JPS5885389A - Rolling piston type compressor with two cylinders - Google Patents
Rolling piston type compressor with two cylindersInfo
- Publication number
- JPS5885389A JPS5885389A JP18397081A JP18397081A JPS5885389A JP S5885389 A JPS5885389 A JP S5885389A JP 18397081 A JP18397081 A JP 18397081A JP 18397081 A JP18397081 A JP 18397081A JP S5885389 A JPS5885389 A JP S5885389A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- eccentric
- rolling piston
- eccentric shaft
- eccentricity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
- F04C18/3562—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
- F04C18/3564—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/005—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
- F04C29/0057—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、2シリンダ形ロ一リングピストン式圧縮機
において、シリンダの中心偏心方向と、偏心量の設定に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to setting the eccentric direction and the amount of eccentricity of a cylinder in a two-cylinder rolling piston compressor.
従来、この種の圧縮機においては、シリンダは主軸の回
転中心と同心に設定されていたが。Conventionally, in this type of compressor, the cylinder was set concentrically with the rotation center of the main shaft.
性能向上のため、シリンダとローリングピストンのクリ
アランスを小さくして行くと、ガス圧による回転軸のた
わみにより、ローリングビス)ンとシリンダが接触し、
異状音発生や、クーリングピストンと偏心部の焼付き等
が発生する恐れがあった。それを防止する罠は1回転軸
の剛性を上げるか、シリンダの中心を偏心させるかであ
るが2本発明は回転軸の剛性はあまり上げず柔構造にし
てシリンダの中心を偏心させることにより、実運転条件
でのローリングピ、ストンとシリンダのクリアランスを
最適にし、軽量でかつ効率のよい圧縮機を提供すること
を目的とするものである。In order to improve performance, when the clearance between the cylinder and rolling piston is reduced, the rolling piston and cylinder come into contact due to the deflection of the rotating shaft due to gas pressure.
There was a risk of abnormal noises and seizure of the cooling piston and eccentric part. The trap to prevent this is to either increase the rigidity of the rotating shaft or make the center of the cylinder eccentric, but in the present invention, the rigidity of the rotating shaft is not increased too much, but by making it a flexible structure and making the center of the cylinder eccentric, The objective is to provide a lightweight and efficient compressor by optimizing the clearance between the rolling piston, piston, and cylinder under actual operating conditions.
以下1本発明を図示に示す実施例を用いて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below using examples shown in the drawings.
回転軸がガス圧を受けるとそのガス圧と回転軸偏心部の
角度により回転軸のたわみ量が決定する。第1図および
第2図はそのたわみかたを模式的に示す図である。回転
角は、駆11hHIsK近い側の偏心部(A) NSを
規準にする。又偏心方向は、2個の偏心部のガス圧によ
るたわみ量より。When the rotating shaft receives gas pressure, the amount of deflection of the rotating shaft is determined by the gas pressure and the angle of the eccentric portion of the rotating shaft. FIG. 1 and FIG. 2 are diagrams schematically showing the way of deflection. The rotation angle is based on the eccentric part (A) NS on the side closer to the drive 11hHIsK. Also, the eccentric direction is based on the amount of deflection due to the gas pressure of the two eccentric parts.
第3図および第4図のようにベーンから回転方向の12
0〜150の範囲が適当である。なお、第1図および第
2図に示す実線は荷重を受けない時の軸の形状で、破線
は荷重を受けた時の軸の形状を示す。また、第3図およ
び第4図に示す破線は回転中心と同心の場合のシリンダ
位置を示し、実線は回転中心と偏心させたときのシリン
ダの位置を示す。12 in the direction of rotation from the vane as shown in Figures 3 and 4.
A range of 0 to 150 is suitable. In addition, the solid line shown in FIGS. 1 and 2 shows the shape of the shaft when no load is applied, and the broken line shows the shape of the shaft when the load is applied. Further, the broken lines shown in FIGS. 3 and 4 indicate the cylinder position when the cylinder is concentric with the rotation center, and the solid line indicates the cylinder position when the cylinder is eccentric from the rotation center.
