[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5871444A - Diffracting apparatus for electron radiation - Google Patents

Diffracting apparatus for electron radiation

Info

Publication number
JPS5871444A
JPS5871444A JP56169559A JP16955981A JPS5871444A JP S5871444 A JPS5871444 A JP S5871444A JP 56169559 A JP56169559 A JP 56169559A JP 16955981 A JP16955981 A JP 16955981A JP S5871444 A JPS5871444 A JP S5871444A
Authority
JP
Japan
Prior art keywords
angle
sample
electron beam
mark
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56169559A
Other languages
Japanese (ja)
Other versions
JPH0571903B2 (en
Inventor
Seiichi Nakagawa
中川 清一
Setsuo Norioka
節雄 則岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP56169559A priority Critical patent/JPS5871444A/en
Publication of JPS5871444A publication Critical patent/JPS5871444A/en
Publication of JPH0571903B2 publication Critical patent/JPH0571903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To analyze and record diffraction patterns very readily, by a method wherein marks which show lengths as an angle scale are given within a CRT display which shows diffraction patterns based upon diffraction of electron radiation. CONSTITUTION:CPU22 is applied with signals such as a magnification signal for a magnification changeover means 23 and an accelerating voltage signal corresponding to an output from a high voltage power supply 12. CPU22 controls a power supply 13 for a condencer lens and other component elements based upon these signals, and applies signals to a character signal generating means 24 and a mark signal generating means 25, as well, so as to indicate marks and numerics on a display of a CRT15. In the present apparatus, a bar-mark and a number 10 overlapped on a pattern in right and lower part of CRT display, for example, show that the position being apart from the center (angle theta=0 deg.) of CRT display by a bar-marked length is at angle theta=10 deg.. Accordingly, the angle within the pattern is readily obtained, while observing the pattern, and it is very convinient for the analysis of a sample.

Description

【発明の詳細な説明】 本@羽は、電子#vA#r”ターンを表示する装置の改
良に関する〇 結晶性試料暑ζよる電子線回折lこ基づく回折パターン
には攬々のものがあるが・、その記録や解析には回折条
件から求まる回折パターンにおける回折角度を知る必要
がある。又、回折tfターンの記録には/fターンにお
けるある長さが何度の回折角度に相当するかを合わせて
記録してお(必要があり、かなり#iW4であった。本
発明は回折−寸ターンを螢光板や写真乾板に直接表示し
たり記録する代わりにブラウン管(CRT)等の画面内
に間接的に回折/パターンを表示する装置を対象として
回折角度の配縁を容易にすることを目的とするものであ
り、CRT等の画像表示手段の画面内に回折角のスケー
ルとして長さを示すマークを表示することを特徴とする
ものである。
Detailed Description of the Invention This book relates to the improvement of a device that displays electron #vA#r'' turns.There are many diffraction patterns based on electron beam diffraction using a crystalline sample.・To record and analyze it, it is necessary to know the diffraction angle in the diffraction pattern determined from the diffraction conditions.Also, to record the diffraction tf turn, it is necessary to know how many diffraction angles a certain length in the /f turn corresponds to. (It was necessary to record it at the same time, and it was quite #iW4.Instead of directly displaying or recording the diffraction-dimensional turns on a fluorescent plate or photographic plate, the present invention indirectly records them on the screen of a cathode ray tube (CRT), etc. The purpose is to facilitate the arrangement of diffraction angles for devices that display diffraction/patterns, and it is a mark that indicates the length as a scale of diffraction angles on the screen of image display means such as CRT. It is characterized by displaying.

以下、図面に基づいて本発明を詳述する。Hereinafter, the present invention will be explained in detail based on the drawings.

