JPS5870878A - Recovery of valuable component from acidic liquid for treating titanium - Google Patents
Recovery of valuable component from acidic liquid for treating titaniumInfo
- Publication number
- JPS5870878A JPS5870878A JP16728781A JP16728781A JPS5870878A JP S5870878 A JPS5870878 A JP S5870878A JP 16728781 A JP16728781 A JP 16728781A JP 16728781 A JP16728781 A JP 16728781A JP S5870878 A JPS5870878 A JP S5870878A
- Authority
- JP
- Japan
- Prior art keywords
- hydrochloric acid
- titanium
- ions
- exchange resin
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
この出願の発明は、チタンの酸jI&通液よ〕有価成分
を回収する方法に関し、特に1チタンの塩酸エツチング
又は酸洗廃液を酸化処理、吸着処理及び溶媒抽出処理し
て、廃液中の塩酸及びチタンを高純度で回収する方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The invention of this application relates to a method for recovering valuable components from titanium acid and liquid passage, and in particular, oxidation treatment, adsorption treatment, and solvent extraction treatment of titanium hydrochloric acid etching or pickling waste liquid. The present invention relates to a method for recovering hydrochloric acid and titanium in waste liquid with high purity.
チタンを基材とする触媒被覆金属電解用電極の製造等に
おいて、チタン基材を塩酸等によシエッチング処理又は
酸洗処理することが通常行われ、その除虫じる酸処理液
中に多量に含まれる塩酸及びチタンを回収することが分
書防止及び省資源上望ましい。In the production of catalyst-coated electrodes for metal electrolysis using titanium as a base material, the titanium base material is usually etched or pickled with hydrochloric acid, etc., and a large amount of It is desirable to recover the hydrochloric acid and titanium contained in the liquid to prevent separation of documents and save resources.
しかし、該酸処理液中には、鉄、亜鉛等が不細物金属イ
オンとして少量溶存し、このような酸処理液から、従来
知られている方法で塩酸と共に純度の高いチタンを効率
良く、分離回収することは困難であった。即ち、酸処理
廃液を減圧下、低温で蒸留濃縮する蒸発濃縮法や、該液
を噴霧状にして熱分解炉中高温で分解する熱分解炉法が
、塩酸を回収する方法として知られているが、これらの
方法は、激しい腐食に耐える高価な装置材料が必要であ
シ、また蒸発や加熱に多量のエネルギーを要する上、塩
酸を回収する方法であるため、同時にチタンを高純度に
回収することは容易にできない。また、溶媒抽出法と電
解法を組み合わせて廃液中の塩酸及び重金属を分離回収
する方法が特公昭56−5827号として知られている
が、工程が非常に複雑で、多数の装置、タンク類を要し
、しかも、微量の不純物金属イオンの分離には効率が低
いため、この方法をチタンの酸処理液に適用することは
多くの問題がある。However, a small amount of iron, zinc, etc. are dissolved in the acid treatment solution as impurity metal ions, and from such an acid treatment solution, highly pure titanium can be efficiently extracted with hydrochloric acid by a conventionally known method. It was difficult to separate and recover. Specifically, known methods for recovering hydrochloric acid include an evaporative concentration method in which the acid-treated waste liquid is distilled and concentrated under reduced pressure at a low temperature, and a pyrolysis furnace method in which the liquid is made into a spray and decomposed at a high temperature in a pyrolysis furnace. However, these methods require expensive equipment materials that can withstand severe corrosion, require a large amount of energy for evaporation and heating, and are methods for recovering hydrochloric acid, so it is difficult to recover high-purity titanium at the same time. That cannot be done easily. In addition, a method for separating and recovering hydrochloric acid and heavy metals in waste liquid by combining solvent extraction and electrolysis is known as Japanese Patent Publication No. 56-5827, but the process is extremely complicated and requires a large number of equipment and tanks. Moreover, since the efficiency in separating trace amounts of impurity metal ions is low, there are many problems in applying this method to acid treatment solutions for titanium.
本発明は、上記の問題を解決するためKなされ九本ので
、チタンの塩酸処理液よシ塩酸及びチタンを高純度で効
率曳く回収する方法を提供することを目的とする。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for efficiently recovering hydrochloric acid and titanium with high purity from a hydrochloric acid treatment solution of titanium.
