JPS5871605A - Self-holding type solenoid - Google Patents
Self-holding type solenoidInfo
- Publication number
- JPS5871605A JPS5871605A JP56170910A JP17091081A JPS5871605A JP S5871605 A JPS5871605 A JP S5871605A JP 56170910 A JP56170910 A JP 56170910A JP 17091081 A JP17091081 A JP 17091081A JP S5871605 A JPS5871605 A JP S5871605A
- Authority
- JP
- Japan
- Prior art keywords
- fixed
- iron core
- movable
- yoke
- electromagnetic coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1607—Armatures entering the winding
- H01F7/1615—Armatures or stationary parts of magnetic circuit having permanent magnet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1638—Armatures not entering the winding
- H01F7/1646—Armatures or stationary parts of magnetic circuit having permanent magnet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/121—Guiding or setting position of armatures, e.g. retaining armatures in their end position
- H01F7/122—Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetically Actuated Valves (AREA)
- Electromagnets (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は瞬時のみの電磁コイルへの通電、もしくは手動
により可動鉄心を吸着し、永久磁石で保持し、また瞬時
の逆励磁電流で可動鉄心全離脱するイワゆる自己保持型
ソレノイドに関し、特にその強力小型化を目的とするも
のである。Detailed Description of the Invention The present invention is capable of self-holding, in which the movable core is attracted by instantaneous energization of the electromagnetic coil or manually, and is held by a permanent magnet, and the movable core is completely detached by an instantaneous reverse excitation current. Regarding type solenoids, the purpose is to make them particularly powerful and compact.
近年、家庭電化機器および住設関連機器において小型省
資源の必要性が増々腐まりつつある中にあって、ソレノ
イド関係も例外ではなく、より小型で低消費電力である
ことが重要である。In recent years, there has been a growing need for smaller, resource-saving home appliances and housing-related equipment, and solenoids are no exception, and it is important that they be smaller and consume less power.
まず従来の自己保持型ソレノイドの構造・作用・間鵬点
などを以下図面にしたがって説明する。First, the structure, operation, and drawbacks of a conventional self-holding solenoid will be explained below with reference to the drawings.
磁弁として応用したもので、電磁コイル1の内側に非磁
性である黄銅管で案内筒2を形成し、案内筒2の内側に
固定鉄心3を固定し、前記固定鉄心3と対向して摺動可
能な可動鉄心4t−設け、その可動鉄心4の端面に弁ゴ
ム6を固着した弁体6を固着し、さらに電磁コイル1の
外側は継鉄7で包囲し、その継鉄下の端部内側に接しか
つ可動鉄心4に対向する工うに永久磁石8全固着し、永
久磁石上の内側に接し案内筒2お工び可動鉄心4を包囲
するように鉄板9を複数枚重ね1.コ字形継鉄7の端部
に非磁性板1゛0金かしめて固着し、非磁性板10と弁
体6との間にスプリング11を入れた構成である。なお
二点鎖線は弁座12を示す。It is applied as a magnetic valve, and a guide tube 2 is formed inside the electromagnetic coil 1 using a non-magnetic brass tube. A movable iron core 4t that can be moved is provided, a valve body 6 having a valve rubber 6 fixed to the end face of the movable iron core 4 is fixed, and the outside of the electromagnetic coil 1 is surrounded by a yoke 7, and the end under the yoke is A permanent magnet 8 is fully fixed to the inner side and facing the movable iron core 4, a guide tube 2 is attached to the inner side of the permanent magnet, and a plurality of iron plates 9 are stacked so as to surround the movable iron core 4.1. A non-magnetic plate 10 is fixed to the end of the U-shaped yoke 7 by caulking with 0 gold, and a spring 11 is inserted between the non-magnetic plate 10 and the valve body 6. Note that the two-dot chain line indicates the valve seat 12.
第1図の従来例では電磁コイル1に瞬時励磁電流を流す
と、固定鉄心3に可動鉄心4が吸着され電磁コイル1の
電流がなくなっても、永久磁石8の磁力にエフ可動鉄心
4は固定鉄心3に吸着されたまま(!持される。つまり
弁体6悼弁座6を用いたまま保持される。また電磁コイ
λ1に進動磁電る方向に電流を瞬時流すと、瞬時永久磁
石8の磁界の強さを打消し減少させるため、可動鉄心4
を吸着保持する力が減少し、スプリング11の力の方が
相対的に大きくなるため、可動鉄心4は固定鉄心3から
離脱し、弁体6は弁座12を閉じる。In the conventional example shown in FIG. 1, when an instantaneous excitation current is applied to the electromagnetic coil 1, the movable iron core 4 is attracted to the fixed iron core 3, and even if the current in the electromagnetic coil 1 disappears, the F moving iron core 4 is fixed by the magnetic force of the permanent magnet 8. It is held while being attracted to the iron core 3 (that is, it is held while using the valve body 6 and the valve seat 6. Also, when a current is instantaneously passed through the electromagnetic coil λ1 in the direction of the advancing magnet, the instantaneous permanent magnet 8 In order to cancel and reduce the strength of the magnetic field, the movable iron core 4
The force of attracting and holding the valve decreases, and the force of the spring 11 becomes relatively large, so the movable core 4 separates from the fixed core 3, and the valve body 6 closes the valve seat 12.