!I1図は、本発明を走査電子顕微鏡に適用した一実施
例装置の構成を示す略図である。1図中、1は真空に保
たれた鏡筒を示しており、その内部には電子銃2と試料
ステージ6の間1こ第1コンデンサーレンズ4(図示せ
ず)、第2コンデンサーレンズ5、第1fR偏向コイル
6x、67 、第2段偏向コイル’Xa7ye対物レン
ズ(最終段コンデンサーレンズ)89反射電子線検出器
9.試料10等が収納されている。電子銃2から発生す
る電子線11の加速電圧は高圧電源12を調整すること
lζよって可変され、試料10の高さ位置は試料ステ−
ジ6を調整することiこよって可変されるが、このよう
な変化iζ対して電子線の集束状態を保持するためにレ
ンズ電源15.14の出力を1iiliする〇前記偏向
コイル6x、6yはスイッチ15を1オン1にしたとき
lこはコイル7x、7yと直列に接続され、“オフ11
1こしたときlζはコイル6x、6ylこのみ走査電源
16からの水平鋸歯状波信号と垂直鋸歯状波信号が可変
アンプ17を経て供給される◎走査電源16の出力信号
はブラウン管(cIL’r)1aの偏向コイル19x、
19ylこも供給されており、その輝度変調グリッドの
一部には前配電子線検出器9の出力がアンプ20を経て
供給されでいるので、そのtii面には電子−の回折現
象lこよるチャンネリング・I4ターン又は走査像が表
示される。鍍表示の切換えはモード切換手段21の出力
によって制御される中央制御値[22によって行われる
。中央制御装置22#cは前記可変アンプの増幅度を変
化させる倍率切換手段26の倍率信号や、前記高圧電源
12の出力に対応する加速電圧信号や、紡紀試料ステー
ジ&ICよる試料位置の高さを表わす高さ信号も入力さ
れており、これらの信号に基づいて第2コンデンサーレ
ンズの電源16やスイッチ15を制御すると共fζ、文
字信号発生手段24やマーク信号発生子R25R:信号
を与えてブラウン管18の画lINに後述するようなマ
ークや数字を表示させる。
! FIG. I1 is a schematic diagram showing the configuration of an embodiment of an apparatus in which the present invention is applied to a scanning electron microscope. In the figure, 1 indicates a lens barrel kept in a vacuum, and inside it, between the electron gun 2 and the sample stage 6, there are a first condenser lens 4 (not shown), a second condenser lens 5, 1st fR deflection coil 6x, 67, 2nd stage deflection coil 'Xa7ye Objective lens (final stage condenser lens) 89 Backscattered electron beam detector 9. Sample 10 etc. are stored. The acceleration voltage of the electron beam 11 generated from the electron gun 2 is varied by adjusting the high-voltage power supply 12, and the height position of the sample 10 is adjusted by adjusting the height of the sample 10.
The output of the lens power source 15.14 is adjusted to maintain the focused state of the electron beam against such changes iζ.The deflection coils 6x and 6y are set by switches. When 15 is set to 1 on 1, l is connected in series with coils 7x and 7y, and 11 is turned off.
1, lζ is the coil 6x, 6yl. The horizontal sawtooth wave signal and vertical sawtooth wave signal from the scanning power supply 16 are supplied via the variable amplifier 17. ◎The output signal of the scanning power supply 16 is a cathode ray tube (cIL'r). 1a deflection coil 19x,
Since the output of the front electron beam detector 9 is supplied to a part of the brightness modulation grid via the amplifier 20, the electron beam diffraction phenomenon l is also supplied to the tii plane. A ring/I4 turn or scanned image is displayed. Switching of the display is performed by a central control value [22] controlled by the output of the mode switching means 21. The central controller 22#c controls the magnification signal of the magnification switching means 26 for changing the amplification degree of the variable amplifier, the acceleration voltage signal corresponding to the output of the high-voltage power supply 12, and the height of the sample position by the spindle sample stage & IC. A height signal representing the height is also input, and based on these signals, the power supply 16 and switch 15 of the second condenser lens are controlled, and fζ, character signal generation means 24 and mark signal generator R25R: signals are given to the cathode ray tube. Marks and numbers as described later are displayed on the 18th picture IN.

