JPS5884975A - Regenerating method for treating liquid for chemical dissolution of copper and copper alloy - Google Patents
Regenerating method for treating liquid for chemical dissolution of copper and copper alloyInfo
- Publication number
- JPS5884975A JPS5884975A JP18352281A JP18352281A JPS5884975A JP S5884975 A JPS5884975 A JP S5884975A JP 18352281 A JP18352281 A JP 18352281A JP 18352281 A JP18352281 A JP 18352281A JP S5884975 A JPS5884975 A JP S5884975A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- solution
- aged
- copper
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/46—Regeneration of etching compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は過酸化水素または過硫酸塩と鉱酸とを主成分と
して含有する鋼及び銅合金の化学的溶解処理液の老化液
から金属及び有効成分を回収し、老化液を連続的に?!
生ずる方法に関し、さらに詳しくは、老化液から金属塩
を析出させ分離し、該金属塩を溶解し、次いで電解によ
り金属を回収した後、電解処amの液を前記の金属塩を
溶解させる溶解槽もしくは電解槽または金属塩を分離し
た母Ill循環し連続的に老化液を再生し、液管塩を行
なって再び溶解処1iuiとして使用するクローズドシ
ステムによる老化液の再生方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention recovers metals and active ingredients from an aging solution of a chemical dissolution treatment solution for steel and copper alloys containing hydrogen peroxide or persulfate and mineral acids as main components, and Liquid continuously? !
More specifically, regarding the method of producing the metal salt, the metal salt is precipitated and separated from the aged liquid, the metal salt is dissolved, the metal is recovered by electrolysis, and then the electrolytically treated am liquid is used in a dissolving tank in which the metal salt is dissolved. Alternatively, the present invention relates to a method for regenerating an aged liquid using an electrolytic bath or a closed system in which the metal salt is circulated through a separated mother liquid, the aged liquid is continuously regenerated, and the liquid pipe is salted to be used again as a dissolution treatment.
質来、過酸化水素と硫酸、りん酸、硝酸、弗酸、塩酸あ
るいはスル7アミノ酸等の鉱酸とを主成分として含有す
る化、学的溶解処理液が、鋼及び銅合金の化学研磨、酸
洗、エツチング剤などの化学的溶解処理液として利用さ
れている。Traditionally, chemical and chemical dissolution treatment solutions containing hydrogen peroxide and mineral acids such as sulfuric acid, phosphoric acid, nitric acid, hydrofluoric acid, hydrochloric acid, or 7-amino acids as main components are used for chemical polishing of steel and copper alloys. It is used as a chemical solution for pickling, etching, etc.
この化学的溶解処理液により銅及び銅合金の溶解的処理
を行なうと、溶解適度が工業的に満足し得ない1度に低
下し老化して来る。この老化液は有価物を回収し、再生
される。この有価物、^体的にはl1ljllした金属
の回収法としては電解による方法、・、、薬剤を添加す
る方法、あるいは冷却法が知られている。When copper and copper alloys are subjected to dissolution treatment using this chemical dissolution treatment solution, the degree of dissolution decreases to an industrially unsatisfactory degree, resulting in aging. This aging liquid recovers valuables and is regenerated. Known methods for recovering this valuable material, essentially metals, include electrolysis, adding chemicals, and cooling.
電解による方法は、一般的には老化液をそのま〜電解に
供し、陰[iK金金属析出させ有用金属を1釈する方法
であるが、この場合、電解に供される老化液には金属塩
の外に有用な過酸化水素が大量に含まれて詔り、これを
電解処理した場合、電解時に金属の析出に先立って有用
な過酸化水素が分解し過酸化水素の損失が大きく、また
、老化液中には過酸化水素の安定剤の他、光沢剤、界面
活性剤等の添加剤が含まれており、これらの添加剤の一
部が電解時に分解または変質するおそれがあり、電解処
理後の液を再生液として利用することに不都合がある。In the electrolytic method, the aged solution is generally subjected to electrolysis as it is, and useful metals are deposited in the negative [iK]. If a large amount of useful hydrogen peroxide is contained in addition to salt and it is electrolytically treated, the useful hydrogen peroxide decomposes before the metal is deposited during electrolysis, resulting in a large loss of hydrogen peroxide. In addition to stabilizers for hydrogen peroxide, the aging solution contains additives such as brighteners and surfactants, and some of these additives may decompose or change in quality during electrolysis. It is inconvenient to use the treated liquid as a regenerated liquid.