作用は以上のとおりであるが、いま可動鉄心4が固定鉄
心3に吸着保持式れた状態での磁気回路を見てみると、
永久磁石8の磁束は鉄板9から可動鉄心4、固定鉄心3
を経て継鉄7を通り、再び永久磁石8に戻るが、この磁
束経路のうち鉄板9と可動鉄心4との間はどうしても磁
気的空隙を生じ、磁気抵抗が大きくなり波瀾磁束も大と
なり、そのふんたけ永久磁石8の面積を大きくしなくて
はならない。それだけではなく鉄板9−可動鉄心4間の
磁気的空隙は逆励磁電流を流した際の、電磁コイルが発
生する磁界に対しても、磁束の通過抵抗となるため離脱
させるための逆励磁電流を大きくするか、電磁コイル1
の巻数を大きくしなくてはならない。つまりこの従来の
自己保持ソレノとすれば、大きいコイル体積を必要とし
大型化するし、また小型化しようとすると大きい電圧・
消費電力となるという問題があった。また第2図はもう
一つの従来例で、吸着面20’を切削研磨゛してメッキ
を施した固定継鉄20に電磁コイル21を挿入して、充
填材22で固定し、前記固定継鉄20の吸着面に対向し
て、略円筒凹状の可動継鉄23を設けてあり、その内側
底面には円筒状の永久磁石24″ft密接させ、さらに
その永久磁石24に導磁体26を密接して充填材26全
もって可動継鉄!
23内に固定した後、可動継鉄23ならびに導磁体26
の吸着面23’25”i切削研磨して、メッキを施こし
た構成の自己保持ソレノイドを電磁弁に応用したもので
ある。なお導磁体′26の中心上部には、手動で可動継
鉄23を固定継鉄20に吸着保持させ、弁体29t−「
開」の状態にするための操作ツマミ30の軸が固着して
あり、流体の通路と、゛ルノイド部との気密隔、離のた
め腎ダイアフラム31が設けである。上記構成で操作ツ
マミ6、、−1・
30を引き上げると、固定継鉄20に可動継鉄23が永
久磁石24により吸着保持され、弁体29け「開」状u
k(Nつ。電磁コイル21に永久磁石24と逆方向の磁
界を発生させる逆励磁電流を瞬時流すと、瞬時永久磁石
24の磁界の強式を打消し減少させるため、可動継鉄2
3の吸着保持力が減少し、スプリング27の力の方が相
対的に大きくなるため、可動継鉄23は固定継鉄2oか
ら離脱し、弁体29は「閉」状態になる。磁気回路的に
は、可動継鉄23が固定継鉄2oに吸着保持されている
場合、固定継鉄2oの吸着面20’と、可動継鉄23お
工び導磁体26の吸着面23’、26’とが密接してお
り永久磁石24の磁束は導磁体26から固定継鉄20.
可動継鉄23を経て再び永久磁石24に戻る磁束経路で
の見かけ上の空隙はなく、経路の磁気抵抗は小さい。と
ころが、円柱形永久磁石24の外表面と円筒形可動継鉄
23の内壁との間隔が相当十分ないと、永久磁石24周
囲の短絡洩漏磁束が多くなり、結果、吸着保磁力が小さ
くなってしまう。この波瀾・磁束は導磁体7、・−−
26と可動継鉄23の内壁部においても多くある。The action is as described above, but if we now look at the magnetic circuit with the movable iron core 4 adsorbed and held on the fixed iron core 3,
The magnetic flux of the permanent magnet 8 is transmitted from the iron plate 9 to the movable iron core 4 and the fixed iron core 3.
