JPS589307A - superconducting device - Google Patents
superconducting deviceInfo
- Publication number
- JPS589307A JPS589307A JP56107098A JP10709881A JPS589307A JP S589307 A JPS589307 A JP S589307A JP 56107098 A JP56107098 A JP 56107098A JP 10709881 A JP10709881 A JP 10709881A JP S589307 A JPS589307 A JP S589307A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- measurement
- region
- line
- superconducting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
- H01F6/065—Feed-through bushings, terminals and joints
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は超電導装置に係り、特に極低温状態に維持され
る超電導コイルと、その温度状態等全常温部で観測する
ための計器を接続する計測線を備えた超電導装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting device, and more particularly, a superconducting device comprising a superconducting coil maintained at an extremely low temperature and a measurement line connecting a measuring instrument for observing the temperature state etc. at room temperature. Regarding.
通常、超電導装置は超電導現象を得るために先ず極低温
にコイルを冷却する必要がある。更に極低温状態を維持
するためには、大気よりの熱侵入を防止することが不可
欠で、また、冷却媒体である液体ヘリウム等の消費量を
低減することにより経済的な効果が良くなる。Normally, in order to obtain a superconducting phenomenon in a superconducting device, it is first necessary to cool the coil to an extremely low temperature. Furthermore, in order to maintain an extremely low temperature state, it is essential to prevent heat intrusion from the atmosphere, and economical effects can be improved by reducing the consumption of liquid helium, etc., which is a cooling medium.
従来の超電導装置は、比較的小形であったため計測線は
少数でよいため、上記の点はあまり問題にならなかった
。しかし、近年超電導装置が大形化し、超電導コイルに
通電して各種現象を究明するために多数本の計測線が必
要となり、一定の計測線径では熱侵入が増大し、超電導
の安定化が低下するなどの欠点があった。即ち、超電導
コイルを極低温(42’K)に冷却する必要があること
は上述したが、極低温領域と常温領域においては、計測
線といえども、多数本になると熱伝導が発生し熱侵入と
なる。これを防止するには計測線を極限に細くすればよ
いが、これでは電気的抵抗が増大すると共に、断線する
恐れが十分あり、計測の精度が低下する要因となり、好
しいものでなかった。Conventional superconducting devices were relatively small and required only a small number of measurement lines, so the above points did not pose much of a problem. However, in recent years, superconducting devices have become larger and a large number of measurement wires are required to conduct electricity through superconducting coils and investigate various phenomena.With a certain measurement wire diameter, heat penetration increases and the stability of superconductivity decreases. There were drawbacks such as: In other words, as mentioned above, it is necessary to cool the superconducting coil to an extremely low temperature (42'K), but in the extremely low temperature region and room temperature region, even if there are many measurement wires, heat conduction occurs and heat intrusion occurs. becomes. This can be prevented by making the measurement wire as thin as possible, but this is not desirable because it increases the electrical resistance and there is a considerable risk of wire breakage, which causes a decrease in measurement accuracy.
本発明は上述の点に鑑み成されたもので、その目的とす
るところは、複数本の計測線を用いたものであっても、
熱侵入が増大することなく超電導状態を安定に保つこと
のできる超電導装置を提供するにある。The present invention has been made in view of the above-mentioned points, and its purpose is to
It is an object of the present invention to provide a superconducting device that can maintain a stable superconducting state without increasing heat penetration.
本発明は極低温状態に維持され、かつ、計測素子が取付
けられている複数の超電導コイルを収納し、これらを内
部で予冷して熱しゃ断している真空断熱容器外の常温部
に設けられている計器と前記計測素子を接続している計
測線の太さを、該計測線が位置する温度領域に応じて変
えることにより、所期の目的全達成するように成したも
のである。The present invention is provided in a room-temperature part outside a vacuum insulated container that is maintained at an extremely low temperature and houses a plurality of superconducting coils to which measurement elements are attached, and which is pre-cooled and thermally isolated inside. The thickness of the measurement line connecting the measuring device and the measurement element is changed depending on the temperature range in which the measurement line is located, thereby achieving all of the intended objectives.
つまり、極低温領域(4,2°K)では比較的太い計測
線を用い、この極低温領域と液体窒素で冷却する予冷領
域(76°K)間においては熱侵入が問題となるため計
測線を細くする。一方、予冷領域と常温領域(300’
K )間では上記より太い計測線を用いるようにして、
温度領域の区間毎に計測線の太さを適宜変化させたもの
である。In other words, a relatively thick measurement line is used in the extremely low temperature region (4.2°K), and the measurement line is Make it thinner. On the other hand, the pre-cooling area and the normal temperature area (300'
Between K), use a thicker measurement line than above,
The thickness of the measurement line is changed appropriately for each section of the temperature range.
以下、図面の実施例に基づいて本発明の詳細な説明する
。Hereinafter, the present invention will be described in detail based on embodiments of the drawings.