′ 以下1本発明を第5図に示した実施例により説明
する。' The present invention will be explained below with reference to the embodiment shown in FIG.
図において、(1)は電動機等により駆動される偏心軸
、(2)はこの偏心軸の回転中心とベーン位置から12
0〜1500方向に20μ程度偏心して設けた圧縮室(
3)を形成するシリンダ、(4)は偏心軸に嵌合され、
シリンダ(2)の内壁に沿って偏心回転スルローリング
ピストン、6)は圧縮室(3)を高圧室と低圧室に仕切
るベーン、(6)は上記シリンダ(2)の片側サイドを
気密的に密着させるサイドハウジンク、(7)は2個の
シリンダ(2)の圧縮室を仕切るための仕切り板、(8
)は圧縮室より吐出された高圧ガスを蓄え、圧縮機本体
を収容する密閉シェル、 (91はベーン(51ヲロー
リングピストン(4)に圧設させるバネである。In the figure, (1) is an eccentric shaft driven by an electric motor, etc., and (2) is 12 points from the rotation center of this eccentric shaft and the vane position.
The compression chamber (
3), the cylinder (4) is fitted onto the eccentric shaft;
A slow rolling piston that rotates eccentrically along the inner wall of the cylinder (2), 6) is a vane that partitions the compression chamber (3) into a high pressure chamber and a low pressure chamber, and (6) is attached airtightly to one side of the cylinder (2). The side housing (7) is a partition plate (8) for partitioning the compression chambers of the two cylinders (2).
) is a hermetic shell that stores the high pressure gas discharged from the compression chamber and houses the compressor body; (91 is a spring that presses the vane (51) into the rolling piston (4);
次に1以上のように構成さhた圧縮機の動作について説
明する。駆動源により偏心軸(!)が回転すると、ロー
リングピストン(4)はシリンダ(2)の内壁に沿って
転動し、吸入口(図示せず)より導びかれた圧縮室(3
)内のガスは圧縮され、吐出パルプ(図示せず)部を通
り、シェル内の空間に導ひかれる。そして、吐出パイプ
(図示せず)を介して外部へ吐出される。Next, the operation of the compressor configured as described above will be explained. When the eccentric shaft (!) is rotated by the drive source, the rolling piston (4) rolls along the inner wall of the cylinder (2), and the compression chamber (3) led from the suction port (not shown) is rotated.
) is compressed and guided into the space within the shell through a discharge pulp (not shown) section. Then, it is discharged to the outside via a discharge pipe (not shown).
この際、高圧室と低圧室の圧力差によりローリングピス
トンを介して、偏心軸が荷重およびベーンの背圧によっ
て荷重を受ける。荷重を受けた偏心軸は、たわみを起こ
し、その結果シリング゛と偏心軸が同心であるとすると
ローリングピストンとシリンダのラジアル方向クリアラ
ンス顛は、ム部、B部と互いの影醤により約1c〜約1
11!oノ所テ小すくナリ、195°〜15°ノ所テ大
きくなる。本実施例では最大たわみ20μ程度である。At this time, the eccentric shaft is loaded by the load and the back pressure of the vane through the rolling piston due to the pressure difference between the high pressure chamber and the low pressure chamber. The eccentric shaft subjected to the load causes deflection, and as a result, assuming that the cylinder and the eccentric shaft are concentric, the radial clearance between the rolling piston and the cylinder will be approximately 1 cm due to the influence of the M part and the B part on each other. Approximately 1
11! It becomes smaller at the o point and becomes larger at the 195° to 15° point. In this embodiment, the maximum deflection is about 20μ.
