘削工
具にも使用できる。この場合、ダイヤモンド焼結体の靭
性をさらに向上させるため、超硬合金等の支持体に超高
圧焼結中に接合させることも可能である。
The sintered body of the present invention can be used not only as a cutting tool but also as an excavating tool. In this case, in order to further improve the toughness of the diamond sintered body, it is also possible to bond it to a support such as cemented carbide during ultra-high pressure sintering.

以下実施例により具体的に説明する。This will be explained in detail below using examples.

実施例1 粒度0..5μの合成ダイヤモンド粉末とwe  及び
co 粉末fWc−C!o超硬合金製のポットとボール
を用いて粉砕混合した。得られた混合粉末の組成は、平
均粒度0.5μmの微粒ダイヤモンド80容量係、WC
に容量係、Co  8容量係であった。この混合粉末と
粒度3〜6μmのダイヤモンド粉末を容量で4:6の割
合いで混合した。
Example 1 Particle size 0. .. 5μ synthetic diamond powder and we and co powder fWc-C! o Pulverized and mixed using a cemented carbide pot and ball. The composition of the obtained mixed powder was 80% fine-grained diamond with an average particle size of 0.5 μm, WC
and Co 8 capacity. This mixed powder and diamond powder having a particle size of 3 to 6 μm were mixed in a volumetric ratio of 4:6.

この完成粉末を内径10fi、外径14=のTa製の容
器に充填した後、WC!−+ 0%CO組成の超硬合金
円板を置いた。次にこの容器を、超高圧焼結中に入れ、
先ず圧力55Kbi加え、引続いて1450℃加熱して
20分間保持した。
After filling this finished powder into a Ta container with an inner diameter of 10fi and an outer diameter of 14=, WC! −+ A cemented carbide disk with a 0% CO composition was placed. Next, this container is placed in ultra-high pressure sintering,
First, a pressure of 55 Kbi was applied, followed by heating to 1450°C and holding for 20 minutes.

’ra 製の容器を取り出してTa  f除去し、焼結
体の組織を観察したところ、3〜6μmのダイヤモンド
が均一に分散しておりその周囲には超微粒ダイヤモンド
粒子を含有する結合材が存在していた。このダイヤモン
ド焼結体と3〜6μmのダイヤモンド粒子i0o  で
結合させた市販のダイヤモンド焼結体の被研削性を調べ
た0市販のダイヤモンド焼結体の被研削性を100とし
た場合、本発明焼結体の被研削性は15Ωであった。
When we took out the 'ra container, removed the Ta f, and observed the structure of the sintered body, we found that diamonds of 3 to 6 μm were uniformly dispersed, and that there was a binder containing ultrafine diamond particles around them. Was. The grindability of this diamond sintered body and a commercially available diamond sintered body bonded with 3-6 μm diamond particles i0o was investigated. If the grindability of the commercially available diamond sintered body is 100, The grindability of the body was 15Ω.

次に、これらの焼結体を用いて、切削用加工用のチップ
を作成した。これを用いてCU 合金の切削テストを行
った。被削材は直径100fiのCtl 合金丸棒で、
切削速度300 g/min 、切込み01簡、送り0
. o 2 m+/revで切削した0比較のため、天
然ダイヤモンド工具も同時にテス卜した。本発明焼結体
による被削面は天然ダイヤモンドによる被削面と同等で
鏡面に近く仕上げることができたが、市販焼結体は鏡面
にはほど遠かった。
Next, chips for cutting were created using these sintered bodies. Using this, a cutting test of CU alloy was conducted. The work material is a CTL alloy round bar with a diameter of 100fi.
Cutting speed 300 g/min, depth of cut 01, feed 0
.. For comparison, a natural diamond tool cut at o 2 m+/rev was also tested at the same time. The surface to be machined by the sintered body of the present invention was comparable to the surface to be machined by natural diamond, and could be finished to a nearly mirror-like finish, but the commercially available sintered body was far from mirror-like.

実施例2 表1に示す結合材粉末を作成した。超微粒ダイヤモンド
としては0.5μmのものを使用した。
Example 2 A binder powder shown in Table 1 was prepared. The ultrafine diamond used was 0.5 μm.

表   1 この結合材と粒度3μm以上のダイヤモンド粒子を表1
に示す割合いで混合して、完成粉末を作成した。
Table 1 This binder and diamond particles with a particle size of 3 μm or more are shown in Table 1.
A finished powder was prepared by mixing in the proportions shown below.