図はトーラス形核融合装置を示し、トロイダルコイル1
に超電導コイル2を用いた例である、膣口の如く、複数
個のトロイダルコイル1は、その下部に設置される共通
ベース3で支持され、熱しゃ断の役務を行なう真空断熱
容器4内に収納されている。超電導コイル2には各種計
測素子(例えばヒータ、温度計、歪計、変位計など)5
が取付けられ、この計測素子5からの信号の引き出し、
及び供給電流は計測線6により行ない、真空断熱容器4
の外部に設けた計器7に接続され計測される。この計測
線6け、計測素子5の取付位置A点より極低温領域であ
るB点を経由し、液体窒素で予冷された共通ベース3上
の0点を経由、更に常温領域であるD点を経由して外部
計器7のE点に接続される。そして、本実施例では、上
記計測線6の太さ’kA−B間の極低温領域(4,2°
K)では比較的太’4線(0,2+m2)を用い、B−
C間(4,2°に〜77°K)領域は熱侵入防止のため
極細の線(0,14簡2)を用いる。C−D間(77°
に〜300°K)領域は低温用で比較的太い線(0,5
■2)ヲ用い、常温領域D−E間は通常の太さの線(1
,2512)を用いている。The figure shows a torus-shaped fusion device, with toroidal coil 1
A plurality of toroidal coils 1 are supported by a common base 3 installed at the bottom of the toroidal coils 1, and are housed in a vacuum insulation container 4 that performs the function of cutting off heat. has been done. The superconducting coil 2 includes various measuring elements (for example, a heater, a thermometer, a strain meter, a displacement meter, etc.) 5
is attached, and the signal is extracted from this measuring element 5,
The supply current is supplied through the measurement line 6, and the vacuum insulation container 4
It is connected to a meter 7 provided outside the device and measured. These six measurement lines pass from the mounting position A of the measuring element 5 to point B, which is an extremely low temperature region, and then to point D, which is a room temperature region, via point 0 on the common base 3, which is pre-cooled with liquid nitrogen. It is connected to point E of the external meter 7 via the terminal. In this embodiment, the ultra-low temperature region (4, 2°
K) uses a relatively thick '4 line (0,2+m2), and B-
In the area between C (4.2° to 77°K), use a very thin wire (0.14-2) to prevent heat intrusion. Between C and D (77°
~300°K) region is for low temperatures and has a relatively thick line (0,5°K).
■2) Use a line of normal thickness (1
, 2512) is used.
このような本実施例の構成とすることにより、熱侵入が
問題となる極低温領域と予冷領域の間(B−C)は極細
の計測線を用いているため、熱侵入が低減し極低温領域
への熱侵入も減少し、それだけ高価な液体ヘリウムの消
費量が低減でき経済的に有益となる。更に、熱侵入が低
減されることにより、超電導状態の安定化が図れ、装置
の信頼性が向上する効果もある。With this configuration of this embodiment, an extremely thin measurement line is used between the cryogenic area and the precooling area (B-C) where heat intrusion is a problem, so heat intrusion is reduced and the cryogenic temperature is reduced. Heat intrusion into the area is also reduced, which is economically beneficial as the consumption of expensive liquid helium is reduced accordingly. Furthermore, by reducing heat penetration, the superconducting state can be stabilized, and the reliability of the device can be improved.
尚、本実施例の如く、極低温領域と予冷領域の間に極細
の計測線を用いることにより、電流による発熱、あるい
は電気抵抗の増大が心配されるが、電流による発熱につ
いては極細の計測線の部分は液体窒素で低温に冷却され
ているため問題となることはないし、電気抵抗について
は極細の区間の長さを限定することにより解決できる。In addition, as in this example, by using an extremely thin measurement wire between the cryogenic region and the pre-cooling region, there is a concern that heat generation due to current or an increase in electrical resistance may occur. This part does not pose a problem because it is cooled to a low temperature with liquid nitrogen, and the electrical resistance can be solved by limiting the length of the extremely thin section.
また、予冷領域と常温領域の間では太い計測線音用いて
!るため、それだけ予冷領域への熱侵入を防ぐには液体
窒素の消費量が増大するが、液体窒素は安価であるため
問題になることはない。Also, use a thick measurement line sound between the pre-cooling area and the room temperature area! Therefore, the amount of liquid nitrogen consumed increases to prevent heat from entering the pre-cooling area, but this does not pose a problem because liquid nitrogen is inexpensive.
以上説明した本発明ρ超電導装置によれば、極低温状態
に維持され、かつ、計測素子が取付けられている複数の
超電導コイルを収納し、これらを予冷して熱しゃ断して
いる真空断熱容器外の常温部に設けられている計器と前
記計測素子を接続している計厨線の太さを、該計測線が
位置する温度領域に応じて変えたものであるから、その
温度領域に見合った計測線の太さとすることができ、極
低温状態への熱侵入の増大がなくなり超電導状態を安定
に保つことができるため此種超電導装置には有効である
。According to the ρ superconducting device of the present invention as described above, a plurality of superconducting coils that are maintained at an extremely low temperature and equipped with measurement elements are housed outside the vacuum insulated container that is pre-cooled and thermally isolated. The thickness of the gauge wire that connects the measuring element to the meter installed in the normal temperature section of the machine is changed depending on the temperature range in which the measurement wire is located, so it This is effective for this type of superconducting device because it can reduce the thickness of the measurement line, eliminate the increase in heat penetration into the cryogenic state, and keep the superconducting state stable.