しかし2本発明は1200〜15o0方向にシリンダが
20μ程度偏心しているため、一回転あたりのラジア、
ルクリアランス611は本実施例では最大20μ〜最小
0μとなり、ガスの漏れに対して良好となる。しかし従
来のように、偏心軸とシリンダを同心にした場合シリン
ダとローリングピストンは接触せず最大40μ〜最小a
μのクリアランスとなる。但11.一般的にはシリンダ
の偏心量は、ガス荷重、ベーンからの荷重、偏心軸の軸
径、剛性等により求まるものである。しかし、偏心方向
は、常に一定(クランク角度で120°〜150°)で
ある。したがってこの発明は実用上、偏心軸の運転時の
たわ入量(シリンダ内での)が5μ以上の場合に適用で
きるものである。すなわち、たわみ量が5μ以下の場合
には、偏心組立をした場合と同心組立をした場合圧縮機
の性能は大差は生じないためである。However, in the present invention, the cylinder is eccentric by about 20μ in the 1200 to 15o0 direction, so the radius per rotation is
In this embodiment, the leakage clearance 611 is 20 μ at maximum to 0 μ at minimum, which is good against gas leakage. However, if the eccentric shaft and cylinder are made concentric as in the past, the cylinder and rolling piston do not come into contact and the maximum is 40μ to the minimum a.
The clearance will be μ. However, 11. Generally, the amount of eccentricity of a cylinder is determined by the gas load, the load from the vane, the diameter of the eccentric shaft, the rigidity, etc. However, the eccentric direction is always constant (120° to 150° in terms of crank angle). Therefore, the present invention can be practically applied when the amount of deflection (in the cylinder) of the eccentric shaft during operation is 5 μ or more. That is, when the amount of deflection is 5 μ or less, there is no significant difference in compressor performance between eccentric assembly and concentric assembly.
この発明は9以上述べたように構成したから。This invention is constructed as described above.
偏心軸の重量軽減、小形化を計ることができるとともに
圧縮効率向上など実用的効果大である。It has great practical effects such as reducing the weight and size of the eccentric shaft and improving compression efficiency.
第1図ないし第4図は本発明の動作説明図。
第5図は本発明の実施例を示す2シリンダ形ロIJング
ピストン式圧縮機の断面図である。
(1)Fi偏心軸、(2)はシリンダ、(4)はローリ
ングピストン、(5)はベーンである。
代理人 葛 野 信 −1 to 4 are explanatory views of the operation of the present invention. FIG. 5 is a sectional view of a two-cylinder IJ piston type compressor showing an embodiment of the present invention. (1) Fi eccentric shaft, (2) cylinder, (4) rolling piston, and (5) vane. Agent Shin Kuzuno −
Claims (1)
て軸動する2個のローリングピストンと、このローリン
グピストンの外周部に接して。 シリンダ内部を高圧室と低圧室に仕切る2個のベーンと
を備えた2シリンダ形ロ一リングピストン式圧縮機にお
いて、シリンダの偏心方向を・クランク角度で1200
〜1500間にし、その偏心量を偏心軸のシリンダ内区
間でめ最大たわみ量と[Scope of Claim] A shaft having two eccentric portions that are out of phase by 1800 degrees. Two cylinders eccentric to the center of rotation of this shaft. Two rolling pistons that touch the outer periphery of the eccentric part of this shaft and move along the inner wall of each cylinder, and the outer periphery of this rolling piston. In a two-cylinder rolling piston compressor equipped with two vanes that partition the inside of the cylinder into a high-pressure chamber and a low-pressure chamber, the eccentric direction of the cylinder is 1200 degrees in crank angle.