また、薬剤を添加する方法には、老化液にたとえばヒド
ラジンを添加して溶解している金属イオンを還元゛して
金属を析出させる方法、シュウ酸を添加して溶解してい
る金属塩を溶解度の小さいシュウ酸塩として析出させる
方法、あるいは、りん酸及びアルカリを添加して金属塩
の結晶を析出させる方法、さらには金属粉を添加して老
化液を更に強制的に老化させ金属塩を回収する方法等が
知られている。しかし、これらの方法は添加する薬剤が
高価でありコスト高となり工業的には好ましい方法では
なく、また添加する方法が煩雑である上に、金属を1収
した後の老化液を再生液として利用することに不都合が
ある。In addition, methods for adding chemicals include, for example, adding hydrazine to the aging solution to reduce dissolved metal ions to precipitate metals, and adding oxalic acid to reduce the solubility of dissolved metal salts. Alternatively, phosphoric acid and alkali may be added to precipitate metal salt crystals, or metal powder may be added to forcibly age the aging solution to recover metal salts. There are known methods to do this. However, these methods are not industrially preferable because the chemicals added are expensive and the cost is high.Additionally, the adding method is complicated, and the aged liquid after one metal recovery is used as a regenerating liquid. It is inconvenient to do so.
そこで上記の如き薬剤を使用せず、また過酸化水素の分
解による損失や老化液中に存在する添加剤の分解あるい
は変質を伴なわず、老化液から有用な金属を回収し、金
属回収後の老化液を再生に供する方法として冷却法が提
案されている(41会1846−17049号)。この
方法は過酸化水嵩と硫酸とを主成分として含有する鋼の
処msの老化液を冷却して硫酸鋼の結晶を析出させ、こ
の結晶を過酸化水素を含有する溶液から分離a収し、結
晶を分離除去された老化液に有効成分を補充して再生す
る方法である。Therefore, useful metals are recovered from the aged liquid without using the above-mentioned chemicals, without loss due to decomposition of hydrogen peroxide, and without decomposition or alteration of additives present in the aged liquid. A cooling method has been proposed as a method for regenerating aged liquid (41-kai No. 1846-17049). This method cools an aging solution for steel treatment containing water peroxide and sulfuric acid as main components to precipitate crystals of sulfuric acid steel, and separates and collects these crystals from a solution containing hydrogen peroxide. This is a method of regenerating the aged liquid from which the crystals have been separated and removed, by replenishing the active ingredient.
上記の会報に記載されているごときの冷却法によると、
析出する金属塩の結晶が成長して凝集し、粗大な結晶と
なり、この結晶が冷却槽の槽底や配管内などに沈積し固
着し易く、この固着した結晶流を砕き落としたりする作
業が伴ない冷却槽ての分離操作が厄介な上に煩雑である
。According to the cooling method as described in the above newsletter,
The precipitated metal salt crystals grow and aggregate to form coarse crystals, and these crystals tend to settle and stick to the bottom of the cooling tank or inside the piping, and it is necessary to break up the fixed crystal flow. The separation operation using a cooling tank is troublesome and complicated.
41に冷却を10℃以下の低温まで急冷した場合には、
結晶化は速やかに進行するが、ブロック状の粗大な結晶
流が生成し異くなる。41, when cooling is rapidly cooled to a low temperature of 10℃ or less,
Crystallization progresses quickly, but it is different as a block-like coarse crystal flow is generated.
析出した金属塩の結晶はそのま\金属塩として回収され
る以外に、該金属塩を水及び鉱酸の水溶液KII簿させ
電解し、鋼のごとき金属を回収するのに利用される。こ
の際、粗大な結晶塊の場合は水及び鉱酸の水溶、液への
溶解速度が遅く、電解効率が悪い。このため電解液への
溶解を棗好にすべく、粗大な結晶塊を予め砕く作業が必
要であるなど作業が複雑になり好ましくない。The precipitated metal salt crystals are not only recovered as they are as metal salts, but also used to recover metals such as steel by electrolyzing the metal salts in an aqueous solution of water and mineral acids. At this time, in the case of coarse crystal lumps, the dissolution rate in water and mineral acid aqueous solution or liquid is slow, and the electrolytic efficiency is poor. For this reason, the work is undesirably complicated, as it is necessary to crush the coarse crystal mass in advance in order to dissolve it in the electrolyte solution in a suitable manner.
老化液から金属塩を析出させ引き続き該金属塩を鉱酸の
水溶液に溶解し電解して金属を回収し、一方、金属塩を
除去した後の老化液は再生して化学的溶解処理液として
利用する連続的な方法を行なう場合には、上記の様な粗
大な結晶の場合には、金属塩を電解槽又は溶解槽に移送
するI!IKポンプ移送するに当って種々不都合な点が
ある。Metal salts are precipitated from the aged solution, and then the metal salts are dissolved in an aqueous mineral acid solution and electrolyzed to recover the metal.Meanwhile, the aged solution after removing the metal salts is regenerated and used as a chemical dissolution treatment solution. In the case of coarse crystals such as those mentioned above, the metal salt is transferred to an electrolytic bath or a dissolution bath. There are various disadvantages when transferring with an IK pump.