, passes through the yoke 7 and returns to the permanent magnet 8 again, but in this magnetic flux path, a magnetic gap inevitably occurs between the iron plate 9 and the movable iron core 4, the magnetic resistance increases, and the ripple magnetic flux also increases. The area of the funtake permanent magnet 8 must be increased. Not only that, the magnetic air gap between the iron plate 9 and the movable iron core 4 acts as a resistance to the passage of magnetic flux against the magnetic field generated by the electromagnetic coil when a reverse excitation current is passed through it, so the reverse excitation current is applied to remove the magnetic flux. Make it bigger or electromagnetic coil 1
The number of turns must be increased. In other words, this conventional self-holding solenoid requires a large coil volume and becomes large, and if you try to make it smaller, it requires a large voltage and
There was a problem with power consumption. FIG. 2 shows another conventional example, in which an electromagnetic coil 21 is inserted into a fixed yoke 20 whose suction surface 20' has been cut, polished and plated, and fixed with a filler 22. A movable yoke 23 having a substantially cylindrical concave shape is provided opposite the attracting surface of the yoke 20, and a cylindrical permanent magnet 24" ft is placed in close contact with the inner bottom surface of the movable yoke 23, and a magnetic conductor 26 is placed in close contact with the permanent magnet 24. After fixing all the filling material 26 in the movable yoke! 23, remove the movable yoke 23 and the magnetic conductor 26.
A self-holding solenoid with a suction surface 23'25''i cut, polished and plated is applied to a solenoid valve.The movable yoke 23 is manually attached to the upper center of the magnetic conductor '26. is adsorbed and held on the fixed yoke 20, and the valve body 29t-"
The shaft of the operating knob 30 for opening the valve is fixed, and a renal diaphragm 31 is provided for airtight separation between the fluid passage and the venous part. In the above configuration, when the operating knobs 6, -1 and 30 are pulled up, the movable yoke 23 is attracted to the fixed yoke 20 by the permanent magnet 24, and the valve body 29 is placed in the "open" state.
k (N times.) When a reverse excitation current that generates a magnetic field in the direction opposite to that of the permanent magnet 24 is instantaneously passed through the electromagnetic coil 21, the strong magnetic field of the permanent magnet 24 is canceled out and the movable yoke 2
3 decreases, and the force of the spring 27 becomes relatively large, so the movable yoke 23 separates from the fixed yoke 2o, and the valve body 29 enters the "closed" state. In terms of the magnetic circuit, when the movable yoke 23 is attracted and held by the fixed yoke 2o, the attraction surface 20' of the fixed yoke 2o, the attraction surface 23' of the magnetic conductor 26 of the movable yoke 23, 26' are in close contact with each other, and the magnetic flux of the permanent magnet 24 is transferred from the magnetic conductor 26 to the fixed yoke 20.
There is no apparent gap in the magnetic flux path that returns to the permanent magnet 24 via the movable yoke 23, and the magnetic resistance of the path is small. However, if the distance between the outer surface of the cylindrical permanent magnet 24 and the inner wall of the cylindrical movable yoke 23 is not sufficiently large, the short-circuit leakage magnetic flux around the permanent magnet 24 will increase, resulting in a decrease in the attraction coercive force. . This wave/magnetic flux is present in large amounts also in the magnetic conductors 7, . . . 26 and the inner wall portion of the movable yoke 23.
したがって、これら短絡洩漏磁束を少くするには、円柱
磁石24や導磁体26の外径に対して、可動継鉄23の
内径をかなり大きくしなくてはならず、ソレノイドが大
型化してしまうという問題がある。Therefore, in order to reduce these short-circuit leakage magnetic fluxes, the inner diameter of the movable yoke 23 must be made considerably larger than the outer diameter of the cylindrical magnet 24 and the magnetic conductor 26, resulting in the problem of an increase in the size of the solenoid. There is.
磁石断面積を比較する意味で、もし第1図の従来例のよ
うな平板状磁石8の二枚分と同等の断面積の円柱状磁石
24にしようと思うと、平板状磁石8の断面縦横寸法f
10 mm X 20 Innとすると、第2図の従
来例の円柱状磁石断面の直径は約23ff1m程度とな
り、その外側の可動継鉄23の直径は、さらに太くする
必要があり、このことからもソレノイドが大型化してし
まうことがわかる。In terms of comparing the magnet cross-sectional area, if you want to use a cylindrical magnet 24 with a cross-sectional area equivalent to two flat magnets 8 like the conventional example shown in FIG. Dimension f
Assuming 10 mm x 20 Inn, the cross-sectional diameter of the cylindrical magnet in the conventional example shown in Fig. 2 is about 23 ff 1 m, and the diameter of the movable yoke 23 on the outside needs to be even thicker. It can be seen that the size increases.
上記説明した二種類の従来例と、本発明の自己保持型ソ
レノイドについて、はぼ同等の外形寸法で試作し実測し
た特性図を第31図X示す。横軸は固定鉄心3と可動鉄
心4あるいは固定継鉄2oと可動継鉄23との隙間距離
Gで、縦軸は吸引力Fを示す。本発明の自己保持型ソf
レノイドの特性は″実線ムで、第1図の従来例の特性は
破線Bで、第2図の従来例の特性は点線Cでそれぞれ示
す。FIG. 31X shows a characteristic diagram of the two types of conventional examples described above and the self-holding type solenoid of the present invention, which were experimentally manufactured with approximately the same external dimensions and actually measured. The horizontal axis shows the gap distance G between the fixed iron core 3 and the movable iron core 4 or the fixed yoke 2o and the movable yoke 23, and the vertical axis shows the attraction force F. Self-holding type sof of the present invention
The characteristics of the lenoid are shown by a solid line, the characteristics of the conventional example in FIG. 1 are shown by a broken line B, and the characteristics of the conventional example in FIG. 2 are shown by a dotted line C, respectively.