表   2 これらの完成粉末を実施例1と同様にして焼結した後、
被研削特性を調べた結果を表2に示す。この結果はダイ
ヤモンド粒度3〜6μmの市販のダイヤモンド焼結体を
一定の切込み、一定の時間で加工できた量を100とし
、同条件で加工可能な量を示したものである。次にこれ
らの焼結体を用いて切削加工用のチップを作成し、外径
60ψの超硬合金(WC−15% co )f U =
 10 ml min、 d = O12■、f = 
0.2 wI/veuで10分間切削した。このときの
にげ面摩耗中も表2に示す。
Table 2 After sintering these finished powders in the same manner as in Example 1,
Table 2 shows the results of examining the characteristics to be ground. These results show the amount that can be processed under the same conditions, with the amount that can be processed in a certain amount of time and a certain amount of cut made in a commercially available diamond sintered body having a diamond grain size of 3 to 6 μm being taken as 100. Next, a cutting tip was created using these sintered bodies, and a cemented carbide (WC-15% co ) f U =
10 ml min, d = O12■, f =
Cutting was performed for 10 minutes at 0.2 wI/veu. Table 2 also shows the wear of the exposed surface at this time.

実施例5 実施例1で作成した結合材粉末と、粒度3μのダイヤモ
ンド粉末全容量比で60:40に混合し、この粉末eT
a 製の容器に詰めて55 Kl)。
Example 5 The binder powder prepared in Example 1 and diamond powder with a particle size of 3μ were mixed at a total volume ratio of 60:40, and this powder eT
55 Kl in a container made by A).

1400℃で10分間超高圧焼結した。この焼結体を用
いて切削用のバイトラ作成し、At−251sil速度
300 mlmin、、切込み0.51WI s送り0
.2 w#/revで60分間切削した。比較のため5
〜8μmのダイヤモンド粒子′fr:COで結合した市
販のダイヤモンド焼結体についてもテストした。その結
果、本発明焼結体で切削した被削面は非常になめらかで
あり、逆げ面摩耗中が0、051111であったのに対
し、市販の焼結体は、被削面もちらく、逃げ面摩耗中は
0.05 wmであった。
Ultra-high pressure sintering was performed at 1400°C for 10 minutes. This sintered body was used to create a cutting tool, At-251sil speed 300 mlmin, depth of cut 0.51 WI s feed 0
.. Cutting was performed for 60 minutes at 2 w#/rev. 5 for comparison
A commercially available diamond sintered body bonded with ~8 μm diamond particles 'fr:CO was also tested. As a result, the work surface cut with the sintered body of the present invention was very smooth, with a wear rate of 0.051111 on the reversed surface, whereas with the commercially available sintered body, the cut surface was crumbly and the flank surface was 0.051111. During wear it was 0.05 wm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明焼結体の顕微鏡による組織写真である
。第2図は、本発明の工具材をダイヤモンド砥石で研削
した時の機構の説明図である。第5図はダイヤモンド焼
結体の抗折力と粒度の関係を表わした図である。イ、r
%−7l11a4七イ+ X /1tpo +4 q’
h ′)j。 代理人  内 1)  明 代理人  萩 原 亮 −
FIG. 1 is a microscopic photograph of the structure of the sintered body of the present invention. FIG. 2 is an explanatory diagram of the mechanism when the tool material of the present invention is ground with a diamond grindstone. FIG. 5 is a diagram showing the relationship between transverse rupture strength and grain size of a diamond sintered body. i, r
%-7l11a47i+X/1tpo +4 q'
h′)j. Agents 1) Akira’s agent Ryo Hagiwara −

Claims (8)