第2図はモード切換手段2・1を走査像モード番こ操作
した場合の電子線11の経路を示すもので1簡略化のた
めコンデンサーレンズ4.5%対物レンズ8や偏向コイ
ル”、67 e 7x、7yのレンズ主面又は偏向主面
は棒線又は破線で示しである0図中、第2コンデンサー
レンズ51とよってPIの位置に結像した電子線のクロ
スオーバー像は対物レンズ81こよって試料6J:に結
像される口このとき第1段目の偏向コイル6、 、67
1こよって紙面の左側に電子線が偏向されると第2゛段
目の偏向コイル7x、7ylこよって対物レンズ8の中
心を通過するように振り戻されるので、2段の偏向コイ
ルの夫々5ζXey方向の鋸歯状波電流を供給すると試
料面上の一定領域が電子線iζよって走査されることに
なる。又、鋏走査と同期した鋸歯状波電流がCRT18
の偏向コイル19x、19yK供給され、試料から発生
する反射電子線が検出器9により検出され、CB’I’
18の輝度変調信号として供給されているのでCtT1
8の画面lこは試料表rJ暑こ関する走査像が表示され
る。
Figure 2 shows the path of the electron beam 11 when the mode switching means 2.1 is operated in the scanning image mode. The lens principal surfaces or deflection principal surfaces of 7x and 7y are indicated by bar lines or broken lines. Sample 6J: The mouth imaged on the first stage deflection coils 6, , 67
1, when the electron beam is deflected to the left side of the paper, the second stage deflection coils 7x and 7yl deflect it back to pass through the center of the objective lens 8, so that each of the second stage deflection coils 5ζXey When a sawtooth wave current in the direction is supplied, a certain area on the sample surface is scanned by the electron beam iζ. Also, the sawtooth wave current synchronized with the scissors scanning is applied to the CRT18.
deflection coils 19x and 19yK are supplied, and the reflected electron beam generated from the sample is detected by the detector 9, and CB'I'
Since it is supplied as a brightness modulation signal of 18, CtT1
A scanned image of the sample surface rJ is displayed on the screen 8.