図は本発明の超電導装置の一実施例を採用した核融合装
置の概略を示す断面図である。
1・・・トロイダルコイル、2・・・超電導コイル、3
・・・共通ペース、4・・・真空断熱容器、5・・・計
測素子、6・・・計測線、7・・・計器。The figure is a sectional view schematically showing a nuclear fusion device employing an embodiment of the superconducting device of the present invention. 1... Toroidal coil, 2... Superconducting coil, 3
...Common pace, 4...Vacuum insulation container, 5...Measuring element, 6...Measuring line, 7...Meter.
Claims (1)
れている複数の超電導コイルと、該超電導コイルを収納
し、これらを内部で予冷して熱しゃ断している真空断熱
容器と、該真空断熱容器外の常温部に設けられ、前記計
測素子と計測線を介して接続されている計器とを備えた
超電導装置において、前記計測線の太さを、該計測線が
位置する温度領域に応じて変えたことを特徴とする超電
導装置。 2、前記計測線は、その極低温領域においては比較的太
い線を、極低温領域と予冷領域の間では極細の線を、か
つ、予冷領域と常温領域の間では極低温領域より太い線
を用いていることを特徴とする特許請求の範囲第1項記
載の超電導装置。 3、前記各超電導コイルは真空断熱容器内で共通のペー
スに支持されていることを特徴とする特許請求の範囲第
1項、又は第2項記載の超電導装置。[Claims] 1. A plurality of superconducting coils that are maintained at an extremely low temperature and equipped with measurement elements, and a vacuum that houses the superconducting coils and pre-cools them internally to cut off heat. In a superconducting device comprising a heat insulating container and a meter provided in a normal temperature part outside the vacuum heat insulating container and connected to the measurement element via a measurement line, the thickness of the measurement line is A superconducting device characterized by changing the temperature depending on the temperature region in which it is located. 2. The measurement line is a relatively thick line in the cryogenic region, an extremely thin line between the cryogenic region and the pre-cooling region, and a thicker line than the cryogenic region between the pre-cooling region and the normal temperature region. A superconducting device according to claim 1, wherein the superconducting device is used. 3. The superconducting device according to claim 1 or 2, wherein each of the superconducting coils is supported at a common pace within a vacuum insulation container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56107098A JPS589307A (en) | 1981-07-10 | 1981-07-10 | superconducting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56107098A JPS589307A (en) | 1981-07-10 | 1981-07-10 | superconducting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS589307A true JPS589307A (en) | 1983-01-19 |
Family
ID=14450403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56107098A Pending JPS589307A (en) | 1981-07-10 | 1981-07-10 | superconducting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS589307A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08105566A (en) * | 1994-09-09 | 1996-04-23 | General Motors Corp <Gm> | Valve assembly |
-
1981
- 1981-07-10 JP JP56107098A patent/JPS589307A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08105566A (en) * | 1994-09-09 | 1996-04-23 | General Motors Corp <Gm> | Valve assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61250576A (en) | Measuring device for weak magnetic field | |
White et al. | Indium resistance thermometer; 4 to 300 K | |
JPH07142237A (en) | Superconducting magnet device | |
JP2008016554A (en) | High temperature superconducting coil device | |
JPS589307A (en) | superconducting device | |
Sterrett et al. | An adiabatic calorimeter for the range 10 to 360 K | |
US4745806A (en) | Level gauge for liquid helium | |
CN110132371B (en) | A superconducting liquid level gauge for monitoring the liquid level of cryogenic liquid | |
JP2952552B2 (en) | Current leads for superconducting equipment | |
JPS6133367B2 (en) | ||
US6357912B1 (en) | Current sensing noise thermometer | |
GB914541A (en) | Improvements in or relating to cryotron arrangements | |
US2189855A (en) | Apparatus for measuring humidity | |
JPH04350979A (en) | Cryostat measurement lead wire | |
JPS60128679A (en) | Cryostat | |
JPS64805B2 (en) | ||
JPH0242321A (en) | liquid level meter | |
Onodera et al. | An adiabatic calorimeter for heat capacity measurements in the temperature range from 80 to 550 K. Heat capacities of α-alumina (sapphire) and anhydrous magnesium acetate | |
JP2658140B2 (en) | Liquid level measurement method and apparatus | |
CN218937608U (en) | Cryostat capable of continuously regulating temperature | |
Cottingham et al. | Liquefied gas level indicator for H2 and N2 | |
JPH10122931A (en) | Cryogenic liquid level gauge | |
JP2020008233A (en) | Cooling device, and sensor device | |
JPH0572050A (en) | Accuracy control method of thermocouple thermometer | |
JPS58119110A (en) | Current lead |