本発明は、チタンの塩酸処理液を酸化処理してTiI+
イオンをTi4+イオンに1及び不純物として含まれる
F@8+イオンをF、l+イオンに転化し、該酸化処理
液をアニオン交換樹脂と接触させて不純物金属イオンを
吸着除去し、次いで該吸着除去液を溶媒抽出法によシ処
理して塩酸とチタンを分離回収することを特徴とするチ
タンの酸処理液よシ有価成分を回収する方法である。The present invention provides TiI+ by oxidizing a titanium hydrochloric acid treatment solution.
ions are converted into Ti4+ ions and F@8+ ions contained as impurities are converted into F, L+ ions, the oxidation treatment solution is brought into contact with an anion exchange resin to adsorb and remove impurity metal ions, and then the adsorption removal solution is This is a method for recovering valuable components from an acid-treated titanium solution, which is characterized by separating and recovering hydrochloric acid and titanium by treatment using a solvent extraction method.
本発明は、酸処理液中に含まれるFe、zn等の微量不
純物金属イオンを酸化処理し、アニオン交換樹脂を用い
て吸着除去した後、主成分である塩酸及びチタンを溶媒
抽出法によシ分類回収するもので、かくすることにより
、前記した本発明の目的が十分達成され、小型の装置で
、極めて純度の高いチタン及び塩酸を効率曳く容易に分
離回収できる効果が得られる。The present invention oxidizes trace impurity metal ions such as Fe and Zn contained in the acid treatment solution, removes them by adsorption using an anion exchange resin, and then extracts the main components, hydrochloric acid and titanium, by a solvent extraction method. By doing so, the above-mentioned object of the present invention can be fully achieved, and it is possible to efficiently and easily separate and recover extremely pure titanium and hydrochloric acid using a small-sized device.
溶媒抽出法による廃塩酸の回収法は、通常第一工程で不
純物金属イオンを抽出除去し、第二工程で主成分金属イ
オンを抽出し、同時に塩酸を回収する有力な方法である
。しかし、溶媒抽出法は大量に存在する成分の分離には
極めて有効であるが、数百〜数十ppm程度の微量成分
の抽出除去においては、効率が悪く、完全に除去するに
は多くの段数を要し、膨大な装置となって、実際上不可
能である。そこで本発明は、誼微量不純物成分をアニオ
ン交換樹脂を用いて吸着除去し、更に溶媒抽出を行えば
、主成分チタンを効率良く、シかも高純度で塩酸と共に
回収し得ることに着目し、検討した結果、チタンの・塩
酸処理液においては、処理液中に含まれるF−十及びT
i4+はアニオン交換樹脂に吸着されにくく、一方Z
nm十等と共KSF@”+は容易に吸着除去できる事実
に基き、骸酸処理液を先ず酸化処理し、溶存するFe叫
及びTis+をFe1+及びTi4+i転化すれば、ア
ニオン交換樹脂と接触させて、F・+Zn 等の不純
物のみ効率良く吸着除去することができ、その後主成分
であるT14+が残存する皺塩酸処理液を溶媒抽出する
ことにより、高純度のチタンと塩酸を小規模の装置で効
率良く容易に分離回収し得ることを見い出し九。The solvent extraction method for recovering waste hydrochloric acid is an effective method in which impurity metal ions are usually extracted and removed in the first step, main component metal ions are extracted in the second step, and hydrochloric acid is recovered at the same time. However, although the solvent extraction method is extremely effective for separating components that exist in large amounts, it is inefficient in extracting and removing trace components of several hundred to several tens of ppm, and requires a large number of stages to completely remove them. This would require a huge amount of equipment, making it practically impossible. Therefore, the present invention focuses on the fact that by adsorbing and removing trace impurity components using an anion exchange resin and further performing solvent extraction, the main component titanium can be efficiently recovered with high purity along with hydrochloric acid. As a result, in the hydrochloric acid treatment solution for titanium, F-1 and T contained in the treatment solution
i4+ is difficult to adsorb to anion exchange resin, while Z
Based on the fact that KSF@"+ as well as nm 10 etc. can be easily adsorbed and removed, the acid treatment solution is first oxidized to convert dissolved Fe and Tis+ to Fe1+ and Ti4+i, and then brought into contact with an anion exchange resin. By efficiently adsorbing and removing only impurities such as , F and +Zn, and then solvent extracting the hydrochloric acid treatment solution in which the main component T14+ remains, high-purity titanium and hydrochloric acid can be efficiently extracted using a small-scale device. It was found that it can be easily separated and recovered.