本発明者らは、鋼及び銅合金の化学的溶解処理液の老化
液から金属塩を析出させ、次いで咳金属塩を電解して金
属を回収し、電解処理後の液を、析出した金属塩を溶解
させる溶解槽もしくは電解槽に1または金属塩を分離し
た老化液に循環し、連続的に金属の回収と老化液の再生
を行なう方法、いわゆるクローズド化システムについて
種々検討を重ね、本発明を為した。The present inventors precipitated metal salts from an aged solution of chemical dissolution treatment solutions for steel and copper alloys, then electrolyzed the cough metal salts to recover the metals, and recovered the precipitated metal salts from the electrolytically treated solution. The present invention was developed after conducting various studies on a so-called closed system, which is a method of continuously recovering metals and regenerating the aged liquid by circulating the aged liquid from which 1 or metal salts are separated into a dissolving tank or an electrolytic tank to dissolve metal salts. I did it.
4し
本発明は、過鹸味素または過硫酸塩と、鉱酸とを主成分
として含有する鋼合金の化学的溶解処理液の老化液を少
なくとも25℃以上のIIL度で攪拌下に冷却し、老化
液中に溶解している金属塩を析出させ、析出した金属塩
の結晶を老化液と分離し、次いで分離された金属塩の結
晶を溶解槽または電解槽に移送し、該槽で金属塩を溶解
し、電解槽で溶解させた場合は引き続き、9/#の範8
Ilcなるまで看需勢嗟Φ樗金属を回収し、一方電解処
II後の溶液を前記の溶解槽もしくは電解*tたは一部
を前記の金属塩を分離した老化液Ell環して老化液の
再生を行ない液管理を行なって再び溶解躯理液として使
用する金属の回収と老化液の再生を連続的に行なう銅及
び鋼合金の化学的溶解処理液の再生方法に関する。4. The present invention provides a method for cooling an aged solution of a chemical dissolution treatment solution for steel alloys containing as main components a persaponide or a persulfate and a mineral acid at a temperature of at least 25° C. or higher with stirring. , the metal salt dissolved in the aging solution is precipitated, the precipitated metal salt crystals are separated from the aging solution, the separated metal salt crystals are transferred to a dissolution tank or an electrolytic tank, and the metal salt is dissolved in the tank. If the salt is dissolved and dissolved in an electrolytic bath, it continues to be in the 9/# range 8.
The metal is recovered until it becomes Ilc, and the solution after electrolytic treatment II is used in the above-mentioned dissolving tank or electrolyzed*t, or a part of it is recycled into the aged liquid from which the metal salts have been separated. The present invention relates to a method for regenerating a chemical dissolution treatment solution for copper and steel alloys, in which the solution is regenerated, the solution is managed, and the metal is recovered to be used again as a dissolution solution, and the aged solution is continuously regenerated.
本発明は、銅及び銅合金の化学的溶解処3m液の老化液
から金属を電解により回収すると共に老化液中の有効成
分を損失することなく1illL循環し、連続的に老化
液を再生するクローズド化システムを提供するものであ
る。The present invention is a closed method for chemically dissolving copper and copper alloys in which metals are recovered from a 3m aging solution by electrolysis, and the aging solution is circulated 1illL without loss of the active ingredients in the aging solution to continuously regenerate the aging solution. The system provides a
本発明の対象となる銅及び銅合金とは、純銅、黄銅とリ
ン實銅、洋白等の銅及び銅を主成分とする含金である。Copper and copper alloys to which the present invention is applied include copper and metal containing copper as a main component, such as pure copper, brass, phosphorescent copper, and nickel silver.
また、老化液とは、過酸化水素または過硫酸塩と鉱酸と
を主成分として含有する化学的溶解処理液により化学研
磨、al洗、あるいはエツチング等を行ない、溶解速度
がそれぞれKl!末される限度以下に低下した液であっ
て、上記の金属イオンを鉱酸の塩、たとえば硫酸l1l
lとして、上記の化学的溶解処理液中に溶解処理温度で
飽和濃度近くまで溶解している箪である。In addition, the aging solution is treated by chemical polishing, Al cleaning, etching, etc. using a chemical dissolution treatment solution containing hydrogen peroxide or persulfate and mineral acid as main components, and the dissolution rate is Kl! The liquid has been reduced to a level below which the metal ions mentioned above can be removed by salts of mineral acids, such as sulfuric acid.
1 is a pot which is dissolved in the above chemical dissolution treatment solution to a near saturation concentration at the dissolution treatment temperature.
