JPS5879600A - Controller for feeding chemical - Google Patents
Controller for feeding chemicalInfo
- Publication number
- JPS5879600A JPS5879600A JP56177817A JP17781781A JPS5879600A JP S5879600 A JPS5879600 A JP S5879600A JP 56177817 A JP56177817 A JP 56177817A JP 17781781 A JP17781781 A JP 17781781A JP S5879600 A JPS5879600 A JP S5879600A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- rate
- chemical
- costs
- chemical injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Gasification And Melting Of Waste (AREA)
- Treatment Of Sludge (AREA)
- Control Of Non-Electrical Variables (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 技術分野の説明
本発明は下廃水処理で発生する有機性汚泥を濃縮後脱水
する際の薬注制御装置C−係り、更に詳しくは焼却工程
1−おける補助燃料コストと集注工程における薬品コス
トの総和を最小にすることができる桑注制御装[響=関
する。Detailed Description of the Invention (a) Description of the Technical Field The present invention relates to a chemical injection control device C for concentrating and dewatering organic sludge generated in sewage treatment, and more specifically to an auxiliary device for incineration step 1. Kuwano control system that can minimize the sum of fuel costs and chemical costs in the collection process.
(4)従来技術の説明
汚泥処理プロセスでは、下廃水処理プルセスで発生する
有機性汚泥をまず濃縮檜へ送り、濃縮する。III/a
された汚泥は次イニ薬品混和檜へ送られ、ここで凝集剤
を添加されて脱水される。さら≦二、脱水汚泥は焼却装
all二送られて焼却される。(4) Description of Prior Art In the sludge treatment process, organic sludge generated in the sewage water treatment process is first sent to a thickening cypress and concentrated. III/a
The sludge is then sent to a chemical-mixing hinoki, where a coagulant is added and dewatered. Furthermore, the dehydrated sludge is sent to an incinerator and incinerated.
このような汚泥処理プロセス(−おいて、薬注工程での
凝集剤の薬注制御は、予めリーフテスト郷の脱水試験C
−より、脱水汚泥の含水率が最小I:なる薬注率を求め
ておき、脱水機へ投入する汚泥の流量および濃度の測定
から添加凝集剤量を調節していた。しかし、このような
集注制御方法に社以下のような欠点があつ九。卸ち、汚
泥の脱水特性が変化した場合などでは、脱水汚泥の含水
率を最小1−する薬注率は変化するので、頻繁Cユリ−
フチスト勢を行って薬注率を決め直す必要があり、かな
りの労力を必要とした。最近、これらの薬注制御方法の
欠点を解消する方法として、脱水機へ投入する汚泥の毛
細管吸引時間も同時1二測定し、頻繁Cニリーフテスト
等を行うことなく薬注率の設定値を適正i二変更する方
法が一部で行われている。In such a sludge treatment process (-), the chemical injection control of the flocculant in the chemical injection process is carried out in advance by Leaf Test Town's dewatering test C.
-, the chemical injection rate at which the water content of the dehydrated sludge is the minimum I: was determined, and the amount of added flocculant was adjusted by measuring the flow rate and concentration of the sludge fed into the dehydrator. However, this concentration control method has the following drawbacks. If the dewatering characteristics of the sludge change during wholesale, the chemical injection rate that keeps the water content of the dehydrated sludge to a minimum of 1-1 will change;
It was necessary to carry out manual labor and re-determine the drug injection rate, which required a considerable amount of effort. Recently, as a method to overcome the shortcomings of these chemical injection control methods, the capillary suction time of the sludge introduced into the dehydrator is also measured at the same time, and the set value of the chemical injection rate can be determined without performing frequent C-nileaf tests. Some methods are being used to change the appropriateness.
毛細管吸引時間Fi、汚泥中の水分が毛細管力によって
1紙中の一定距離を浸透するのに畳する時間で、汚泥の
脱水特性を表わす1つの指標である。Capillary suction time Fi is the time it takes for water in sludge to permeate a certain distance in a piece of paper by capillary force, and is one index expressing the dewatering characteristics of sludge.