更に詳述すれば、一般にイオン交換樹脂によるイオンの
吸着除去は樹脂力2ムに充填して使用し九場合、段数が
無限に近い状態となシ、微量成分でもはソ完全に吸着除
去できる。塩酸液中では多くの金属が錯アニオンを形成
し、アニオン交換樹脂を用いるととkよ〉、錯アニオン
を形成する金属が次式で示すような交換戻応で効率曳く
除去される。To be more specific, in general, when an ion exchange resin is used to adsorb and remove ions, the resin is filled to a capacity of 2 mm, the number of stages is nearly infinite, and even trace components can be completely removed by adsorption. Many metals form complex anions in the hydrochloric acid solution, and when an anion exchange resin is used, the metals forming the complex anions are efficiently removed by the exchange reaction as shown in the following equation.
R−CL + HMCL1+14 R−MCtn+1+
HC1・・・(1)(R,はアニオン交換樹脂、Mはn
価の金属を示す)該錯アニオンを形成する金属は、F・
畠+、zn麿十の他、R”” * I ””* P f
” * P d”s Cd禦+e A g ” *pb
諺++ )(gl+、 B 1m+、W’+ すどが知
られ、従って、これらの金属は、不純物としてアニオン
交換樹脂によシ除去可能である。而かるにチタンの塩酸
処理液中に鉄分は多量のT1″+イオンが溶存するため
F@l+イオンとして溶存し、このままではアニオン交
換樹脂と接触させても吸着されないので、本発明におい
ては、前記したように、吸着可能なFe″+イオンの形
に予め酸化する必要がある。R-CL + HMCL1+14 R-MCtn+1+
HC1...(1) (R, is anion exchange resin, M is n
The metal forming the complex anion (representing a valent metal) is F.
In addition to Hatake +, zn Maroju, R”” * I ”” * P f
” *P d”s Cd+e A g ” *pb
It is known that the proverbs ++) (gl+, B 1m+, W'+) are known, and therefore these metals can be removed as impurities by anion exchange resin. Since a large amount of T1"+ ions are dissolved, they are dissolved as F@l+ ions, and as they are, they are not adsorbed even if they are brought into contact with an anion exchange resin. Therefore, in the present invention, as described above, the adsorbable Fe"+ ions Needs to be pre-oxidized into shape.
本発明において、該酸化処理は、公知の化学的又は電気
化学的種々の酸化法を適用できる。In the present invention, various known chemical or electrochemical oxidation methods can be applied to the oxidation treatment.
例えば酸化剤の注入、酸化性気体の吹込、電解酸化等が
あシ、処理液を汚染せず、かつ酸化を定量的に行うため
、過酸化水素、オゾン、空気、酸素ガス、塩素ガスによ
る酸化法又は電解酸化法及びそれらの組み合わせが好適
である。電解酸化は、該処理液を公知の隔膜電解槽゛O
陽極室に導いて通電することによシ容易に行うことがで
きる。For example, injection of oxidizing agent, blowing of oxidizing gas, electrolytic oxidation, etc. are not possible, but in order to perform oxidation quantitatively without contaminating the processing solution, oxidation using hydrogen peroxide, ozone, air, oxygen gas, chlorine gas, etc. or electrolytic oxidation methods and combinations thereof are preferred. In electrolytic oxidation, the treatment solution is placed in a known diaphragm electrolytic cell
This can be easily done by introducing electricity into the anode chamber.
該酸化処理によシ、主成分である滴存T1′+イオンも
同時KTi イオンに転化されるが、T14+イオン
は前記した塩酸溶液中で錯アニオンを形成しやすい金属
ではない丸め、次工程のアニオン交換樹脂によって吸着
されずに残留し、次の溶媒抽出工1で分離されるので不
都合はない。Through this oxidation treatment, the T1'+ ions, which are the main component, are also converted into KTi ions, but the T14+ ions are not metals that tend to form complex anions in the hydrochloric acid solution, and are used in the next step. Since it remains without being adsorbed by the anion exchange resin and is separated in the next solvent extraction step 1, there is no problem.