本発明は上記従来の問題を解消し、小型強力でかつ低消
費電力の自己保持型ソレノイドを実現しようとするもの
で、第4図に本発明の一実施例を示す。コ字状同定継鉄
4oの内側中心部に、固定鉄心41をかしめ固着し、固
定鉄心41に電磁コイル42をはめ合わせ、さらに電磁
コイル42を押さえ固定するように非磁性取付板43を
固定継鉄42にカシメ固着して固定側磁気回路を構成す
るとともに、前記電磁コイル42の中心角穴部に、摺動
自在なように可動鉄心44の角柱部46を挿入し、可動
鉄心44の頭部46の両側面に平板状永久磁石47を接
着し、さらに永久磁石47の外側に可動継鉄48を接着
により固着して可動側磁気回路が構成されている。また
可動鉄心44の固定鉄心41との対向面には中心に深穴
を設け、スプリング49が装着式れており、可動鉄心4
4の頭部46の趨向中心には弁ゴム60を有した弁体6
1が固着しである。62は弁座を示す。以上の構成で電
磁コイル42に瞬時励磁するか、弁体61を別に設けた
手動操作軸(図示せず)で押し開くと、可動鉄心44は
固定鉄心41に永久磁石47の磁力で吸着されたまま保
持嘔れる。また電磁コイル42に逆励磁電流、すなわち
永久磁石47と逆方向の磁界全発生する方向に電流を瞬
時流すと、瞬時永久磁石47の磁界の強さを打消し減少
式せるため、可動鉄心44全吸着保持する力が減少し。The present invention aims to solve the above-mentioned conventional problems and realize a self-holding solenoid that is small, powerful, and consumes low power. FIG. 4 shows an embodiment of the present invention. A fixed iron core 41 is caulked and fixed to the inner center of the U-shaped identification yoke 4o, an electromagnetic coil 42 is fitted onto the fixed iron core 41, and a non-magnetic mounting plate 43 is fixedly attached so as to press and fix the electromagnetic coil 42. The fixed side magnetic circuit is configured by caulking the iron 42, and the square column part 46 of the movable core 44 is slidably inserted into the central square hole of the electromagnetic coil 42, and the head of the movable core 44 is inserted into the central square hole of the electromagnetic coil 42. A flat permanent magnet 47 is adhered to both sides of the permanent magnet 46, and a movable yoke 48 is fixed to the outside of the permanent magnet 47 by adhesive, thereby forming a movable side magnetic circuit. In addition, a deep hole is provided in the center of the surface of the movable core 44 facing the fixed core 41, and a spring 49 is attached thereto.
At the center of the direction of the head 46 of 4 is a valve body 6 having a valve rubber 60.
1 is fixed. 62 indicates a valve seat. With the above configuration, when the electromagnetic coil 42 is momentarily excited or the valve body 61 is pushed open with a separately provided manual operation shaft (not shown), the movable core 44 is attracted to the fixed core 41 by the magnetic force of the permanent magnet 47. Holding it still makes me vomit. Furthermore, when a reverse excitation current, that is, a current is instantaneously passed through the electromagnetic coil 42 in a direction that generates a magnetic field in the direction opposite to that of the permanent magnet 47, the strength of the magnetic field of the permanent magnet 47 is instantaneously canceled out and the strength of the magnetic field is reduced. The adsorption and holding power decreases.
スズリング49の力の方が相対的に大きくなり、可動鉄
心44は固定鉄心41から離脱し、弁体61は弁座62
を閉じる。The force of the tin ring 49 becomes relatively large, the movable core 44 separates from the fixed core 41, and the valve body 61 moves toward the valve seat 62.
Close.
本発明の自己保持型ソレノイドは、可動側磁気回路の可
動鉄心44の軸心に対して左右対称形に永久磁石47を
対向固着した構成であるため、外形寸法は小型でありな
がら、永久磁石470合計断面積を十分大きく構成でき
る。さらに固定鉄心41と可動鉄心44とを“当接させ
た状態で、可動継鉄48を固定継鉄4oに対同密接する
ように永久磁石47に接着できるため、可動鉄心44が
吸着@N状態のとき、磁気回路高に永久磁石47の磁束
は可動鉄心44から固定鉄心41.固定継鉄10、、、
。Since the self-holding solenoid of the present invention has a configuration in which the permanent magnets 47 are fixed to face each other symmetrically with respect to the axis of the movable iron core 44 of the movable side magnetic circuit, the permanent magnet 47 The total cross-sectional area can be configured to be sufficiently large. Furthermore, while the fixed iron core 41 and the movable iron core 44 are in contact with each other, the movable yoke 48 can be adhered to the permanent magnet 47 so as to be in close contact with the fixed yoke 4o, so that the movable iron core 44 is in the attracted @N state. At the time of magnetic circuit height, the magnetic flux of the permanent magnet 47 flows from the movable iron core 44 to the fixed iron core 41, the fixed yoke 10,...