上述した従来の制御方法は、脱水汚泥の含水率を最小−
二できるので脱水汚泥の容積を最奄少なくすることがで
きる利点がある。このため脱水汚泥をそのまま部室て処
分するような場合などI:は有効な制御方法であった〇
しかし、近都部室て地の確保が難しくなってきえため、
脱水汚泥を焼却し焼却灰どして膳立て処分するケースが
増してきている(脱水汚泥1:対して焼却灰はKo −
”toの容量になる。)このような脱水工程の後に焼却
工程を組み入れた汚泥処理プpセスでは、脱水汚泥の含
水率を最小5二するような薬注制御方法が必ずしも最適
ではない。むしろ、薬注工程での凝集剤コストと焼却工
程における補助燃料(通常は重油)コストの総和を最小
I:するような薬注制御方法が、コストの面からも、さ
らに高分子凝集剤などは石油から合成されることを考え
れば消費エネルギーの面からもより曳い制御方法である
と1える。The conventional control method described above minimizes the moisture content of dewatered sludge.
This has the advantage that the volume of dewatered sludge can be minimized. For this reason, I: was an effective control method in cases where dehydrated sludge was disposed of directly in a room. However, it became difficult to secure land for a room in a nearby metropolitan area.
The number of cases in which dehydrated sludge is incinerated and prepared as incinerated ash for disposal is increasing (Dehydrated sludge 1: On the other hand, incinerated ash is Ko −
In such a sludge treatment process that incorporates an incineration process after the dewatering process, a chemical injection control method that reduces the water content of dehydrated sludge to a minimum of 52 is not necessarily optimal. From a cost perspective, a chemical injection control method that minimizes the sum of the flocculant cost in the chemical injection process and the cost of auxiliary fuel (usually heavy oil) in the incineration process is recommended. Considering that it is synthesized from
(C)発明の目的
本発明は上述した考えに基づいて成された本ので、常1
:薬注工程の凝集剤コストと焼却工程での補助燃料コス
トの総和を最小I:することが簡便C二できる薬注制御
装置を提供することを目的とする0(d) 発明の構
成
即ち、本発明の薬注制御装置Fi、汚水処理プルセスな
どから発生する汚泥に薬品を添加混合する混和装置と、
#混和装置から流出する薬品添加汚泥を脱水する脱水機
と、該脱水機から搬出される脱水汚泥を焼却する焼却装
置から少なくとも構成されている汚泥処理プ關セスi二
おいて、前記混和懐皺6二流入する汚泥の鎖度(X)流
量’(Q)%および毛細管吸引時間(OEIT)を測定
する第1.2,3の測定鰺と、該第1.第3測定器の出
方を除算し08 T / Xを算出する第1の演算装置
と、該第1演X装置からの出力を受けて、予め定めであ
る(08テ/X)をバラメータとした薬注率と脱水汚泥
含水率との関係から、焼却工程の補助燃料コストと薬注
工程≦二おける薬品コストの総和が最小【二なる薬注率
を演算する第2の演算装置と、該第2演算鋏置からの出
力な薬注率の目標値として、添加薬品量を調節する調節
部とから成ることを特徴とするものである。(C) Purpose of the Invention The present invention is a book based on the above-mentioned idea, so
0(d) The purpose of the invention is to provide a chemical injection control device that can easily minimize the sum of the flocculant cost in the chemical injection process and the auxiliary fuel cost in the incineration process, namely: A chemical injection control device Fi of the present invention, a mixing device that adds and mixes chemicals to sludge generated from a sewage treatment process, etc.;
# In the sludge treatment process I2, which is composed of at least a dehydrator for dewatering the chemical-added sludge flowing out from the mixing device, and an incinerator for incinerating the dehydrated sludge carried out from the dehydrator, 6. No. 1, 2 and 3 measurements for measuring the chain degree (X) flow rate' (Q)% and capillary suction time (OEIT) of the inflowing sludge; A first arithmetic device that divides the output of the third measuring device to calculate 08T/X, and receives the output from the first arithmetic device and calculates a predetermined value (08T/X) as a parameter. From the relationship between the chemical injection rate and the water content of dehydrated sludge, it is determined that the sum of the auxiliary fuel cost for the incineration process and the chemical cost for the chemical injection process ≦2 is the minimum. The device is characterized in that it comprises an adjusting section that adjusts the amount of added chemicals as the target value of the chemical injection rate output from the second calculation scissors device.
通常、凝集剤の集注率と脱水汚泥の含水率との関係は、
下に凸の曲線関係となり、脱水汚泥の含水率を最小にす
ることができる薬注率が存在する。Normally, the relationship between the collection rate of flocculant and the water content of dehydrated sludge is as follows:
There is a downwardly convex curved relationship, and there is a chemical dosing rate that can minimize the water content of dehydrated sludge.