アニオン交換樹脂による吸着は、アニオンを交換可能な
、三次元に重縮合した高分子基体に1交換基として4級
アンモニウム基または1〜5級アミンを結合させた種々
市販の如きアニオン交換樹脂をカラ五に充填して行う分
動O手段を適用して行うことができる。誼吸着処理にお
いて塩酸濃度が2N以下てはF@1+イオンの除去効率
が低く、マた8N以上ではT14+イオンの吸着が一部
起るので、本発明の該吸着工1時の塩酸濃度は2N〜8
Nの範囲であることが好ましい。また、吸着後のアニオ
ン交換樹脂は、水または希塩酸によシ、次式に示すよう
に容易に脱着でき、繰プ返えし再生使用可能である。Adsorption by anion exchange resins is performed using various commercially available anion exchange resins in which a quaternary ammonium group or a primary to 5th class amine is bonded as one exchange group to a three-dimensionally polycondensed polymer base capable of exchanging anions. This can be done by applying a dividing O means that is performed by filling the container with water. In the adsorption treatment, if the hydrochloric acid concentration is less than 2N, the removal efficiency of F@1+ ions is low, and if it is more than 8N, some T14+ ions will be adsorbed, so the hydrochloric acid concentration in the adsorption process 1 of the present invention is 2N ~8
The range is preferably N. Further, the anion exchange resin after adsorption can be easily desorbed with water or dilute hydrochloric acid as shown in the following formula, and can be repeatedly reused.
RM(’tn+t+HmO→RCL+MCLn+Hm(
)・・(2)不純物金属が除去された骸塩酸処理液を、
次いで溶媒抽出法によ〕処理して、塩酸とチタンを分散
回収する。溶媒抽出処理は、従来から知られている方法
を適用することができ、本発明においては、塩酸液中の
T1′+イオンを抽出可能なジー2−エチルへキシルリ
ン酸(DEHP) 等のリン酸エステル、或は、酸化ト
リオクチルフォスフイン(TOPO)等が溶媒として好
適に使用される。#溶媒と処理液とは攪拌等によシ十分
接触・混合した後装置され、チタンイオンが移行抽出さ
れた溶媒層を塩酸液層とに分電される。溶媒に抽出され
九チタンは、用途により、水酸化物、錯体等の形で剥離
可能である。剥離剤としては、水酸化物の場合、(NH
+)諺COs −錯体の場合、N H4HF m等が好
適であシ、剥離後の溶媒は循環再使用することができる
。RM('tn+t+HmO→RCL+MCLn+Hm(
)...(2) The hydrochloric acid treatment solution from which impurity metals have been removed,
Then, the solution is treated with a solvent extraction method to disperse and recover hydrochloric acid and titanium. Conventionally known methods can be applied to the solvent extraction treatment, and in the present invention, phosphoric acid such as di-2-ethylhexyl phosphoric acid (DEHP) that can extract T1'+ ions in hydrochloric acid solution is used. Ester, trioctylphosphine oxide (TOPO), or the like is preferably used as the solvent. #The solvent and the treatment liquid are brought into sufficient contact and mixed by stirring, etc., and then placed in an apparatus, and the solvent layer in which titanium ions have been transferred and extracted is divided into a hydrochloric acid liquid layer. Nine titanium extracted with a solvent can be exfoliated in the form of hydroxide, complex, etc. depending on the use. As a release agent, in the case of hydroxide, (NH
+) In the case of a COs complex, N H4HF m etc. are suitable, and the solvent after stripping can be recycled and reused.
以下、本発明の実施例を添付フローシートを参照して述
べるが、本発明はこれに限定されるものではない。Examples of the present invention will be described below with reference to the attached flow sheets, but the present invention is not limited thereto.
実施例
チタンの塩酸によるエッチングエ、111で生成した下
記組成の処理液8−を酸化工程2の隔膜式電解槽の陽極
室に導き、Tl″+イオンをT1′+イオンに、Fe!
+イオンをF@1+イオンに酸化した。Example Etching of titanium with hydrochloric acid The treatment solution 8- with the following composition produced in step 111 is introduced into the anode chamber of the diaphragm electrolytic cell of oxidation step 2, and Tl″+ ions are converted to T1′+ ions, Fe!
+ ions were oxidized to F@1+ ions.
電解槽はゴム2イニング鉄製で、陰極にはTl板、陽極
には貴金属酸化物被覆チタンを使用した。また、陰極室
と陽極室は陽イオン交換膜(商品名すフイオン315)
で仕切シ、陰極室には5%HC1を循環させ、50℃、
電流値5 KA 。The electrolytic cell was made of rubber-coated iron, a Tl plate was used for the cathode, and titanium coated with a noble metal oxide was used for the anode. In addition, the cathode chamber and anode chamber are equipped with a cation exchange membrane (product name: Fuion 315).
5% HC1 was circulated in the cathode chamber at 50°C.
Current value 5 KA.