第3図はモード切換手段21をチャンネリングモードi
C操作した場合の電子@11の経線を示すもので、中央
制御値@22jこよってレンズ電$15の出力電流が減
少し、第2コンデンサーレンズ5によるクロスオーバー
像の結像位11Ptが対物レンズ8の前方焦点爾上に下
がる0その結果、試料面には直径の小さい平行な電子線
が照射される〇一方、中央制御回路22によってスイッ
チ15が”オン1状mk切り換えられるため、第HR目
の偏向コイル7、.77には鋸歯状波電流が供給されな
くなり、第1R目の偏向コイル6ζよって偏向された電
子線は対物レンズ8の中心に振り戻されることな(対物
レンズ磁場の軸外へ入射してレンズ磁場による属折作用
を受は試料6上に入射角θで照射する〇嬉lR目の偏向
コイルに供給される電流が変化すると電子線の入射角−
及び苦しくiよ方位角Pが変化するが対物レンズ8の励
磁強直がgiRの偏向−を物面として試料面位置が像耐
となるように設定されているので、電子線の試料照射位
置は常に一定に保たれる。このようIζして、試料上の
特定な微小領域に関して電子線による角度走査が行われ
、CRT画函内の(走査)位置は夫々電子線の試料入射
角t0と方位角tpに対応することξζなる0試料6が
結晶構造を催している場合、特定方向から電子線が入射
すると反射電子強度が強まつたり弱められたりするので
反射電子線強度を輝度変調信号とするCRTlBの画I
If1ζは所謂擬菊地−ターン(チャンネリング・−寸
ターン)が表示される。第4図(alはこのようなチャ
ンネリング・パターンが表示されるC RTiii面の
様子を示すもので、その右寄下方にバー・マークと数字
 10 がt4ターンに重畳して表示されている。これ
はCRT画市内の中心(角度0=θ°)からバー・マー
クの長さ離れた位置が角度θ=100であることを意味
しでおり、チャンネリング−寸ターンを観察しながら試
料の解析を行う場合、容易にパターン内の角度を知るこ
とが出来るので極めて便利である。又、CRTiji面
を写真撮影した後(ζどのように拡大して写真を焼付し
てもチャンネリング・パターンの内部に角度マークが表
示されているので、記録との照合や換算計算を間違える
虞れも生じない。第4図1blは第4図(mlの状態か
ら倍率切換26を操作して角度走査用の偏向コイル6に
、6.へ加える鋸歯状波電流の波高値を1倍にした状態
を示し、CB’f’画偉内のチャンネリング−寸ターン
の長さが2倍に拡大される。この変化は中央制御M[2
2によってモニターされておりマーク信号発生子RIζ
よるC RTiiill内の7−り長さが2倍1こなる
ように変化させるので、CRTi1g内の角度表示は常
に正しく保たれる。又、このようにバー参マークの長さ
が入射角の一定値(1G)を表示するようlこ変化され
れば、文字″1101を表示することは不要となる0こ
れとは逆に、CRTg面内lこ表示されるバー−マーク
の兼さを一定に保ったまま、その長さに対応する入射角
θを表わす数字を第4図1blに示すよう#c to 
 から 20 のように変化させても本発明の目的を達
成することが可能である。
FIG. 3 shows that the mode switching means 21 is set to channeling mode i.
This shows the meridian of the electron @11 when the C operation is performed, and the central control value @22j causes the output current of the lens electron $15 to decrease, and the imaging position 11Pt of the crossover image by the second condenser lens 5 changes to the objective lens. As a result, the sample surface is irradiated with a parallel electron beam with a small diameter.Meanwhile, the switch 15 is turned on by the central control circuit 22, so the HR The sawtooth wave current is no longer supplied to the eye deflection coils 7 and 77, and the electron beam deflected by the first R-th deflection coil 6ζ is not returned to the center of the objective lens 8 (the axis of the objective lens magnetic field When the electron beam enters the outside and receives the refraction effect due to the lens magnetic field, it irradiates the sample 6 at an incident angle θ.If the current supplied to the R-th deflection coil changes, the incident angle of the electron beam -
Although the azimuth P changes as much as i, the excitation stiffness of the objective lens 8 is set so that the sample surface position becomes image-resistant with the deflection of giR as the object surface, so the sample irradiation position of the electron beam is always remains constant. In this way, angular scanning is performed with the electron beam on a specific minute region on the sample, and the (scanning) position within the CRT picture box corresponds to the sample incident angle t0 and azimuth tp of the electron beam, respectively.ξζ When the sample 6 has a crystal structure, the intensity of the reflected electrons increases or weakens when the electron beam is incident from a specific direction.
If1ζ is displayed as a so-called pseudo-Kikuchi turn (channeling/-size turn). FIG. 4 (al) shows the state of the CRTiii surface on which such a channeling pattern is displayed, and a bar mark and the number 10 are displayed on the lower right side superimposed on the t4 turn. This means that the position away from the center of the CRT picture area (angle 0 = θ°) by the length of the bar mark is at angle θ = 100. When performing analysis, it is extremely convenient because you can easily know the angles within the pattern.Also, after taking a photograph of the CRTiji surface (ζNo matter how you enlarge and print the photograph, the channeling pattern will not be visible). Since the angle mark is displayed inside, there is no risk of making a mistake in checking with records or making conversion calculations. The peak value of the sawtooth wave current applied to the deflection coil 6 is doubled, and the length of the channeling turn in the CB'f' image is doubled. Changes are centrally controlled M[2
2 and is monitored by the mark signal generator RIζ
Therefore, the angle display in CRTi1g is always maintained correctly because the length of the 7-ri in CRTiill is changed by 2 times 1. Also, if the length of the bar reference mark is changed in this way so as to display a constant value (1G) of the incident angle, it becomes unnecessary to display the character "1101". While keeping the height of the bar mark displayed within the plane constant, the number representing the incident angle θ corresponding to its length is set as shown in Fig. 4, 1bl.
It is possible to achieve the object of the present invention even by changing from 20 to 20.

第S図(a)は前述した走査像モードにおけるCRT画
函の一例を示すもので、右寄り下方のバー・マークと数
字は夫々CRTij函の基準長さとその試料上に換算し
た長さ例えば100μ(ミクロン)の倍であったとする
と、2000倍に切換えた状態が第5図tkl+である
。この(b1図1こおいては100μを表わす数字10
0は変わらずにパー−マークの長さが2倍に変化する口
このように像倍率の変化に拘らず常iζ試料上の一定長
さ100μを表わすようにすれば数字 100 を表示
rる必要がなくなる0又、これとは逆に第5図1c) 
Iζ示す如くバー・マークの長さを一定に保ったままバ
ー・マークが表わす試(ミクロン)のよう#C表示して
も同じ効果が得られる。
Figure S (a) shows an example of a CRT picture box in the above-mentioned scanning image mode, and the bar mark and numbers on the lower right side indicate the reference length of the CRTij box and the length converted onto the sample, for example, 100μ ( tkl+ in FIG. 5 shows the state after switching to 2000 times. This (b1 In Figure 1, the number 10 represents 100 μ.
0 remains the same, but the length of the par mark doubles.In this way, regardless of changes in image magnification, it is necessary to display the number 100 if it always represents a constant length of 100μ on the sample. (Fig. 5 1c)
The same effect can be obtained by displaying #C like the sample (microns) represented by the bar mark while keeping the length of the bar mark constant as shown in Iζ.