零発@における化学的溶解処理液は主成分として過酸化
水素または過硫酸塩を20 fl/を以上、好ましくは
S 011/l〜3ooV7.硫酸、リン酸、弗酸、硝
酸、塩酸、あるいはスルファミノ酸等の鉱酸を101/
/g以上、好ましくは2011A〜10011/l含有
する。これらの鉱酸は単独または所望により混合して用
いられ、通常は4il績が単独で使用されるが、処理さ
れる対象の鋼合金の種@によって硫酸と他の鉱酸が併用
される。The chemical dissolution treatment solution in Zero-Hatsu@ contains hydrogen peroxide or persulfate as a main component in an amount of 20 fl/l or more, preferably S011/l to 3ooV7. Mineral acids such as sulfuric acid, phosphoric acid, hydrofluoric acid, nitric acid, hydrochloric acid, or sulfamino acid at 10%
/g or more, preferably 2011A to 10011/l. These mineral acids can be used alone or in a mixture if desired, and usually 4il is used alone, but sulfuric acid and other mineral acids are used in combination depending on the type of steel alloy to be treated.
該化学的溶解熟思WLKはその他にアIレコール類、7
i7tLカルボン酸等の過酸化水素の安定化剤;光沢剤
、界面活性剤等の添加剤が、通常0゜1V#〜101A
添加されている。この橡な処理液による鋼及呑鋼合金の
処理は通常30℃以上、40℃〜70℃の温度で、通常
5秒昇上、10秒〜30分を要して行なわれる。そして
溶解速度が所定速度以下に低下したものが老化液として
*S処llIIImから冷却槽に移送される・冷却槽に
おいて該老化液は25℃以上の温度で攪拌下に冷却され
る。冷却方法は種々の方法を適用することができ、たと
えば、冷却処理槽内に冷却水の循環パイプを設置し、こ
れに冷却水を通す方法、あるいは冷却II&通槽に外套
を設けて二重壁とし、これに冷却水を通す方法、さらK
は冷風を送る方法などがあげられる。モして諌冷却槽に
は老化液の攪拌手段及び液温を所定温度に保つべく、温
度自動制御装置が設けられている。攪拌も種々の方法で
行なうことがてき、攪拌機による方法、液自体を循環さ
せる方法、あるいはバブリングによる方法などが例示さ
れ、その他に全知の方法も適用できる。攪拌の速度は余
りにゆっくりでは黴細な結晶が得られず、一方余りに速
すぎては過酸化水素の分解を招くおそれがあり好ましく
ない、攪拌、9による方法を例にとると、5rpm以上
、6〜60 Orpmの一転適度が好適である。この攪
拌は25℃以の所定の温度で通常金属塩の結晶の析出が
開始した後60分以内、好ましくは50分以内まで行な
われ、その後しばらく静置して後、結晶と液とに分離さ
れる。金属塩の結晶の析出の生成が認められた後は攪拌
を停止してそのまN静置り、結晶を析出させることもで
きる。この攪拌の操作により生成する金属塩の結晶は黴
細な粒状の結晶となり、攪拌を停止した後も結晶が生畏
して団塊状に粗大化することもなく、その後の操作、た
とえば分離機への移送や分離後の金属塩の溶解などに好
都合である。The chemical dissolution contemplation WLK also includes Airecols, 7
Stabilizers for hydrogen peroxide such as i7tL carboxylic acid; Additives such as brighteners and surfactants, usually from 0°1V# to 101A
has been added. The treatment of steel and steel alloys with this rigorous treatment liquid is usually carried out at a temperature of 30° C. or higher, 40° C. to 70° C., and usually takes 5 seconds to rise and takes 10 seconds to 30 minutes. Then, the aged liquid whose dissolution rate has decreased below a predetermined rate is transferred from the *S treatment to the cooling tank. In the cooling tank, the aged liquid is cooled at a temperature of 25° C. or higher with stirring. Various methods can be used for cooling, for example, a method of installing a cooling water circulation pipe in the cooling treatment tank and passing the cooling water through this, or a method of installing a jacket on the cooling II & passage tank and creating a double wall. And how to pass cooling water through this, further K
Examples of methods include blowing cold air. Furthermore, the cooling tank is equipped with a stirring means for the aging liquid and an automatic temperature control device to maintain the liquid temperature at a predetermined temperature. Stirring can also be carried out by various methods, such as a method using a stirrer, a method using a circulating liquid itself, a method using bubbling, and other well-known methods can also be applied. If the stirring speed is too slow, it will not be possible to obtain fine crystals, while if the stirring speed is too fast, it may lead to decomposition of hydrogen peroxide, which is undesirable. A degree of one-turn change of ~60 Orpm is suitable. This stirring is carried out at a predetermined temperature of 25°C or lower, usually within 60 minutes, preferably within 50 minutes, after the metal salt crystals start to precipitate, and then left to stand for a while to separate the crystals and liquid. Ru. After the formation of metal salt crystal precipitation is observed, stirring may be stopped and the mixture may be allowed to stand still with N to precipitate crystals. The metal salt crystals generated by this stirring operation become moldy granular crystals, and even after the stirring is stopped, the crystals do not grow and become coarse in the form of nodules, and are used in subsequent operations, such as a separator. It is convenient for transporting metal salts and dissolving metal salts after separation.