電流密度IKA/vm”を檜電圧五2vで約13時間電
解し、十分酸化処理を行った・
なお、誼酸化は、酸化剤8の注入又は吹込によっても同
様の効果を達成できる。Electrolysis was carried out for about 13 hours at a current density IKA/vm'' at a voltage of 52 V to perform sufficient oxidation treatment.The same effect can also be achieved by injecting or blowing the oxidizing agent 8.
該酸化処理液と強塩基性アニオン交換樹脂(商品名ダイ
ヤイオン5A1OA)を充填し走力2ムよシなる吸着工
1i3に5v1oで通液したところ、下記組成の排出液
が得られた。When the oxidation treatment liquid and a strongly basic anion exchange resin (trade name: Diaion 5A1OA) were filled and passed through an adsorption tube 1i3 with a running force of 2 more than 5V1O, a discharged liquid having the following composition was obtained.
次いで該排出液を溶媒抽出工@4において、20XDE
HP (ケロシン希釈)で2段向流抽出し、TI&+を
0.2g/を含む回収塩酸7が得られ、チタンのエツチ
ング用塩酸11として再使用した。The effluent was then extracted with 20XDE in a solvent extraction step @4.
A two-stage countercurrent extraction with HP (kerosene dilution) was performed to obtain recovered hydrochloric acid 7 containing 0.2 g of TI&+, which was reused as hydrochloric acid 11 for etching titanium.
一方、TI’+を抽出した溶媒12は剥離工115でP
H&5に調節した2 00 g/ANHaC!水溶液で
洗浄後、剥離剤14としてPH10の(NH番)scO
s水溶液を加えてTl’+を剥離し、生成沈澱なr過分
離して高純度の水酸化チタン6が得られた。On the other hand, the solvent 12 from which TI'+ was extracted is removed by a stripping process 115.
200 g/ANHaC adjusted to H&5! After cleaning with an aqueous solution, scO of PH10 (NH number) as a remover 14
An aqueous solution was added to remove Tl'+, and the resulting precipitate was overseparated to obtain highly pure titanium hydroxide 6.
分離した溶媒13及びr液15は循環再使用された。The separated solvent 13 and r-liquid 15 were recycled and reused.
比較例
実施例で使用したと同じ塩酸処理液を実施例と同じ条件
で電解酸化し死後、アニオン交換樹脂による吸着処理を
せずに10%トリオクチルア建ン(Toム、ケロシン希
釈)で2段抽出し、下記組成の回収塩酸を得た。Comparative Example The same hydrochloric acid treatment solution used in the example was electrolytically oxidized under the same conditions as in the example, and after death, two-stage extraction was performed with 10% trioctylamine (Tom, diluted with kerosene) without adsorption treatment with an anion exchange resin. Then, recovered hydrochloric acid having the following composition was obtained.
更に1実施例と同様KDE)IPKよシ溶媒抽出し、剥
離して得られた水酸化チタンには鉄が200ppmii
まれていた。Furthermore, as in Example 1, the titanium hydroxide obtained by solvent extraction with KDE) IPK and peeling contained 200 ppm of iron.
It was rare.
図面は本発明の詳細な説明するフローシートである。 1 ; チタンの塩酸エツチング工程 2 : 酸化工程 3 : 吸着工程 4 : 溶媒抽出工程 5 : 剥離工稿 The drawing is a detailed illustrative flow sheet of the invention. 1; Titanium hydrochloric acid etching process 2: Oxidation process 3: Adsorption process 4: Solvent extraction step 5: Peeling construction
Claims (6)
イオンをTI’イオンに、及び不純物として含まれるF
@愈+イオンをF@$+イオンに転化し、該酸化処理液
をアニオン交換樹脂と接触させて不純物金属イオンを吸
着除去し、次いで該吸着除去液を溶媒抽出法によJJJ
6通して塩酸とチタンを分離回収することを特徴とする
チタンの駿麩理液よ)有価成分の回収方法。(1) Oxidation treatment of titanium hydrochloric acid treatment solution to T1m+
ions to TI' ions and F contained as an impurity.
@Y+ ions are converted to F@$+ ions, the oxidized solution is brought into contact with an anion exchange resin to adsorb and remove impurity metal ions, and then the adsorbed and removed solution is subjected to JJJ using a solvent extraction method.
6. A method for recovering valuable components of titanium (Shunmaru liquid), which is characterized by separating and recovering hydrochloric acid and titanium.
囲第(1)項の方法。(2) The method according to claim (1), wherein the oxidation treatment is performed by electrolytic oxidation.
範囲第(1)項の方法。(3) The method according to claim (1), wherein the oxidation treatment is performed using hydrogen peroxide.