ところで、試料を照射する電子線の加速電圧や試料の高
さ位置を変化させると電子レンズの焦点距離や偏向コイ
ルによる偏向角が変化し、又第2図や第3図に示す光学
系も変化するので、このような変化によるCRTjii
ffi内のバー・マーク表示や数字表示のズレを補正す
るための演算が中央制御装[22+ζおいて行われる0 以上に詳説した如く、本発dAによれば電子線回折に基
づく回折Iくターンが表示されるCRT画面内に角度ス
ケールとして長さを示すマークが表示されるため、回折
−寸ターンの解析や記録を極めて容易に行うことが可能
となる0又、第1図の実施例装置の如く、所謂ミクロン
マーカー機能を持つ走査電子顕微鏡を用いれば、CBT
m面にマークを表示するための手段を共用することがで
きるので、僅かな附加手段を設けるだけで本@明をIJ
!施することが可能となる。
By the way, if you change the accelerating voltage of the electron beam that irradiates the sample or the height position of the sample, the focal length of the electron lens and the deflection angle by the deflection coil will change, and the optical system shown in Figures 2 and 3 will also change. Therefore, due to such changes, CRTjii
Calculations for correcting discrepancies in the bar mark display and numerical display in the ffi are performed in the central control unit [22+ζ. Since a mark indicating the length is displayed as an angle scale on the CRT screen, it is possible to analyze and record diffraction-dimensional turns extremely easily. If a scanning electron microscope with a so-called micron marker function is used, CBT
Since the means for displaying the mark on the m-plane can be shared, just by providing a slight additional means, the book@mei can be converted to IJ.
! It becomes possible to apply

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施ガ装置を示す略図、第2図及
び第3図は夫々第1図の装置における電子光学系を示す
略図、第4図及び第5図は第1図の装置の動作を説明す
るための略図である。 2:電子銃、6:試料ステージ、4:第1コンデンサー
レンズ、5:5%2コンデンサーレンズ、6x、6y:
@1段偏向コイル、7x、7y:第2f&偏向コイル、
8:対物レンズ、9:反射電子線検出器、10:に料、
11:電子線、12:高圧電源、16.14 :レンズ
電源、15:スイッチ、16:走査電源、17:可変ア
ンプ、21:走査モード切換手段、22:中央制御装置
、26:倍率切換手段、24:文字信号発生手段、25
:マーク信号発生手段。 (a)       (b)       (c)第4
図 (Q)       (b)      (C)オS図
FIG. 1 is a schematic diagram showing an apparatus according to one embodiment of the present invention, FIGS. 2 and 3 are schematic diagrams respectively showing the electron optical system in the apparatus of FIG. 1, and FIGS. It is a schematic diagram for explaining the operation of the device. 2: Electron gun, 6: Sample stage, 4: First condenser lens, 5: 5% 2 condenser lens, 6x, 6y:
@1st stage deflection coil, 7x, 7y: 2nd f & deflection coil,
8: objective lens, 9: backscattered electron beam detector, 10: material,
11: Electron beam, 12: High voltage power supply, 16.14: Lens power supply, 15: Switch, 16: Scanning power supply, 17: Variable amplifier, 21: Scanning mode switching means, 22: Central control device, 26: Magnification switching means, 24: Character signal generation means, 25
: Mark signal generation means. (a) (b) (c) Fourth
Diagram (Q) (b) (C) S diagram

Claims (1)