ま九汚泥の脱水特性Fi(08T/X )の指標で宍ゎ
せるとともよく知られていることである。即ち、第1&
At二示したよう8二(OBT/x )をパラメータミ
ニして凝集剤の薬注率と脱水汚泥の含水率との関係を予
め求めておけば、08’!’とXの測定をすること葛;
よって、その時の脱水特性の汚泥l二対する薬注率と脱
水汚泥の含水率との関係を求めることができる。It is well known that the dewatering characteristics of sludge can be improved using the index Fi(08T/X). That is, the first &
As shown in At2, if the relationship between the flocculant injection rate and the water content of dehydrated sludge is determined in advance by minimizing the parameter 82 (OBT/x), 08'! To measure ' and X;
Therefore, the relationship between the chemical injection rate for the sludge with the dewatering characteristics at that time and the water content of the dehydrated sludge can be determined.
焼却工程における補助燃料コストはたとえば次の式によ
って求めることができる。The auxiliary fuel cost in the incineration process can be determined, for example, by the following formula.
η ;効率
(1)式1:おいてs Q(II 61/I A eη
Fillぼ定数と見なすことができる。従って、(1)
式を整理すると(2)式のよう3二なる。η ; Efficiency (1) Equation 1: s Q (II 61/I A eη
Fill can be regarded as a constant. Therefore, (1)
If we rearrange the equation, we get 32 as shown in equation (2).
f = Kl・−−Kl −−−−−−−−(2)xl
、 Kl;定数
(2)式から明らかなよう蓋二、1i!助燃料コストと
脱水汚泥の含水率とは比例関係Cりる0従って、集注率
と補助燃料コストとの関係は、薬注率と脱水汚泥の含水
率との関係と四様3−下6;凸の曲線関係感−なる。f = Kl・−−Kl −−−−−−−−(2)xl
, Kl; Constant As is clear from equation (2), Lid 2, 1i! There is a proportional relationship between the auxiliary fuel cost and the water content of dehydrated sludge. Therefore, the relationship between the collection rate and the auxiliary fuel cost is the same as the relationship between the chemical injection rate and the water content of dehydrated sludge. Convex curve relationship feeling - becomes.
一方、集注率と薬品コストの関係は、当然比例−係g二
ある。On the other hand, the relationship between collection rate and drug cost is naturally proportional to g2.
第2−にlIk江率と鵬助燃料コスト、薬品コストおよ
びこれらのコストの総和との関係を示しである。第21
Wl二おいて、点ムVi最小の含水率を示す集注率、点
Bは補助燃料コストと薬品コストの総和を最小にする薬
注率を示している0
#131ハ本弗明の装置の一例を模式的C−示し良園で
ある0
一縮槽で濃縮された汚泥は、導水管1を通って薬品混和
横2C−導かれ、凝集剤注入管3を通じて添加される凝
集剤と混和された後、導水管4により脱水機5に送られ
る。脱水機5ではr液と脱水汚泥に分離され%P液はf
液管6を経て排出される。一方、脱水汚泥はベルトコン
ベア婢の汚泥輸送@ 71:よって焼却装置8番−搬入
され焼却される。Second, the relationship between the lIk efficiency, the fuel cost, the chemical cost, and the sum of these costs is shown. 21st
At Wl2, point B indicates the injection rate that indicates the minimum water content, and point B indicates the chemical injection rate that minimizes the sum of auxiliary fuel cost and chemical cost. The sludge that has been concentrated in the condensing tank is introduced into the chemical mixture through the water pipe 1 and mixed with the flocculant added through the flocculant injection pipe 3. Thereafter, it is sent to a dehydrator 5 through a water conduit 4. In dehydrator 5, it is separated into r liquid and dehydrated sludge, and %P liquid is f
It is discharged through the liquid pipe 6. On the other hand, the dehydrated sludge is transported to the incinerator No. 8 by the belt conveyor and is incinerated.