上記の冷却処理後、生成した結晶と液とに分離されるが
、この分離方法は、濾過による方法、遠心分離機による
方法、デカンテーションによる方法等それ自体全知の方
法がそのま1適用て會る。金属塩と分離された液には過
酸化水素または過硫酸塩に由来する過酸化イオン及び添
加剤が分解または変質する仁となく残存しているので真
東することなく、金属の11解処理操作に口いて消耗さ
れた量に見合う量の過酸化水素または過硫酸塩及び鉱酸
を、必l!に応じて添加剤を補充して再生液として液管
理を行なって化学的溶解処理液槽に戻し循環使用される
つ先に老化液から分離された金属塩の結晶は次いて溶解
槽會たは電解槽に移送され、水、又は/及び鉱酸の水溶
液により溶解され、電解に供される。金属塩の溶解を溶
解槽で溶解させたi合には液を電解槽に移送し、電解槽
で溶解させた場合には引合続き電解される。電解槽で溶
解させる方法、すなわち#Is楢と電解槽とを兼用す安
価となり好ましい。After the above-mentioned cooling treatment, the produced crystals and liquid are separated, and this separation method can be performed using any known method such as filtration, centrifugation, decantation, etc. Ru. Peroxide ions derived from hydrogen peroxide or persulfate and additives remain in the liquid separated from the metal salts without decomposition or deterioration, so metals can be processed without decomposition or deterioration. Be sure to add enough hydrogen peroxide or persulfate and mineral acid to the amount consumed! Additives are replenished according to the aging process, the liquid is managed as a regenerating liquid, and the liquid is returned to the chemical dissolution treatment bath for circulation. It is transferred to an electrolytic cell, dissolved in water or/and an aqueous solution of mineral acid, and subjected to electrolysis. If the metal salt is dissolved in the dissolution tank, the solution is transferred to the electrolytic tank, and if the metal salt is dissolved in the electrolytic tank, it is subsequently electrolyzed. The method of dissolving in an electrolytic bath is preferable because it is inexpensive and uses both the #Is oak and the electrolytic bath.
電解はグラフフィト、ステンレス、チタン、酸化鉛、過
酸他船、フェライト、白金等の不溶性の金属材料を陽極
とし、腋陽極に用いたと同様す材料の他にアルミニウム
、亜鉛、鋼、ニッケル等の金属を陰極として、50’C
〜80℃に0シ’tKなるまで、
金属を回収するJ電解
溶液中のCIJ++談度が上記の範囲以下になるまで金
属を回収すると電流効率が著しく低下し好ましくない。Electrolysis uses insoluble metal materials such as graphite, stainless steel, titanium, lead oxide, peracid, ferrite, platinum, etc. as the anode, and in addition to the same materials used for the armpit anode, aluminum, zinc, steel, nickel, etc. 50'C with metal as cathode
If the metal is recovered until the temperature reaches 0 tK at ~80°C or until the CIJ++ degree in the electrolytic solution falls below the above range, the current efficiency will drop significantly, which is not preferable.
電解処理後の酸及び金属イオンを含有する液は、前記の
金属塩の溶解、または電解液として循環利用される。ま
た、この電解処理後の液の一部を前記の金属塩分離後の
老化液の再生の補充液として利用される。The solution containing the acid and metal ions after the electrolytic treatment is used for dissolving the metal salts mentioned above or is recycled as an electrolytic solution. Further, a part of the solution after the electrolytic treatment is used as a replenisher for regenerating the aged solution after the metal salt separation.
これにより酸及び金属イオンを含有する電解処理後の溶
液を中和して廃水処理することが実質的に不mlなり、
いわゆるクローズド化システムが可能となり、また老化
液の再生の補充液として循環使用することにより、再生
液量が過剰に増加することを防止でき、連続的に金属の
回収と老化液の再生を行なうことができる。This makes it virtually impossible to neutralize the electrolytically treated solution containing acids and metal ions to treat wastewater.
A so-called closed system is possible, and by circulating it as a replenisher for regenerating the aged liquid, it is possible to prevent the amount of regenerating liquid from increasing excessively, and it is possible to continuously recover metals and regenerate the aged liquid. I can do it.