【特許請求の範囲】 L 納品性試料による電子線回折に基づく回折/くター
ンを画像表示手段に間接的に表示する回折装置において
、前記画像表示手段の表示画鋼内に角度のスケールとし
て長さを示すマークを表示する手段を設けたことを特徴
とする電子線回折装置 龜 細い平行な電子線lこよる試料照射の位置を一定に
保らつつ―ik!電子線の入射角θと方位角−を偏向手
段を用いて角IIL揚引すると共#CC内角度掃引こ同
期した信号が供給されるFii44a表示手段のjif
IIIL変調信号として前記試料から得られる検出信号
を用いるように構成した装置g:おいて、#i記画像宍
示手段の画面内に長さを示すマークと、該マークの長さ
に対応する鉤記入射角、0の値を表わす数字若しくは記
号を表示するための手段を設けたことを特徴とする電子
4IIgl折装置。
[Scope of Claims] L In a diffraction device that indirectly displays diffraction patterns based on electron beam diffraction by a deliverable sample on an image display means, a length is displayed as an angle scale in a display frame of the image display means. An electron beam diffraction apparatus characterized in that it is provided with a means for displaying a mark indicating that -ik! When the incident angle θ and the azimuth angle − of the electron beam are lifted by the angle IIL using the deflection means, the synchronized signals are supplied to the angle sweep within #CC. jif of the Fii44a display means
A device g configured to use a detection signal obtained from the sample as a IIIL modulation signal: a mark indicating a length on the screen of the image display means #i, and a hook corresponding to the length of the mark; An electronic 4IIgl folding device, characterized in that it is provided with means for displaying numbers or symbols representing the incident angle and the value of 0.
JP56169559A 1981-10-23 1981-10-23 Diffracting apparatus for electron radiation Granted JPS5871444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56169559A JPS5871444A (en) 1981-10-23 1981-10-23 Diffracting apparatus for electron radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56169559A JPS5871444A (en) 1981-10-23 1981-10-23 Diffracting apparatus for electron radiation

Publications (2)

Publication Number Publication Date
JPS5871444A true JPS5871444A (en) 1983-04-28
JPH0571903B2 JPH0571903B2 (en) 1993-10-08

Family

ID=15888702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56169559A Granted JPS5871444A (en) 1981-10-23 1981-10-23 Diffracting apparatus for electron radiation

Country Status (1)

Country Link
JP (1) JPS5871444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143749A (en) * 1983-12-29 1985-07-30 Kawasaki Steel Corp Automatic electron ray diffraction image measuring apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721345A (en) * 1971-03-13 1972-10-03
JPS55166854A (en) * 1979-06-15 1980-12-26 Hitachi Ltd Scanning electron microscope and magnification display unit in its simulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721345A (en) * 1971-03-13 1972-10-03
JPS55166854A (en) * 1979-06-15 1980-12-26 Hitachi Ltd Scanning electron microscope and magnification display unit in its simulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143749A (en) * 1983-12-29 1985-07-30 Kawasaki Steel Corp Automatic electron ray diffraction image measuring apparatus
JPH0513258B2 (en) * 1983-12-29 1993-02-22 Kawasaki Seitetsu Kk

Also Published As

Publication number Publication date
JPH0571903B2 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
US4091374A (en) Method for pictorially displaying output information generated by an object imaging apparatus
DE2335304A1 (en) SCANNING ELECTRON MICROSCOPE
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
JPH0122705B2 (en)
US3504176A (en) Method and apparatus for focusing the objective lens of a particle beam microscope
US3597609A (en) Method of image focusing in particle-beam apparatus comprising changing the beam incidence angle at 10 to 15 hertz
JPH0235419B2 (en)
US3801784A (en) Scanning electron microscope operating in area scan and angle scan modes
JPS5871444A (en) Diffracting apparatus for electron radiation
US4549067A (en) Method for checking printing form surfaces engraved by means of an electron beam
US3842272A (en) Scanning charged particle microprobe with external spurious electric field effect correction
JP2002015691A (en) Scanning electron microscope
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPS63150842A (en) Scanning electron microscope
JPH0343650Y2 (en)
JP2005252022A (en) Charged particle beam apparatus
JPH0425803Y2 (en)
JPH077647B2 (en) electronic microscope
JPS6332220B2 (en)
SU744672A1 (en) Device for displaying information on crt screen
JPS606996Y2 (en) electronic microscope
JPS614146A (en) Electron beam device
JPS62223961A (en) Scanning type reflecting electron diffraction microscope device
JPH0266839A (en) Charged particle beam generator
JPS60131748A (en) Scanning image display device