[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5885389A - Rolling piston type compressor with two cylinders - Google Patents

Rolling piston type compressor with two cylinders

Info

Publication number
JPS5885389A
JPS5885389A JP18397081A JP18397081A JPS5885389A JP S5885389 A JPS5885389 A JP S5885389A JP 18397081 A JP18397081 A JP 18397081A JP 18397081 A JP18397081 A JP 18397081A JP S5885389 A JPS5885389 A JP S5885389A
Authority
JP
Japan
Prior art keywords
cylinder
eccentric
rolling piston
eccentric shaft
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18397081A
Other languages
Japanese (ja)
Other versions
JPS6119834B2 (en
Inventor
Susumu Kawaguchi
進 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18397081A priority Critical patent/JPS5885389A/en
Publication of JPS5885389A publication Critical patent/JPS5885389A/en
Publication of JPS6119834B2 publication Critical patent/JPS6119834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce the weight of an eccentric shaft by setting the eccentricity direction of a cylinder to 120-150 deg. in crank angle, and by setting the amount of eccentricity through the necessary amount of radial clearance and the maximum deflection in the eccentric shaft's division situated in the cylinder. CONSTITUTION:A rolling piston 4 to make eccentric revolutions is arranged at a cylinder 2 which forms a compression chamber 3 installed in an eccentricity of 20mum from the rotational center of the eccentric shaft 1 driven by a motor, orientated at 120-150 deg. with respect to the vane position. This eccentric shaft 1 receives a load due to the vane back pressure and the load through the rolling piston 4 because of pressure difference between high pressure chamber and low pressure chamber, where the radial clearance 10 per turn will be 20mum max. and 0mum min, as the cylinder 2 is in an eccentricity of 20mum in the direction of 120-150 deg., which is much favorable in respect of gas leakage.

Description

【発明の詳細な説明】 この発明は、2シリンダ形ロ一リングピストン式圧縮機
において、シリンダの中心偏心方向と、偏心量の設定に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to setting the eccentric direction and the amount of eccentricity of a cylinder in a two-cylinder rolling piston compressor.

従来、この種の圧縮機においては、シリンダは主軸の回
転中心と同心に設定されていたが。
Conventionally, in this type of compressor, the cylinder was set concentrically with the rotation center of the main shaft.

性能向上のため、シリンダとローリングピストンのクリ
アランスを小さくして行くと、ガス圧による回転軸のた
わみにより、ローリングビス)ンとシリンダが接触し、
異状音発生や、クーリングピストンと偏心部の焼付き等
が発生する恐れがあった。それを防止する罠は1回転軸
の剛性を上げるか、シリンダの中心を偏心させるかであ
るが2本発明は回転軸の剛性はあまり上げず柔構造にし
てシリンダの中心を偏心させることにより、実運転条件
でのローリングピ、ストンとシリンダのクリアランスを
最適にし、軽量でかつ効率のよい圧縮機を提供すること
を目的とするものである。
In order to improve performance, when the clearance between the cylinder and rolling piston is reduced, the rolling piston and cylinder come into contact due to the deflection of the rotating shaft due to gas pressure.
There was a risk of abnormal noises and seizure of the cooling piston and eccentric part. The trap to prevent this is to either increase the rigidity of the rotating shaft or make the center of the cylinder eccentric, but in the present invention, the rigidity of the rotating shaft is not increased too much, but by making it a flexible structure and making the center of the cylinder eccentric, The objective is to provide a lightweight and efficient compressor by optimizing the clearance between the rolling piston, piston, and cylinder under actual operating conditions.

以下1本発明を図示に示す実施例を用いて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below using examples shown in the drawings.

回転軸がガス圧を受けるとそのガス圧と回転軸偏心部の
角度により回転軸のたわみ量が決定する。第1図および
第2図はそのたわみかたを模式的に示す図である。回転
角は、駆11hHIsK近い側の偏心部(A) NSを
規準にする。又偏心方向は、2個の偏心部のガス圧によ
るたわみ量より。
When the rotating shaft receives gas pressure, the amount of deflection of the rotating shaft is determined by the gas pressure and the angle of the eccentric portion of the rotating shaft. FIG. 1 and FIG. 2 are diagrams schematically showing the way of deflection. The rotation angle is based on the eccentric part (A) NS on the side closer to the drive 11hHIsK. Also, the eccentric direction is based on the amount of deflection due to the gas pressure of the two eccentric parts.