シ行う特許請求の範囲第(1)項の方法。(4) The method according to claim (1), wherein the oxidation treatment is performed using air, oxygen gas, or chlorine gas.
2N〜8Nとする特許請求の範囲第(1)項の方法。(5) The method according to claim (1), wherein the degree of hydrochloric acid during adsorption by an anion exchange resin is 2N to 8N.
ルへキシルリン酸、又は酸化トリオクチルフォスフイン
を用いる特許請求の範囲第(1)の方法。 (η チタンを高純度水酸化チタンとして分離回収する
特許請求の範囲第(1)項の方法。(6) The method according to claim 1, in which di-2-ethylhexyl phosphoric acid or trioctylphosphine oxide is used as a solvent in the solvent extraction. (η The method according to claim (1) for separating and recovering titanium as high-purity titanium hydroxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16728781A JPS5870878A (en) | 1981-10-21 | 1981-10-21 | Recovery of valuable component from acidic liquid for treating titanium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16728781A JPS5870878A (en) | 1981-10-21 | 1981-10-21 | Recovery of valuable component from acidic liquid for treating titanium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5870878A true JPS5870878A (en) | 1983-04-27 |
JPH0141394B2 JPH0141394B2 (en) | 1989-09-05 |
Family
ID=15846951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16728781A Granted JPS5870878A (en) | 1981-10-21 | 1981-10-21 | Recovery of valuable component from acidic liquid for treating titanium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5870878A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63261197A (en) * | 1987-04-02 | 1988-10-27 | シーメンス、アクチエンゲゼルシャフト | Capacity changing method of ion exchanger to specified chemical component |
RU2755300C1 (en) * | 2020-10-21 | 2021-09-15 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Method for extracting highly dispersed titanium (iv) hydroxide from aqueous solutions |
-
1981
- 1981-10-21 JP JP16728781A patent/JPS5870878A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63261197A (en) * | 1987-04-02 | 1988-10-27 | シーメンス、アクチエンゲゼルシャフト | Capacity changing method of ion exchanger to specified chemical component |
RU2755300C1 (en) * | 2020-10-21 | 2021-09-15 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Method for extracting highly dispersed titanium (iv) hydroxide from aqueous solutions |
Also Published As
Publication number | Publication date |
---|---|
JPH0141394B2 (en) | 1989-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104641018B (en) | Method and apparatus for being produced from metal salt solution or reclaiming hydrochloric acid | |
CN113896211B (en) | Treatment method for funding waste lithium iron phosphate battery | |
CN111394745A (en) | Method for preparing lithium hydroxide from lithium-containing low-magnesium brine | |
JP2021172537A (en) | Method for producing lithium hydroxide | |
JP3383334B2 (en) | How to recycle sulfuric acid | |
CN112299451A (en) | Method for preparing lithium hydroxide from lithium-containing low-magnesium brine in lithium phosphate form | |
DE2939911A1 (en) | METHOD FOR OBTAINING GALLIUM | |
WO2021215486A1 (en) | Method for producing lithium hydroxide | |
CN101554994B (en) | Method for recovering iodine in production waste liquid of X-CT series contrast media | |
JP2023073299A (en) | Method for producing lithium hydroxide | |
US5051187A (en) | Process for recovering sulfuric acid | |
KR20170019246A (en) | A recovery method for valuable metal from the LED wastes or electronic wastes | |
EP0301700A1 (en) | Neutralization of sulfuric acid containing iron ions | |
JPS5870878A (en) | Recovery of valuable component from acidic liquid for treating titanium | |
CN118145611A (en) | Method for recycling lithium iron phosphate lithium extraction slag | |
CN104030510A (en) | Method for recycling acid and heavy metal in gold smelting acid wastewater | |
JP4292454B2 (en) | Method for treating aqueous solution containing metal fluoride | |
FI65813C (en) | HYDROMETALLURGICAL METHOD FOR BEHANDLING AV NICKELSKAERSTEN | |
CN111573641A (en) | Method for co-producing nitric acid and silver from electrode foil waste liquid | |
JP2002088494A (en) | Method for recovering platinum group metal from metallic electrode | |
EP0192426A2 (en) | Removal of sodium ions from alkaline aqueous solutions by means of an electrolytic membrane process | |
JP2002212650A (en) | Method for recovering platinum group metals from metallic electrode | |
JPH0141395B2 (en) | ||
JPS61111917A (en) | Recovery of gallium | |
JPH02124721A (en) | Production of chromium chloride |