かくして本発明によれば、銅及び鋼合金の化学的溶解処
理液の老化液より、老化液中に溶解した金属のみを取出
し、過酸化水素及び鉱酸あるいは添加剤等の有効成分を
効率よく回収して再利用するクローズド化システムが可
能となり、老化液からの有効成分の回収及び老化液の再
生法として思想的な方法を提供するものである。Thus, according to the present invention, only the metal dissolved in the aging solution is extracted from the aging solution of the chemical dissolution treatment solution for copper and steel alloys, and active ingredients such as hydrogen peroxide, mineral acids, or additives are efficiently recovered. This makes it possible to create a closed system for reusing aged liquids, and provides a conceptual method for recovering active ingredients from aged liquids and regenerating aged liquids.
以下に実施例を記す。Examples are described below.
実施例 1
H,Os y a ti/as u雪80. 184
171゜。−ブチルアミン 501ifeから威るエツ
チング液で55μの片面鋼張りプ11ント基板を容量1
01のパドルエツチャー試験機にて、液温度50±2℃
でH雪0 諺とH富804を補充しながら一定のエツチ
ング速度でエツチングを行ない、HsOs 5617
g%H*804 18511A% Cu4 S 117
gを含む老化液が得られた。この老化液10.51を槽
底より抜出して、容量20gの冷却槽に移送した。冷却
槽ではステンレス製の冷却パイプ内に3〜5℃の冷却水
を流しながら攪拌機にて60 rpmの攪゛痺速度で攪
拌しなから筐温が25℃になるまで約15分間攪拌下に
冷却したのち静置し、10分間後に長さ1〜2%の粒状
の硫酸銅の結晶が析出した。この硫酸銅の結晶を含む老
化液を再度ゆるやかに攪拌してスラリー状態とし、この
スラリーをスラリーポンプで、エンドレス−布が回転す
る吸引−過機に供給し、V液と結晶とに分離し、1.4
5KI#) Cu80 m・5H30の結晶が得られた
。これを5Iの電解槽にうつして、81804 245
1/す、Cu6II/lを含む、あらかじめ電解して得
た電解液を2I加えて、7枚のPb0m板を陽極とし、
6枚のCm板を陰極として電解電圧3,8V。Example 1 H,Osya ti/as u snow 80. 184
171°. -Butylamine 55μ single-sided steel-clad printed circuit board with a capacity of 1 using etching solution from 501ife.
01 paddle etcher tester, liquid temperature 50±2℃
Etching is performed at a constant etching speed while replenishing HsOs 5617 and HsOs 5617.
g%H*804 18511A% Cu4 S 117
An aged liquid was obtained containing g. 10.5 liters of this aged liquid was extracted from the bottom of the tank and transferred to a cooling tank with a capacity of 20 g. In the cooling tank, cooling water at 3 to 5°C was flowed through a stainless steel cooling pipe, stirred at a stirring speed of 60 rpm using a stirrer, and cooled with stirring for about 15 minutes until the temperature of the case reached 25°C. Thereafter, the mixture was allowed to stand for 10 minutes, and granular copper sulfate crystals with a length of 1 to 2% were precipitated. This aged liquid containing crystals of copper sulfate is gently stirred again to form a slurry, and this slurry is supplied to a suction-filtering machine in which an endless cloth rotates using a slurry pump to separate it into liquid V and crystals. 1.4
5KI#) Cu80m·5H30 crystals were obtained. Transfer this to the 5I electrolytic tank and 81804 245
Add 2I of an electrolytic solution obtained by electrolysis in advance containing 1/S, Cu6II/L, and use 7 Pb0m plates as anodes.
Electrolytic voltage 3.8V using 6 Cm plates as cathodes.
陰極電流書度6.5ム/al Kで45〜60℃で電解
を行ない、dHrllKCaを228#II収(闘収率
9s%)した。Electrolysis was carried out at 45 to 60° C. with a cathode current rating of 6.5 μm/al K, and 228 #II of dHrllKCa was recovered (total yield 9 s%).
金属を一部した後の電解液にはHI304 417 I
ll s (:w 5 、5 Ill tl’倉tt
Lテに’り。この液は金属塩の溶解液に供した。HI304 417 I is used in the electrolyte after partially removing the metal.
ll s (:w 5 , 5 Ill tl'kratt
I'm in L Te'ri. This solution was used as a solution for dissolving metal salts.