第3図および第4図のようにベーンから回転方向の12
0〜150の範囲が適当である。なお、第1図および第
2図に示す実線は荷重を受けない時の軸の形状で、破線
は荷重を受けた時の軸の形状を示す。また、第3図およ
び第4図に示す破線は回転中心と同心の場合のシリンダ
位置を示し、実線は回転中心と偏心させたときのシリン
ダの位置を示す。
12 in the direction of rotation from the vane as shown in Figures 3 and 4.
A range of 0 to 150 is suitable. In addition, the solid line shown in FIGS. 1 and 2 shows the shape of the shaft when no load is applied, and the broken line shows the shape of the shaft when the load is applied. Further, the broken lines shown in FIGS. 3 and 4 indicate the cylinder position when the cylinder is concentric with the rotation center, and the solid line indicates the cylinder position when the cylinder is eccentric from the rotation center.

′  以下1本発明を第5図に示した実施例により説明
する。
' The present invention will be explained below with reference to the embodiment shown in FIG.

図において、(1)は電動機等により駆動される偏心軸
、(2)はこの偏心軸の回転中心とベーン位置から12
0〜1500方向に20μ程度偏心して設けた圧縮室(
3)を形成するシリンダ、(4)は偏心軸に嵌合され、
シリンダ(2)の内壁に沿って偏心回転スルローリング
ピストン、6)は圧縮室(3)を高圧室と低圧室に仕切
るベーン、(6)は上記シリンダ(2)の片側サイドを
気密的に密着させるサイドハウジンク、(7)は2個の
シリンダ(2)の圧縮室を仕切るための仕切り板、(8
)は圧縮室より吐出された高圧ガスを蓄え、圧縮機本体
を収容する密閉シェル、 (91はベーン(51ヲロー
リングピストン(4)に圧設させるバネである。
In the figure, (1) is an eccentric shaft driven by an electric motor, etc., and (2) is 12 points from the rotation center of this eccentric shaft and the vane position.
The compression chamber (
3), the cylinder (4) is fitted onto the eccentric shaft;
A slow rolling piston that rotates eccentrically along the inner wall of the cylinder (2), 6) is a vane that partitions the compression chamber (3) into a high pressure chamber and a low pressure chamber, and (6) is attached airtightly to one side of the cylinder (2). The side housing (7) is a partition plate (8) for partitioning the compression chambers of the two cylinders (2).
) is a hermetic shell that stores the high pressure gas discharged from the compression chamber and houses the compressor body; (91 is a spring that presses the vane (51) into the rolling piston (4);

次に1以上のように構成さhた圧縮機の動作について説
明する。駆動源により偏心軸(!)が回転すると、ロー
リングピストン(4)はシリンダ(2)の内壁に沿って
転動し、吸入口(図示せず)より導びかれた圧縮室(3
)内のガスは圧縮され、吐出パルプ(図示せず)部を通
り、シェル内の空間に導ひかれる。そして、吐出パイプ
(図示せず)を介して外部へ吐出される。
Next, the operation of the compressor configured as described above will be explained. When the eccentric shaft (!) is rotated by the drive source, the rolling piston (4) rolls along the inner wall of the cylinder (2), and the compression chamber (3) led from the suction port (not shown) is rotated.
) is compressed and guided into the space within the shell through a discharge pulp (not shown) section. Then, it is discharged to the outside via a discharge pipe (not shown).