.
40i経て可動継鉄全通り、再び永久磁石47に戻る磁
束経路での空隙がなく、経路の磁気抵抗が小さい。本発
明の構成であれば、もし固定鉄心41や可動鉄心44な
どの長さ寸法や、固定継鉄4゜や可動継鉄48の寸法な
どが少々ばらついても、上記の可動継鉄48の接着の際
に寸法ばらつきを吸収して各吸着面を密接することがで
きるため、部品加工や組立も容易である。また上記のよ
うに磁気抵抗が小さいため、吸着保持状態において、永
久磁石47の磁力が効率よく吸着保持力として作用する
ことができ、小型で強力な自己保持型ツレlイドが実現
できる。このことは永久磁石47による吸着保持たけで
なく、電磁コイル42に逆励磁電流を流した時に生ずる
逆磁界に対しても同様に磁気抵抗が小さく効率的に作用
するため、電磁コイル420巻数や流す電流も少なくて
離脱可能でるる。したがって電磁コイル42も小型で低
消費電力の自己保持型ソレノイドが実現できる。There is no gap in the magnetic flux path that passes through the movable yoke after 40i and returns to the permanent magnet 47 again, and the magnetic resistance of the path is small. With the configuration of the present invention, even if the length dimensions of the fixed iron core 41 and the movable iron core 44 and the dimensions of the fixed yoke 4° and the movable yoke 48 vary slightly, the movable yoke 48 can be bonded. Since it is possible to absorb dimensional variations and bring each suction surface into close contact with each other, it is easy to process and assemble parts. Furthermore, since the magnetic resistance is small as described above, the magnetic force of the permanent magnet 47 can efficiently act as an attraction and retention force in the attraction and retention state, making it possible to realize a small and strong self-retention type slide. This is because not only the permanent magnet 47 attracts and holds the electromagnetic coil 47, but also acts efficiently against the reverse magnetic field generated when a reverse excitation current is passed through the electromagnetic coil 42. The current is low enough that it can be removed. Therefore, a self-holding solenoid with a small electromagnetic coil 42 and low power consumption can be realized.
第6図は本発明の他の一実施例で構成し、第4図の本発
明の一実施例と同じところは同一符号を46′に引抜角
材などの角棒打金用い一部を鍛造加工した四角棒と頭部
4eIにコ字状に曲げた板材とで構成し、スプリング4
fil k s前記固鉄心44′の頭s46′と電磁
コイル42の巻枠63との間に装着した構成である。吸
着離脱の作用は第4図の本発明一実施例と同じであり、
説明を省略する。本実施例では可動鉄心44′ヲ上記の
ように構成したため、製作時の部品切削加工全大幅に削
減できプレス加工と、わずかの切削加工たけでよく、加
工工数・コストも低減することができる。またソレノイ
ドの外形寸法を第4図の実施例と全く同じままで、スプ
リング49′の巻径を大きくとることができるため、大
きいセット荷重および小さいはね定数のスプリングが可
能となる。したがって本実施例のソレノイドを電磁遮断
弁など・に応用した場合、吸着保持状態の時スプリング
49′が圧縮されていて、電磁コイル42に逆励磁電流
が瞬時加えられると、可動鉄心44′が離脱し、弁ゴム
60が弁座62を閉じ、スプリング49′は第6図の状
態まで伸びる。この時スプリング49′のはね定数が小
さいため、吸着保持状態時のスプリング49′のセット
荷重より少し小さい力で弁座52を閉止することができ
、流体全確実に遮断することができる。たとえば吸着保
持状態時のスプリング49′のセット荷重’!i100
0グラムで、はね定数が100y / aImで弁体6
1のストロークが8mmの場合、弁閉止力は1o o
o−* o o (ハm ) x s (1m ) =
200(ロ)で20Ofになってしまうが、同じ!
1oootのセット荷重lで、はね定数が60 y、A
mであれば、弁ストロークが同じgmmの場合、弁閉止
力は
1000?−60t/”’ X5IIlIn=600y
T600?と大きくできる。Fig. 6 shows another embodiment of the present invention, and the same parts as in the embodiment of the present invention shown in Fig. 4 are denoted by the same reference numerals 46' and 46'. Using a square bar hammer such as a drawn square material, some parts are forged. The spring 4
The structure is such that it is installed between the head s46' of the solid iron core 44' and the winding frame 63 of the electromagnetic coil 42. The action of adsorption and desorption is the same as that of the embodiment of the present invention shown in FIG.