【特許請求の範囲】[Claims] (1)3〜10μmのダイヤモンド粒子を、容量で20
〜85チ含有し、残部の結合材が20〜95容量係の平
均粒度が1μm以下の超微粒ダイヤモンド粒子、周期律
表第4a、5a。 6a族遷移金属の炭化物、窒化物、炭窒化物、またはこ
れらの固溶体もしくは混合物結晶および鉄族金属よりな
る゛工具用高硬度焼結体。
(1) Diamond particles of 3 to 10 μm in a volume of 20
Ultrafine diamond particles having an average particle size of 1 μm or less, containing ~85% binder, and the remaining binder being 20~95% by volume, Nos. 4a and 5a of the periodic table. A high-hardness sintered body for tools comprising carbides, nitrides, carbonitrides, solid solutions or mixture crystals of group 6a transition metals, and iron group metals.
(2)結合材が平均粒度1μm以下の超微粒ダイヤモン
ド粒子20〜95容量係、周期律表第4a、5a、6a
族遷移金属の炭化物および鉄属金属よりなる特許請求の
範囲(1)の工具用高硬度焼結体。
(2) The binder is ultrafine diamond particles with an average particle size of 1 μm or less, 20 to 95 volume ratio, periodic table 4a, 5a, 6a
A high-hardness sintered body for a tool according to claim (1), comprising a group transition metal carbide and a ferrous metal.
(3)  結合材が平均粒度1μm以下の超微粒ダイヤ
モンド粒子20〜95容量チ、WC!たはこれと同一結
晶構造を有する(Mo、W)Cおよび鉄属金属よりなる
特許請求の範囲(1)または(2)の工具用高硬度焼結
体。
(3) The binder is ultrafine diamond particles with an average particle size of 1 μm or less, 20 to 95 volumes, WC! The high-hardness sintered body for tools according to claim (1) or (2), which is made of (Mo, W)C and a ferrous metal having the same crystal structure as that of (Mo, W)C.
(4)結合材の一部として用いる周期律表第4 a。 5a、6a族遷移金属の炭化物と鉄族金属の割合いがそ
の共晶組成するものより炭化物含有量が多いものである
特許請求の範囲(1)〜(3)の何れかの工具用高硬度
焼結体。
(4) Periodic Table 4a used as part of the binding material. High hardness for tools according to any one of claims (1) to (3), wherein the ratio of carbides of group 5a and 6a transition metals to iron group metals is higher than that of the eutectic composition. Sintered body.
(5)3〜10μmのダイヤモンド粉末、1μm以下の
超微粒ダイヤモンド粉末、1μm以下の周期律表第4a
、5a、  6a族遷移金属の炭化物、窒化物、炭窒化
物またはこれらの固溶体もしくは混合物結晶粉末の少な
くとも一種、および鉄族金属粉末の混合粉末を作成し・
超高圧高温装置を用いてダイヤモンドが安定な高温高圧
下でホットプレスすること全特徴とする3〜10μmの
ダイヤモンド粒子を容量で20〜85係含有し、残部が
1μm以下の超微粒ダイヤモンド粒子を20〜95容量
チ、1μm以下の周期律表第4a、5a、6a族遷移金
属の炭化物、窒化物、炭窒化物、またはこれらの固溶体
もしくは混合物結晶および鉄族金属から構成される結合
材よりなる工具用高硬度焼結体の製造方法。
(5) Diamond powder of 3 to 10 μm, ultrafine diamond powder of 1 μm or less, periodic table 4a of 1 μm or less
, 5a, 6a group transition metal carbide, nitride, carbonitride or solid solution or mixture crystal powder of these, and a mixed powder of iron group metal powder is prepared.
It is characterized by hot pressing under high temperature and high pressure using an ultra-high pressure and high temperature equipment.It contains 20 to 85 parts of diamond particles of 3 to 10 μm in volume, and the remainder is 20 parts of ultrafine diamond particles of 1 μm or less. A tool made of a binder composed of carbides, nitrides, carbonitrides of transition metals of Groups 4a, 5a, and 6a of the periodic table, or solid solution or mixture crystals of these, and iron group metals with a capacity of 1 μm or less A method for producing a high hardness sintered body for use.
(6)5〜10μmのダイヤモンド粉末、1μm以下の
超微粒ダイヤモンド粉末、1μm以下の周期律表第4a
、5a、6a族遷移金属の炭化物、および鉄族金属の混
合粉末を作成する特許請求の範囲(5)の工具用高硬度
焼結体の製造方法。
(6) Diamond powder of 5 to 10 μm, ultrafine diamond powder of 1 μm or less, periodic table 4a of 1 μm or less
, a carbide of group 5a, group 6a transition metals, and a mixed powder of iron group metal.
(7)  結合材形成粉末として使用する炭化物がWC
またはこれと同一結晶構造を用する(Mo、W)0を用
いる特許請求の範囲(5)または(6)の工具用高硬度
焼結体の製造方法。
(7) The carbide used as the binder forming powder is WC.
Alternatively, the method for producing a high-hardness sintered body for tools according to claim (5) or (6), using (Mo, W)0 having the same crystal structure.
(8)結合材形成粉末の一部として用いる周期律表第4
a、5a、6a族遷移金属の炭化物と鉄族金属の割合が
その共晶組成に相当するものより炭化物の量を多くした
混合粉末を用い、炭化物と鉄族金属の共晶生成温度以上
で超微粒ダイヤモンドの粒成長を抑制して焼結する特許
請求の範囲(5)〜(7)の何れかの工具用高硬度焼結
体の製造方法。
(8) No. 4 of the periodic table used as part of binder-forming powder
Using a mixed powder in which the ratio of carbides of group a, 5a, and 6a transition metals to iron group metal is larger than that corresponding to the eutectic composition, A method for producing a high-hardness sintered body for a tool according to any one of claims (5) to (7), in which sintering is performed while suppressing grain growth of fine-grained diamond.
JP19277281A 1981-09-04 1981-12-02 High hardness sintered body for tool and its manufacture Pending JPS5896848A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP19277281A JPS5896848A (en) 1981-12-02 1981-12-02 High hardness sintered body for tool and its manufacture
SE8204983A SE457537B (en) 1981-09-04 1982-09-01 DIAMOND PRESSURE BODY FOR A TOOL AND WAY TO MANUFACTURE IT
FR8215073A FR2512430B1 (en) 1981-09-04 1982-09-03 DIAMOND AGGLOMERATOR FOR A TOOL AND METHOD FOR MANUFACTURING THE AGGLOMERATOR
US06/414,821 US4505746A (en) 1981-09-04 1982-09-03 Diamond for a tool and a process for the production of the same
DE19823232869 DE3232869A1 (en) 1981-09-04 1982-09-03 DIAMOND PRESSLING FOR A TOOL AND METHOD FOR THE PRODUCTION THEREOF
GB08225302A GB2107298B (en) 1981-09-04 1982-09-06 A diamond compact for a tool and a process for the production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19277281A JPS5896848A (en) 1981-12-02 1981-12-02 High hardness sintered body for tool and its manufacture