(−)発明の作用
このような汚泥処塩プロセスにおいて、導水管I C設
置され九超音波式等の汚泥濃度計9と毛細管吸引時間棚
定装fItlO!二より、それぞれ汚泥flk度Xと毛
細管吸引時間08Tが測定される。汚泥換度計9と毛細
管吸引時間測定装置1110の出力は、11の第1演算
装置へ供給され、ここで087/Xが算出される。12
の第2演算装置番=は予め08 T / zをパラメー
タ(−した薬注率と脱水汚泥含水率との関係が入力され
ており、 11の第1演算装置からの出力を受けてその
時の08T/z−おける集注率と脱水汚泥含水率との関
係を算出する。さらI:、この集注率と脱水汚泥含水率
との関係と前述した(1)式とから薬注率と焼却工程に
おける補助燃料コストとの関係を算出する。また集注率
と薬品コストとの関係も算出し、その時の08T/Xi
二おける補助燃料コストと薬品コストの総和が最小なる
集注率(目標値)を求める。この第2演算装置112の
出力は調節器13へ供給され、薬注率が目標値になるべ
く調節弁14を調節する。(-) Function of the Invention In such a sludge treatment process, a water conduit IC is installed, a sludge concentration meter 9 such as an ultrasonic type, and a capillary suction time shelf fItlO! 2, the sludge flk degree X and the capillary suction time 08T are measured, respectively. The outputs of the sludge conversion rate meter 9 and the capillary suction time measuring device 1110 are supplied to the first calculation device 11, where 087/X is calculated. 12
The second calculation device number = has previously input the relationship between the chemical injection rate and the dehydrated sludge water content with 08T/z as a parameter (-), and after receiving the output from the first calculation device 11, the current 08T Calculate the relationship between the collection rate and the water content of dehydrated sludge at Calculate the relationship with fuel cost. Also calculate the relationship between collection rate and drug cost, and calculate the 08T/Xi at that time.
Find the collection rate (target value) that minimizes the sum of the auxiliary fuel cost and drug cost in both cases. The output of the second arithmetic unit 112 is supplied to the regulator 13, which adjusts the control valve 14 so that the drug injection rate reaches the target value.
(イ)発明の詳細
な説明したようI:、汚泥の脱水性状カ五変イビしても
、それ畜二応じて常6二焼却工1ユおける補助燃料コス
トと粂注工1i媚−おける薬品コストとの総和が最小じ
なる薬注率4二調節されるため、処理コストの低減がで
きる。(a) Detailed explanation of the invention I: Even if the dehydration properties of sludge change, the cost of auxiliary fuel in the incineration plant and the chemicals in the incineration plant will vary accordingly. Since the chemical injection rate 42 is adjusted so that the total sum with the cost is the minimum, the processing cost can be reduced.
謝1因は087/Xをノくラメータ籠二して集注率と脱
水汚泥の含水率との関係を示す図、第2図は集注率と薬
品コスト、焼却工程の補助燃料コストおよびこれらのコ
ストの総和との関係を示す図、第3図は本発明の一実施
例を模式的C二表わしたブロック図である。
1.3,4.6・・・導水管 2・・・混和槽5・・・
脱水機 7・・・汚泥輸送機8・・・焼却装置
9・・・汚泥濃度計lO・・・毛細管吸引時間
−j定装置
11.12・・・演算装置 13・・・調節棒14・
・・調節弁 35.16・・・流量計第1区
頂
く
別
シ
儂シ1率
柔 シ]二 年The first factor is a diagram showing the relationship between collection rate and water content of dehydrated sludge by dividing 087/X into a parameter basket, and Figure 2 shows the collection rate, chemical cost, auxiliary fuel cost for the incineration process, and these costs. FIG. 3 is a block diagram schematically representing an embodiment of the present invention. 1.3, 4.6... Water pipe 2... Mixing tank 5...
Dehydrator 7...Sludge transporter 8...Incinerator 9...Sludge concentration meter lO...Capillary suction time -j constant device 11.12...Calculation device 13...Adjustment rod 14.