The explanation will be omitted. In this embodiment, since the movable iron core 44' is configured as described above, the total cutting work of the parts during manufacture can be greatly reduced, requiring only press work and a small amount of cutting work, and the number of processing steps and costs can also be reduced. Further, since the winding diameter of the spring 49' can be increased while keeping the external dimensions of the solenoid exactly the same as in the embodiment shown in FIG. 4, a spring with a large set load and a small spring constant can be used. Therefore, when the solenoid of this embodiment is applied to an electromagnetic cutoff valve, etc., when the spring 49' is compressed in the adsorption/holding state and a reverse excitation current is instantaneously applied to the electromagnetic coil 42, the movable iron core 44' is detached. Then, the valve rubber 60 closes the valve seat 62, and the spring 49' extends to the state shown in FIG. At this time, since the spring constant of the spring 49' is small, the valve seat 52 can be closed with a force slightly smaller than the set load of the spring 49' in the suction holding state, and the fluid can be completely shut off. For example, the set load of the spring 49' in the suction holding state! i100
0g, spring constant 100y/aIm, valve body 6
If the stroke of 1 is 8mm, the valve closing force is 1o o
o-* o o (ham) x s (1m) =
200 (ro) becomes 20Of, but it's the same! With a set load l of 1ooot, the spring constant is 60y, A
If m, then if the valve stroke is the same gmm, the valve closing force is 1000? −60t/”' X5IIlIn=600y
T600? You can make it bigger.
第6図、第7図は、第6図の実施例の一部の構成部品を
わかりやすいように斜視図で示したものである。図から
れかるように電磁コイルの巻枠63の可動鉄心44′が
摺動系内される穴部を四角筒状に形成し、可動鉄心角柱
部46′が摺動するように構成したため、可動鉄心44
′の動転防止機能 3
がちり、固定継鉄40と可動継鉄48の吸着面が常に方
向が安定して一致場すことができる。断面形状は四角以
外に六角やだ円などいわゆる非円形であれば同等の効果
がある。6 and 7 are perspective views showing some of the components of the embodiment shown in FIG. 6 for easy understanding. As can be seen from the figure, the hole in which the movable core 44' of the winding frame 63 of the electromagnetic coil is inserted into the sliding system is formed into a rectangular cylindrical shape, and the movable core prismatic section 46' is configured to slide. Iron core 44
Function to prevent dust from rolling 3. The adsorption surfaces of the fixed yoke 40 and the movable yoke 48 can always be aligned in a stable direction. The same effect can be obtained if the cross-sectional shape is non-circular, such as a hexagon or an ellipse, in addition to a square.
さらに第9図は本発明他の一実施例全示し、電磁コイA
/42の巻枠63′の鍔部を固定継鉄40にかしめ固着
した構成で、電磁コイル42の固定全確実にできるとと
もに、非磁性板430部品も不要で構成もより簡単にな
り、組立も容易となりコストも低減できる。Furthermore, FIG. 9 shows another embodiment of the present invention, in which an electromagnetic coil A
The flange of the /42 winding frame 63' is caulked and fixed to the fixed yoke 40, and the electromagnetic coil 42 can be fixed completely, and the non-magnetic plate 430 part is not required, making the configuration simpler and easier to assemble. It is easy and costs can be reduced.
以上詳しく説明したとおり本発明は、可動側磁気回路の
可動鉄心の軸心に対して左右対称形に永久磁石を対向固
着し、ざらにその外側に固着した可動継鉄を、(2)定
継鉄と対向させ、かつ固定鉄心と可動鉄心をも対向する
ように構成したため、永久磁石の総断面積を大きくとる
ことができるとともに、吸着保持状態時の磁気的空隙が
ほとんどなくかつ波瀾磁束も少ない効率的な磁気回路と
なり、離脱のための逆磁界発生用の電磁コイルアンペア
−ターンも小さくてすむ構成で、非常に小型で強力14
、−
かつ低消費電力型の優れた自己保持型ソレノイドを実現
できるものである。As explained in detail above, the present invention has a movable yoke in which permanent magnets are fixed to face each other symmetrically with respect to the axis of a movable iron core of a movable-side magnetic circuit, and a movable yoke fixed roughly to the outside thereof. Because it is configured so that it faces the iron, and the fixed and movable cores also face each other, the total cross-sectional area of the permanent magnet can be increased, and there is almost no magnetic gap when the permanent magnet is held in place, and there is little disturbance magnetic flux. It becomes an efficient magnetic circuit, and the electromagnetic coil ampere-turn for generating the reverse magnetic field for separation is small, making it extremely compact and powerful.