一方、上記の結晶と分離したFl[KはH1o雪75
JF/1% H*80g 1851/g%Cu 4
11%fが含まれていたのでHm O露とHx 80
aを補充しrH雪0璽 8 0 171% H*80
a 1 9 8 lagsCwa S 7 V
g ?なし再生液とした。この再生lJjエツチング
液として上記と同様に鋼張りプリント板を部層したとこ
ろ、はぼ均一な溶解速度をもつエツチングを行なうこと
が可能であったー
実施例 2
黄銅、1[を50℃で1分浸漬によりH露Omを補充し
ながら連続して化学研磨し、表面に結晶が付着して良好
な化学研磨がて會なくなったHsOm72171%Hx
804155νg、す7鹸 311A 、非イオン系界
面活性剤 1 HI1%Cm 521/g 、Ztx
251/gを含む化学研磨1!’)l化液を、外套を
有する二重壁構造の冷却槽に移送し、外套に冷却水を導
通し、攪拌しながら約25分間冷却し、液温か28℃と
なり金属塩の結晶が析出しはじめたところで攪拌を停止
し静置し、約25分間放置した。その後再びゆるやかに
攪拌してスラリー処履となし、実施例1と同様にして結
晶を分離した。この結晶を電簿槽に移し、これに予め電
解処理により得たH3804S 101/g 、 Zn
51/eを含む水溶液を添加し攪拌しながら50℃
に加温して7枚のグラファイトを陽極とし、陰極に6枚
の+タン板を用いて浴電圧S、SV、陰極電流密度6.
4 A/m、50〜65℃で電解した。結晶は20分後
には完全に溶解し、6 Hr ilK Cuが8911
g1収された。Cの時点で、陰極を6枚のムl板として
引絖會浴電圧5,4V、陰極電流密度6.5人/dて電
解し、4 Hr @ K Znを40I11m眠した。On the other hand, Fl [K is H1o snow 75
JF/1% H*80g 1851/g%Cu 4
Since it contained 11% f, Hm O dew and Hx 80
Replenish a and rH snow 0 8 0 171% H*80
a 1 9 8 lagsCwa S 7 V
G? No regeneration liquid was used. When a steel-clad printed board was partially layered with this recycled lJj etching solution in the same manner as above, it was possible to perform etching with a nearly uniform dissolution rate - Example 2 Brass, 1 HsOm72171%Hx which was chemically polished continuously while replenishing H dew Om by dipping for 1 minute, crystals attached to the surface and good chemical polishing was no longer possible.
804155νg, Su7ken 311A, Nonionic surfactant 1 HI1%Cm 521/g, Ztx
Chemical polishing 1 including 251/g! ') Transfer the chlorinated liquid to a double-walled cooling tank with a jacket, pass cooling water through the jacket, and cool for about 25 minutes while stirring, until the temperature of the liquid reaches 28°C and metal salt crystals precipitate. When the stirring started, the stirring was stopped and the mixture was allowed to stand still for about 25 minutes. Thereafter, the mixture was gently stirred again to prepare a slurry, and the crystals were separated in the same manner as in Example 1. The crystals were transferred to an electronic tank, and H3804S 101/g, Zn, which had been previously obtained by electrolytic treatment, was added to the crystals.
Add an aqueous solution containing 51/e and heat to 50°C while stirring.
Using seven graphite sheets as anodes and six +tan plates as cathodes, the bath voltages S and SV and the cathode current density were set to 6.
Electrolysis was carried out at 4 A/m and 50-65°C. The crystals completely dissolved after 20 minutes, and 6 Hr ilK Cu was 8911
g1 was collected. At time point C, electrolysis was carried out using 6 mulch plates as the cathode at a bath voltage of 5.4 V and a cathode current density of 6.5 people/d, and 4 Hr @ K Zn was incubated at 40 I11 m.
金属をa収した後の電解液はHlSOa 41511
/g s Zt 41/g f含A+1”&’り@
c ノi[41電解液として循環便用に供する以外に
一部再生に供した。一方、上記の金属塩の結晶を分離し
たろ液にハ■mon 69 Il1%H奪SOm
152Fg。The electrolyte after collecting the metal is HlSOa 41511
/g s Zt 41/g f including A+1"&'ri@
In addition to being used as an electrolyte for circulation, a portion of the electrolyte was also recycled. On the other hand, in the filtrate from which the metal salt crystals were separated, Hmon 69 Il1% H-deprived SOm was added.
152Fg.
Cu 2 @ Ill s及びza 12 lag
カ含trLテいた。この−液に上記の電解処理後の液
をF#lの20容量%及びHs Omを補充してHsO
m 801/Is Ha80a 1951/a
として再生し、液管理を行なって化学研磨11[k供し
、同様に黄銅板の化学研磨を行なったところ、cu
4 sy、zg。Cu 2 @ Ill s and za 12 lag
It included trL. This solution was supplemented with 20% by volume of F#l and HsOm after the above electrolytic treatment.
m 801/Is Ha80a 1951/a
When chemical polishing was performed on a brass plate in the same manner,
4 sy, zg.
Zn21JF/# となるまで良好な化学研磨を行な
うことができた。Good chemical polishing could be performed until Zn21JF/# was obtained.