Publications (1)

Publication Number Publication Date
JPS5896848A true JPS5896848A (en) 1983-06-09

Family

ID=16296764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19277281A Pending JPS5896848A (en) 1981-09-04 1981-12-02 High hardness sintered body for tool and its manufacture

Country Status (1)

Country Link
JP (1) JPS5896848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121251A (en) * 1983-12-02 1985-06-28 Toshiba Tungaloy Co Ltd Diamond sintered body for tool and its production
JPS6324003A (en) * 1986-07-16 1988-02-01 Mitsubishi Metal Corp Composite cutting tip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121251A (en) * 1983-12-02 1985-06-28 Toshiba Tungaloy Co Ltd Diamond sintered body for tool and its production
JPS6324003A (en) * 1986-07-16 1988-02-01 Mitsubishi Metal Corp Composite cutting tip

Similar Documents

Publication Publication Date Title
US4505746A (en) Diamond for a tool and a process for the production of the same
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
US8882868B2 (en) Abrasive slicing tool for electronics industry
US8597387B2 (en) Abrasive compact with improved machinability
US20090293370A1 (en) Cubic Boron Nitride Compact
JP2004505786A (en) Manufacturing method of polishing products containing diamond
JP2002302732A (en) Ultrafine grained cubic bn sintered compact
JP2813005B2 (en) WC based hard alloy
JPS5832224B2 (en) Microcrystalline sintered body for tools and its manufacturing method
JPS5896848A (en) High hardness sintered body for tool and its manufacture
JPH0128094B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
JP3751160B2 (en) Hard material abrasive grain densification structure
JPS6158432B2 (en)
JP2002220628A (en) Diamond-metal composite with mirror plane, and artificial joint, dice, roll or mold therewith, and method for manufacturing diamond-metal composite
JPS6411703B2 (en)
KR810001998B1 (en) Method producing a sintered diamond compact
JPS6372843A (en) Manufacture of sintered compact containing high density phase boron nitride for cutting tool
JPH0210217B2 (en)
JPS6310119B2 (en)
JPS6334216B2 (en)
JPH0377151B2 (en)
JPH05230585A (en) Cutting tool made of binding phase infiltrated diamond-based sintered material excellent in chipping resistance
JPS6326189B2 (en)