, - It is possible to realize an excellent self-holding solenoid with low power consumption.
本自己保持型ソレノイドを使用して、ガスや石油機器の
燃料遮断用安全弁や、機構ロック解除用のソレノイドな
どへ応用した場合、小型強力で低電力のため、機器のコ
ンパクト化、低電力化、安全性の向上など、高付加価値
機器の実現全可能にするなど、本発明の実用的価値は大
なるものである。When this self-holding solenoid is applied to safety valves for fuel cutoff of gas and oil equipment, solenoids for releasing mechanism locks, etc., it is small, powerful, and low-power, so it can reduce the size of equipment and reduce power consumption. The practical value of the present invention is great, such as improving safety and making it possible to realize high value-added equipment.
第1図ム、Bは従来例會示す自己保持型ソレノイドの平
面図および正断面図、第2図は他の従来例を示す自己保
持型電磁弁の断面図、第3図は従来例および本発明の自
己保持型ツレ/イドの特性図、第4図ム、B、0は本発
明のご実施例を示す自己保持型ソレノイドの平面図、正
面断面図、側面図、第6図は同地の一実施例を示す自己
保持型ソレノイドの断面図、第6図、第7図、第8図は
それぞれm6図の自己保持型ツレ/イドの一部の部品の
斜視図、第e図ム、Bけ同地の一実施例を16、− ・
・
示す自己保持型ソレノイドの断面図および下面図である
。
4o・・・・・・固定継鉄、41・・・・・・固定鉄心
、42・・・・・・電磁コイル、44.44’・・・・
・・可動鉄心、47・・・・・・永久磁石、48・・・
・・・可動継鉄、49.49’・・・・・・スプリング
。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第3図
・1、G−大
瀉5図
第6図
第8図
第9図
1
=22−Figures 1 and B are a plan view and a front sectional view of a self-holding solenoid showing a conventional example, Figure 2 is a sectional view of a self-holding solenoid valve showing another conventional example, and Figure 3 is a conventional example and the present invention. Characteristic diagram of the self-holding type solenoid in Figure 4, B, 0 is a plan view, front sectional view, and side view of the self-holding type solenoid showing an embodiment of the present invention, and Figure 6 is a characteristic diagram of the self-holding type solenoid in the same place. A cross-sectional view of a self-holding type solenoid showing one embodiment, FIGS. An example from the same place is 16, -・
- A cross-sectional view and a bottom view of the self-retaining solenoid shown in FIG. 4o... Fixed yoke, 41... Fixed iron core, 42... Electromagnetic coil, 44.44'...
...Movable iron core, 47...Permanent magnet, 48...
...Movable yoke, 49.49'...Spring. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure Figure 3/1, G-Otaru Figure 6 Figure 8 Figure 9 Figure 1 =22-
Claims (1)
心と、前記電磁コイル外側の固定継鉄とからなる固定側
磁気回路と、前記固定鉄心に吸引されかつスプリングに
より離反するように、前記電磁コイル内を摺動自在に設
けられた可動鉄心と、前記可動鉄心の軸心に対して左右
対称形に永久磁石を対向固着し、かつ前記両永久磁石外
面に可動継鉄を固着した可動側磁気回路とを有し、前記
可動継鉄と固定継鉄が対向して成る自己保持型ツレ/イ
ド。 (2)可動鉄心を棒材とコテ状に曲げた板材とで構成し
た特許請求の範囲第1項記載の自己保持型ソレノイド。 (3) 電磁コイル内側の可動鉄心摺動部を、四角筒
状に形成し、可動鉄心を非円形断面の棒材で構成した%
杵請求の範囲第1項記載の自己保持型22・、7・ ソレノイド。 (4)固定鉄心と可動鉄心を当接させた状態のまま可動
継鉄を固定継鉄に対向密接させて、永久磁石に接層し7
’C%許請求の範囲第1項記載の自己保持型ソレノイド
。 (6) 電磁コイルの巻枠鍔部の一方金、固定継鉄に
かしめ固着した特許請求の範囲第1項記載の自己保持型
ソレノイド。[Scope of Claims] (1) A fixed-side magnetic circuit consisting of an electromagnetic coil, a fixed iron core inside the electromagnetic coil, and a fixed yoke outside the electromagnetic coil, and a fixed yoke that is attracted to the fixed iron core and separated by a spring. A movable iron core is provided to be slidable within the electromagnetic coil, and permanent magnets are fixed to face each other symmetrically with respect to the axis of the movable iron core, and a movable yoke is attached to the outer surface of both of the permanent magnets. A self-holding type slide/id having a fixed movable side magnetic circuit, the movable yoke and the fixed yoke facing each other. (2) A self-holding solenoid according to claim 1, wherein the movable iron core is composed of a rod material and a plate material bent into a trowel shape. (3) The sliding part of the movable core inside the electromagnetic coil is formed into a square cylindrical shape, and the movable core is made of a bar with a non-circular cross section.