この際、高圧室と低圧室の圧力差によりローリングピス
トンを介して、偏心軸が荷重およびベーンの背圧によっ
て荷重を受ける。荷重を受けた偏心軸は、たわみを起こ
し、その結果シリング゛と偏心軸が同心であるとすると
ローリングピストンとシリンダのラジアル方向クリアラ
ンス顛は、ム部、B部と互いの影醤により約1c〜約1
11!oノ所テ小すくナリ、195°〜15°ノ所テ大
きくなる。本実施例では最大たわみ20μ程度である。
At this time, the eccentric shaft is loaded by the load and the back pressure of the vane through the rolling piston due to the pressure difference between the high pressure chamber and the low pressure chamber. The eccentric shaft subjected to the load causes deflection, and as a result, assuming that the cylinder and the eccentric shaft are concentric, the radial clearance between the rolling piston and the cylinder will be approximately 1 cm due to the influence of the M part and the B part on each other. Approximately 1
11! It becomes smaller at the o point and becomes larger at the 195° to 15° point. In this embodiment, the maximum deflection is about 20μ.

しかし2本発明は1200〜15o0方向にシリンダが
20μ程度偏心しているため、一回転あたりのラジア、
ルクリアランス611は本実施例では最大20μ〜最小
0μとなり、ガスの漏れに対して良好となる。しかし従
来のように、偏心軸とシリンダを同心にした場合シリン
ダとローリングピストンは接触せず最大40μ〜最小a
μのクリアランスとなる。但11.一般的にはシリンダ
の偏心量は、ガス荷重、ベーンからの荷重、偏心軸の軸
径、剛性等により求まるものである。しかし、偏心方向
は、常に一定(クランク角度で120°〜150°)で
ある。したがってこの発明は実用上、偏心軸の運転時の
たわ入量(シリンダ内での)が5μ以上の場合に適用で
きるものである。すなわち、たわみ量が5μ以下の場合
には、偏心組立をした場合と同心組立をした場合圧縮機
の性能は大差は生じないためである。
However, in the present invention, the cylinder is eccentric by about 20μ in the 1200 to 15o0 direction, so the radius per rotation is
In this embodiment, the leakage clearance 611 is 20 μ at maximum to 0 μ at minimum, which is good against gas leakage. However, if the eccentric shaft and cylinder are made concentric as in the past, the cylinder and rolling piston do not come into contact and the maximum is 40μ to the minimum a.
The clearance will be μ. However, 11. Generally, the amount of eccentricity of a cylinder is determined by the gas load, the load from the vane, the diameter of the eccentric shaft, the rigidity, etc. However, the eccentric direction is always constant (120° to 150° in terms of crank angle). Therefore, the present invention can be practically applied when the amount of deflection (in the cylinder) of the eccentric shaft during operation is 5 μ or more. That is, when the amount of deflection is 5 μ or less, there is no significant difference in compressor performance between eccentric assembly and concentric assembly.

この発明は9以上述べたように構成したから。This invention is constructed as described above.

偏心軸の重量軽減、小形化を計ることができるとともに
圧縮効率向上など実用的効果大である。
It has great practical effects such as reducing the weight and size of the eccentric shaft and improving compression efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の動作説明図。 第5図は本発明の実施例を示す2シリンダ形ロIJング
ピストン式圧縮機の断面図である。 (1)Fi偏心軸、(2)はシリンダ、(4)はローリ
ングピストン、(5)はベーンである。 代理人 葛 野 信 −
1 to 4 are explanatory views of the operation of the present invention. FIG. 5 is a sectional view of a two-cylinder IJ piston type compressor showing an embodiment of the present invention. (1) Fi eccentric shaft, (2) cylinder, (4) rolling piston, and (5) vane. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 位相が1800ずれた偏心部2個を有する軸と。 この軸の回転中心と偏心した2個のシリンダと。 この軸の偏心部の外周に接し、各シリンダの内壁に沿っ
て軸動する2個のローリングピストンと、このローリン
グピストンの外周部に接して。 シリンダ内部を高圧室と低圧室に仕切る2個のベーンと
を備えた2シリンダ形ロ一リングピストン式圧縮機にお
いて、シリンダの偏心方向を・クランク角度で1200
〜1500間にし、その偏心量を偏心軸のシリンダ内区
間でめ最大たわみ量と
[Scope of Claim] A shaft having two eccentric portions that are out of phase by 1800 degrees. Two cylinders eccentric to the center of rotation of this shaft. Two rolling pistons that touch the outer periphery of the eccentric part of this shaft and move along the inner wall of each cylinder, and the outer periphery of this rolling piston. In a two-cylinder rolling piston compressor equipped with two vanes that partition the inside of the cylinder into a high-pressure chamber and a low-pressure chamber, the eccentric direction of the cylinder is 1200 degrees in crank angle.
~1500, and the amount of eccentricity is the maximum amount of deflection in the cylinder section of the eccentric shaft.
JP18397081A 1981-11-17 1981-11-17 Rolling piston type compressor with two cylinders Granted JPS5885389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18397081A JPS5885389A (en) 1981-11-17 1981-11-17 Rolling piston type compressor with two cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18397081A JPS5885389A (en) 1981-11-17 1981-11-17 Rolling piston type compressor with two cylinders