轡許出願人 三菱瓦斯化学株式会社 代表者長野和盲License applicant: Mitsubishi Gas Chemical Co., Ltd. Representative Nagano Japanese Blind
Claims (1)
する銅及び銅合金の化学的溶解処理液の老化液を少なく
とも25℃以上の温度で攪拌下に冷却し、老化液中に1
1%している金属塩を析出させ、析出した金属塩の結晶
を老化液と分離し、次いで分離された金属塩の結晶をI
IIjlF槽または電解槽に移送し、該榴て金属塩を溶
解し、電解槽で溶解させた場合051/fl〜20シt
の範11になるまで醤帰梧暑セ噌金属を回収し、一方電
解処理後の溶液を前記の溶解槽もしくは電解槽または一
部を前記の金属塩を分離した老化液に循環して老化液の
再生を行ない液管理を行なって再び溶解処理液として使
用する金属の回収と老化液の再生を連続的に行なうこと
を特徴とする鋼及び鋼合金の化学的溶解#&処理液再生
方法An aged solution of a chemical dissolution treatment solution for copper and copper alloys containing hydrogen peroxide or persulfate and a mineral acid as main components is cooled with stirring at a temperature of at least 25°C, and 1% is added to the aging solution.
1% metal salt is precipitated, the precipitated metal salt crystals are separated from the aged liquid, and then the separated metal salt crystals are
When transferred to a IIJIF tank or an electrolytic tank, and dissolved in the electrolytic tank, 051/fl ~ 20 sheets
The oxidized metal is recovered until it reaches 11, while the solution after the electrolytic treatment is circulated to the dissolving tank or electrolytic tank, or a part of it is recycled to the aged solution from which the metal salts have been separated. A chemical dissolution #& treatment solution regeneration method for steel and steel alloys, characterized in that the metal is recovered to be used again as a dissolution treatment solution and the aging solution is continuously regenerated by controlling the solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18352281A JPS5884975A (en) | 1981-11-16 | 1981-11-16 | Regenerating method for treating liquid for chemical dissolution of copper and copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18352281A JPS5884975A (en) | 1981-11-16 | 1981-11-16 | Regenerating method for treating liquid for chemical dissolution of copper and copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5884975A true JPS5884975A (en) | 1983-05-21 |
JPS6116350B2 JPS6116350B2 (en) | 1986-04-30 |
Family
ID=16137315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18352281A Granted JPS5884975A (en) | 1981-11-16 | 1981-11-16 | Regenerating method for treating liquid for chemical dissolution of copper and copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5884975A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011127166A (en) * | 2009-12-16 | 2011-06-30 | Toshiba Corp | Etching method, method for manufacturing microstructure, and etching apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841147A (en) * | 1971-09-29 | 1973-06-16 |
-
1981
- 1981-11-16 JP JP18352281A patent/JPS5884975A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841147A (en) * | 1971-09-29 | 1973-06-16 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011127166A (en) * | 2009-12-16 | 2011-06-30 | Toshiba Corp | Etching method, method for manufacturing microstructure, and etching apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6116350B2 (en) | 1986-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5755950A (en) | Process for removing plating materials from copper-based substrates | |
US10597753B2 (en) | Systems and methods of efficiently recovering precious metals using an alkaline leach, ultrasound, and electrolysis | |
US3788915A (en) | Regeneration of spent etchant | |
KR20170130408A (en) | Method for producing copper and apparatus for producing copper | |
JP3427879B2 (en) | Method for removing copper from copper-containing nickel chloride solution | |
US3616332A (en) | Process for recovering silver from scrap materials and electrolyte composition for use therein | |
US4164456A (en) | Electrolytic process | |
US5948140A (en) | Method and system for extracting and refining gold from ores | |
JP3736618B2 (en) | Treatment method of waste acid containing copper | |
JPS5884975A (en) | Regenerating method for treating liquid for chemical dissolution of copper and copper alloy | |
JPH0733595B2 (en) | Conversion of manganate to permanganate | |
JP2005298870A (en) | Method for recovering metal indium by electrowinning | |
JP5066025B2 (en) | Method for producing copper sulfate | |
JP2777955B2 (en) | Desilvering or silver recovery method | |
US4895626A (en) | Process for refining and purifying gold | |
JP3243929B2 (en) | Adjustment method of copper ion concentration of copper removal electrolytic solution | |
US5156721A (en) | Process for extraction and concentration of rhodium | |
JP2019131838A (en) | METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER | |
JP4787951B2 (en) | Method for electrolytic purification of silver | |
JP3136093B2 (en) | Method for removing tellurium from tellurium-containing copper sulfate solution | |
JPH0711075B2 (en) | Indium purification method | |
JP2002327288A (en) | Method for collecting hydrochloric acid and copper from copper chloride solution | |
JP2006176353A (en) | Method for recovering hydrochloric acid and copper from copper etching waste liquid | |
US1210017A (en) | Electrolytic recovery of zinc from ores and other zinc-bearing materials. | |
JPS6363638B2 (en) |