A self-holding type 22, 7, solenoid according to claim 1. (4) While the fixed iron core and the movable iron core are in contact with each other, place the movable yoke in close opposition to the fixed yoke, and place it in contact with the permanent magnet.
'C% The self-holding solenoid according to claim 1. (6) A self-holding solenoid as set forth in claim 1, wherein one side of the winding frame flange of the electromagnetic coil is caulked and fixed to a fixed yoke.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56170910A JPS5871605A (en) | 1981-10-26 | 1981-10-26 | Self-holding type solenoid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56170910A JPS5871605A (en) | 1981-10-26 | 1981-10-26 | Self-holding type solenoid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5871605A true JPS5871605A (en) | 1983-04-28 |
JPS6355770B2 JPS6355770B2 (en) | 1988-11-04 |
Family
ID=15913600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56170910A Granted JPS5871605A (en) | 1981-10-26 | 1981-10-26 | Self-holding type solenoid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5871605A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61266887A (en) * | 1985-05-17 | 1986-11-26 | Matsushita Electric Ind Co Ltd | Self-holding type solenoid |
EP0466536A2 (en) * | 1990-07-13 | 1992-01-15 | Telemecanique | Electromagnet, particularly for a contactor |
JP2002270423A (en) * | 2001-03-07 | 2002-09-20 | Toshiba Corp | Electromagnetic actuator and switch |
JP2016003689A (en) * | 2014-06-16 | 2016-01-12 | アイシン精機株式会社 | Control valve |
CN114688337A (en) * | 2022-05-09 | 2022-07-01 | 诸暨市亚科机械有限公司 | Low-energy-consumption electromagnetic valve |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07112340B2 (en) * | 1992-12-18 | 1995-11-29 | 長野日本電産株式会社 | Disk drive motor |
-
1981
- 1981-10-26 JP JP56170910A patent/JPS5871605A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61266887A (en) * | 1985-05-17 | 1986-11-26 | Matsushita Electric Ind Co Ltd | Self-holding type solenoid |
EP0466536A2 (en) * | 1990-07-13 | 1992-01-15 | Telemecanique | Electromagnet, particularly for a contactor |
FR2664736A1 (en) * | 1990-07-13 | 1992-01-17 | Telemecanique | ELECTROAIMANT, IN PARTICULAR FOR A CONTACTOR. |
JP2002270423A (en) * | 2001-03-07 | 2002-09-20 | Toshiba Corp | Electromagnetic actuator and switch |
JP2016003689A (en) * | 2014-06-16 | 2016-01-12 | アイシン精機株式会社 | Control valve |
CN114688337A (en) * | 2022-05-09 | 2022-07-01 | 诸暨市亚科机械有限公司 | Low-energy-consumption electromagnetic valve |
CN114688337B (en) * | 2022-05-09 | 2024-06-04 | 浙江亚科智能科技有限公司 | Low-energy consumption electromagnetic valve |
Also Published As
Publication number | Publication date |
---|---|
JPS6355770B2 (en) | 1988-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4066040B2 (en) | Electromagnet and operation mechanism of switchgear using the same | |
JPH04254306A (en) | Magnetic apparatus | |
JPS58196378A (en) | Solenoid valve device | |
US4451808A (en) | Electromagnet equipped with a moving system including a permanent magnet and designed for monostable operation | |
WO1990001780A1 (en) | Plunger type electromagnet | |
JPS5871605A (en) | Self-holding type solenoid | |
US20100314568A1 (en) | Solenoid coil | |
CA1151229A (en) | Solenoid having a multi-piece armature | |
JPS596503A (en) | Self-holding type solenoid | |
JPH10122415A (en) | Miniature solenoid valve | |
JPS6091854A (en) | Electromagnetic solenoid unit | |
JP2522630Y2 (en) | solenoid valve | |
JP3811835B2 (en) | solenoid | |
JPS63133505A (en) | Release type electromagnet device | |
JPH0620829A (en) | Electromagnetic valve | |
JP2006042508A (en) | Linear actuator | |
JPH1167527A (en) | Solenoid | |
JP2999721B2 (en) | electromagnet | |
JPH10299936A (en) | Three-position valve | |
JP3395236B2 (en) | Solenoid valve | |
JPH02212685A (en) | 2-position solenoid valve | |
JP2004172516A (en) | Polarized electromagnet device | |
JPS6119257Y2 (en) | ||
JPH1140419A (en) | Solenoid | |
JPS63156306A (en) | Electromagnetic actuator |