~1500, and the amount of eccentricity is the maximum amount of deflection in the cylinder section of the eccentric shaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18397081A JPS5885389A (en) | 1981-11-17 | 1981-11-17 | Rolling piston type compressor with two cylinders |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18397081A JPS5885389A (en) | 1981-11-17 | 1981-11-17 | Rolling piston type compressor with two cylinders |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5885389A true JPS5885389A (en) | 1983-05-21 |
JPS6119834B2 JPS6119834B2 (en) | 1986-05-19 |
Family
ID=16145005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18397081A Granted JPS5885389A (en) | 1981-11-17 | 1981-11-17 | Rolling piston type compressor with two cylinders |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5885389A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5006051A (en) * | 1987-12-03 | 1991-04-09 | Kabushiki Kaisha Toshiba | Rotary two-cylinder compressor with delayed compression phases and oil-guiding bearing grooves |
JP2005240564A (en) * | 2004-02-24 | 2005-09-08 | Mitsubishi Electric Corp | Rotary compressor |
WO2011032042A2 (en) * | 2009-09-10 | 2011-03-17 | Sequal Technologies Inc. | Rotary compressor and method |
US9267503B2 (en) | 2009-09-10 | 2016-02-23 | Caire Inc. | Rotary systems lubricated by fluid being processed |
CN109026698A (en) * | 2018-08-08 | 2018-12-18 | 珠海凌达压缩机有限公司 | A kind of compressor |
-
1981
- 1981-11-17 JP JP18397081A patent/JPS5885389A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5006051A (en) * | 1987-12-03 | 1991-04-09 | Kabushiki Kaisha Toshiba | Rotary two-cylinder compressor with delayed compression phases and oil-guiding bearing grooves |
JP2005240564A (en) * | 2004-02-24 | 2005-09-08 | Mitsubishi Electric Corp | Rotary compressor |
WO2011032042A2 (en) * | 2009-09-10 | 2011-03-17 | Sequal Technologies Inc. | Rotary compressor and method |
WO2011032042A3 (en) * | 2009-09-10 | 2012-07-19 | Chart Sequal Technologies Inc. | Rotary compressor |
US9261094B2 (en) | 2009-09-10 | 2016-02-16 | Caire Inc. | Rotary compressor |
US9267503B2 (en) | 2009-09-10 | 2016-02-23 | Caire Inc. | Rotary systems lubricated by fluid being processed |
CN109026698A (en) * | 2018-08-08 | 2018-12-18 | 珠海凌达压缩机有限公司 | A kind of compressor |
Also Published As
Publication number | Publication date |
---|---|
JPS6119834B2 (en) | 1986-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4650405A (en) | Scroll pump with axially spaced pumping chambers in series | |
US4274813A (en) | Swash plate type compressor | |
JPS61210285A (en) | Rotary compressor | |
US4676726A (en) | Rotary compressor | |
JP3036271B2 (en) | Scroll compressor | |
JPH0672597B2 (en) | Rotating waveform motion type air compressor | |
EP0846864A1 (en) | Rotary compressor with discharge chamber pressure relief groove | |
US6203301B1 (en) | Fluid pump | |
JPS5885389A (en) | Rolling piston type compressor with two cylinders | |
JP2005299653A (en) | Rolling piston and rotary compressor gas leakage preventing device equipped therewith | |
US4373880A (en) | Through-vane type rotary compressor with cylinder chamber of improved shape | |
JP4065654B2 (en) | Multi-cylinder rotary compressor | |
US5788472A (en) | Hermetic rotary compressor with eccentric roller | |
JPH0942174A (en) | Scroll compressor | |
JP2020186660A (en) | Rotary compressor | |
JPS62225793A (en) | Closed type scroll compressor | |
JPS5965586A (en) | Scroll system pump | |
JP4792947B2 (en) | Compressor | |
JPH1122680A (en) | Hermetic compressor | |
JPH06272683A (en) | Lubrication pump device for compressor | |
JPH02196182A (en) | Scroll type hydraulic unit | |
CN112610489B (en) | Pump body assembly, compressor and air conditioner with same | |
JP3487612B2 (en) | Fluid compressor | |
JPH06257580A (en) | Two-cylinder rotary compressor | |
JPS6335195Y2 (en) |