... Control valve 35.16 ... Flow meter 1st section 1st rate flexibility] 2 years
Claims (1)
合する混和装置と、#混和装置から流出するIIk品添
加汚泥を脱水する脱水機と、該脱水機から搬出ちれる脱
水汚泥を焼却する焼却装置から少なくとも構成されてい
る汚泥処理プロセスにおいて、前記混和装置1:R人す
る汚泥のl1f(x)と流量(Q)、および毛細管吸引
時間(aSテ)を測定する第1.2.3の糊定番と、皺
銀1.第3測定儀の出力を除算し08〒/Xを算出する
第1の演算装置と、#第1演算装置からの出力を受けて
、予め定めてわる08T/zをパラメータとした薬注率
と脱水汚泥含水率との関係から、焼却工程の補助燃料コ
ストと薬注工程における薬品コストの総和が最小1ユな
る薬注率を演算する第2の演算装置と、#第2演算装置
からの出力な薬注率の目標値として、鰯加桑品量V*節
する一節部とから構成されていることを特徴とする薬注
制御装置。A mixing device that adds and mixes chemicals to sludge generated from sewage treatment processes, a dehydrator that dewaters the IIk-added sludge that flows out from the mixing device, and an incinerator that incinerates the dehydrated sludge discharged from the dehydrator. In the sludge treatment process, the mixing device 1: measures the l1f(x) and flow rate (Q) of the sludge, and the capillary suction time (aSte). Standard and wrinkled silver 1. A first arithmetic device that divides the output of the third measurement instrument to calculate 08〒/X; A second calculation device that calculates a chemical injection rate at which the sum of the auxiliary fuel cost in the incineration process and the chemical cost in the chemical injection process is at least 1 U based on the relationship with the water content of dehydrated sludge, and # an output from the second calculation device. 1. A chemical injection control device comprising: a joint section that sets the target value of the chemical injection rate at the sardine quantity V*.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56177817A JPS5879600A (en) | 1981-11-07 | 1981-11-07 | Controller for feeding chemical |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56177817A JPS5879600A (en) | 1981-11-07 | 1981-11-07 | Controller for feeding chemical |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5879600A true JPS5879600A (en) | 1983-05-13 |
Family
ID=16037610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56177817A Pending JPS5879600A (en) | 1981-11-07 | 1981-11-07 | Controller for feeding chemical |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5879600A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5382356A (en) * | 1991-11-29 | 1995-01-17 | Tokyo Metropolitan | Method and apparatus for controlling sludge dewatering |
JP2007509814A (en) * | 2003-10-29 | 2007-04-19 | マーク・ハリス | System for refueling ships without spilling |
JP2019051458A (en) * | 2017-09-13 | 2019-04-04 | 水ing株式会社 | Dewatering system |
-
1981
- 1981-11-07 JP JP56177817A patent/JPS5879600A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5382356A (en) * | 1991-11-29 | 1995-01-17 | Tokyo Metropolitan | Method and apparatus for controlling sludge dewatering |
JP2007509814A (en) * | 2003-10-29 | 2007-04-19 | マーク・ハリス | System for refueling ships without spilling |
JP2019051458A (en) * | 2017-09-13 | 2019-04-04 | 水ing株式会社 | Dewatering system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104298259B (en) | Carbon source addition feedforward-feedback control device and method | |
Garrett Jr | Hydraulic control of activated sludge growth rate | |
CA2534040A1 (en) | Methods and systems for improved dosing of a chemical treatment, such as chlorine dioxide, into a fluid stream, such as a wastewater stream | |
DE3170743D1 (en) | Method and apparatus for determining toxic biological consumable substances in aqueous solutions, for instance in sewage | |
SE505967C2 (en) | The respective method for preparing a medical solution, for example a dialysis solution | |
JP4439825B2 (en) | Water quality control device for sewer facilities | |
JPS5879600A (en) | Controller for feeding chemical | |
US5246590A (en) | Water treatment to reduce fog levels controlled with streaming current detector | |
US5531905A (en) | System and method to control laundry waste water treatment | |
JPH09290273A (en) | Method for adjusting amount of flocculant to be added and device therefor | |
Burchett et al. | Facilities for controlling the activated sludge process by mean cell residence time | |
Mines Jr et al. | Conventional and AWT mixed-liquor settling characteristics | |
DE59302660D1 (en) | Method for operating a wastewater treatment plant and device for feeding a phosphate precipitant | |
JP7208949B2 (en) | Dilution treatment method and dilution treatment apparatus for substance to be diluted containing ammonium nitrogen | |
Balmer et al. | Oxygen transfer in gravity flow sewers | |
Giga et al. | Laboratory and in situ sediment oxygen demand determinations for a Passaic River (NJ) case study | |
Kox | Phosphorus removal from calf manure under practical conditions | |
JP2004148146A (en) | Wastewater treatment method | |
RU2071951C1 (en) | Method for automatic control of industrial sewage cleaning process | |
JP6298791B2 (en) | Sludge dewatering device and sludge dewatering method | |
JP3654742B2 (en) | Sludge dewatering method | |
JPS54127154A (en) | Automatic control system for activated sludge process | |
EP0946435A1 (en) | Sludge dewatering control system | |
RU1818336C (en) | Method for control of oil emulsion demulsification process | |
Brisbin | Sewage Sludge Thickening Tests |