Publications (2)

Publication Number Publication Date
JPS5885389A true JPS5885389A (en) 1983-05-21
JPS6119834B2 JPS6119834B2 (en) 1986-05-19

Family

ID=16145005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18397081A Granted JPS5885389A (en) 1981-11-17 1981-11-17 Rolling piston type compressor with two cylinders

Country Status (1)

Country Link
JP (1) JPS5885389A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006051A (en) * 1987-12-03 1991-04-09 Kabushiki Kaisha Toshiba Rotary two-cylinder compressor with delayed compression phases and oil-guiding bearing grooves
JP2005240564A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Corp Rotary compressor
WO2011032042A2 (en) * 2009-09-10 2011-03-17 Sequal Technologies Inc. Rotary compressor and method
US9267503B2 (en) 2009-09-10 2016-02-23 Caire Inc. Rotary systems lubricated by fluid being processed
CN109026698A (en) * 2018-08-08 2018-12-18 珠海凌达压缩机有限公司 A kind of compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006051A (en) * 1987-12-03 1991-04-09 Kabushiki Kaisha Toshiba Rotary two-cylinder compressor with delayed compression phases and oil-guiding bearing grooves
JP2005240564A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Corp Rotary compressor
WO2011032042A2 (en) * 2009-09-10 2011-03-17 Sequal Technologies Inc. Rotary compressor and method
WO2011032042A3 (en) * 2009-09-10 2012-07-19 Chart Sequal Technologies Inc. Rotary compressor
US9261094B2 (en) 2009-09-10 2016-02-16 Caire Inc. Rotary compressor
US9267503B2 (en) 2009-09-10 2016-02-23 Caire Inc. Rotary systems lubricated by fluid being processed
CN109026698A (en) * 2018-08-08 2018-12-18 珠海凌达压缩机有限公司 A kind of compressor

Also Published As

Publication number Publication date
JPS6119834B2 (en) 1986-05-19

Similar Documents

Publication Publication Date Title
US4650405A (en) Scroll pump with axially spaced pumping chambers in series
US4274813A (en) Swash plate type compressor
JPS61210285A (en) Rotary compressor
US4676726A (en) Rotary compressor
JP3036271B2 (en) Scroll compressor
JPH0672597B2 (en) Rotating waveform motion type air compressor
EP0846864A1 (en) Rotary compressor with discharge chamber pressure relief groove
US6203301B1 (en) Fluid pump
JPS5885389A (en) Rolling piston type compressor with two cylinders
JP2005299653A (en) Rolling piston and rotary compressor gas leakage preventing device equipped therewith
US4373880A (en) Through-vane type rotary compressor with cylinder chamber of improved shape
JP4065654B2 (en) Multi-cylinder rotary compressor
US5788472A (en) Hermetic rotary compressor with eccentric roller
JPH0942174A (en) Scroll compressor
JP2020186660A (en) Rotary compressor
JPS62225793A (en) Closed type scroll compressor
JPS5965586A (en) Scroll system pump
JP4792947B2 (en) Compressor
JPH1122680A (en) Hermetic compressor
JPH06272683A (en) Lubrication pump device for compressor
JPH02196182A (en) Scroll type hydraulic unit
CN112610489B (en) Pump body assembly, compressor and air conditioner with same
JP3487612B2 (en) Fluid compressor
JPH06257580A (en) Two-cylinder rotary compressor
JPS6335195Y2 (en)