JPS5867831A - Method for heating steel strip in direct firing type heating furnace - Google Patents
Method for heating steel strip in direct firing type heating furnaceInfo
- Publication number
- JPS5867831A JPS5867831A JP16772981A JP16772981A JPS5867831A JP S5867831 A JPS5867831 A JP S5867831A JP 16772981 A JP16772981 A JP 16772981A JP 16772981 A JP16772981 A JP 16772981A JP S5867831 A JPS5867831 A JP S5867831A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel gas
- steel strip
- branch pipe
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Control Of Heat Treatment Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、例えば連続溶融亜鉛メツキラインの酸化炉
などに広く適用されている直火式加熱炉における鋼帯の
加熱方法に係り、更に詳しくは銅帯の焼上り状態にばら
つき(以下、焼むらと云う)が出るのを可及的に防止す
る加熱方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heating a steel strip in a direct-fired heating furnace, which is widely applied, for example, to an oxidation furnace in a continuous hot-dip galvanizing line, and more specifically to a method for heating a steel strip in a fired state of a copper strip. The present invention relates to a heating method that prevents variations (hereinafter referred to as uneven baking) as much as possible.
上記メツキラインの酸化炉では従来においても、鋼帯の
加熱に当り、現場作業者が銅帯の焼土シ状態を見ながら
バーナへの燃料供給量をバーナコックの操作で適当に制
御するという、完全手動の加熱制御は実施されている。In the oxidation furnace of the Metsuki line mentioned above, when heating the steel strip, the on-site worker controls the amount of fuel supplied to the burner appropriately by operating the burner cock while observing the burnt condition of the copper strip. heating control is in place.
しかるにかかる方法では、酸化炉に備わる多数のバーナ
を迅速かつ正確に制御するのは困難を極め常に調整が遅
れがちとなシ、また作業者の個人差による操作のばらつ
きが避けられないこととも相俟って、適確な制御ば期待
できず、焼むらが出る。焼むらは、銅帯の巾縮みや亜鉛
メッキ層の剥離につながるから、可及的に避けなければ
ならない。のみならずこの方法では、バーナへの燃料供
給量を変えるのみで空気供給量の変更は行わないから、
空燃比を最適に維持するのは不可能で、熱効率の点でも
問題がある。However, with such a method, it is extremely difficult to quickly and accurately control the large number of burners provided in the oxidation furnace, and adjustments tend to be delayed, and variations in operation due to individual differences among workers are unavoidable. However, if the control is accurate, it cannot be expected, and uneven baking will occur. Uneven firing leads to shrinkage of the copper strip and peeling of the galvanized layer, so it must be avoided as much as possible. In addition, this method only changes the amount of fuel supplied to the burner, not the amount of air supplied.
It is impossible to maintain an optimal air-fuel ratio, and there are also problems in terms of thermal efficiency.
最適空燃比を維持するだめに燃料量に応じて空気供給量
を調節するとなると、操作はいよいよ繁雑を極め、この
ため空気供給量まで調節するのは事実上不可能であった
・
上記に鑑み本発明は、銅帯の焼上り状態に応じ迅速かつ
適確にバーナの燃焼を調節して焼むらを可及的に解消し
得、しかもバーナの空燃比を常に最適に維持できる直火
式加熱炉における銅帯の加熱方法の提供を目的とするも
のである。Adjusting the air supply amount according to the fuel amount in order to maintain the optimum air-fuel ratio would require extremely complicated operations, making it virtually impossible to adjust the air supply amount. The invention is a direct-fired heating furnace that can quickly and accurately adjust the burner combustion according to the firing state of the copper strip to eliminate uneven firing as much as possible, and that can always maintain the optimal air-fuel ratio of the burner. The object of the present invention is to provide a method for heating a copper strip.
本発明は天井に複数のバーナを有する直火式加熱炉内を
通過させて鋼帯を連続的に加熱するに際し、前記バーナ
を前段バーナ群と後段バーナ群に分けると共に後段のバ
ーナ、群を更に銅帯進行方向と直角の方向に並列する複
数のブロックに区分けし、前記前段ブロックと後段の複
数のブロックの各々毎に空気元管及び燃料ガス元管より
分岐管を配役して各バーナに接続し、燃料ガス元管から
の分岐管または空気元管からの分岐管に差圧調節弁機構
を設け、該差圧調節弁機構と前記空気分岐管に設けた空
気圧調節弁または燃料ガス分岐管に設けた燃料ガス圧調
節弁の下流とを管で接続して空気圧力または燃料ガス圧
力に応じて燃料ガス圧力または空気圧力を自動的に変動
させ常時最適空燃比となるようにし、加熱炉通過直後の
銅帯の温度を前記後段の各ブロックに対応する部位毎に
検出し、該検出値に基いて前記各空気分岐管の空気圧調
節弁または燃料ガス分岐管の燃料ガス圧調節弁により空
気圧力または燃料ガス圧力を制御し、各後段ブロック毎
の銅帯温度を目標温度にすることを特徴とする直火式加
熱炉における銅帯の加熱方法を要旨とする。すなわち本
発明の方法は、前・後段の全バーナを空燃比を最適に維
持しつつ銅帯を目標温度に昇温し、加熱炉通過直後の銅
帯の巾方向の温度分布を検出し、この検出値に応じて、
後段の並列する複数のブロック毎にバーナへの空気圧力
または燃料ガス圧力を微調整して前記最適空燃比のまま
鋼帯の焼上り状態を管理するもので、迅速かつ適確な加
熱制御が可能であり、焼むらの効果的な解消が達成でき
、しかも全てのバーナについて常に最適空燃比が確保さ
れるから、燃料の節約にも大きな効果があるという特徴
を有している0
以下、本発明について図面を参照して更に詳しく説明す
る。In the present invention, when a steel strip is continuously heated by passing through a direct-fired heating furnace having a plurality of burners on the ceiling, the burners are divided into a front-stage burner group and a rear-stage burner group, and the latter burner group is further heated. It is divided into a plurality of blocks that are arranged in parallel in a direction perpendicular to the direction in which the copper strip travels, and a branch pipe is arranged from the air main pipe and the fuel gas main pipe for each of the former stage block and the latter stage blocks, and connected to each burner. A differential pressure regulating valve mechanism is provided in a branch pipe from the fuel gas main pipe or a branch pipe from the air main pipe, and the differential pressure regulating valve mechanism and the air pressure regulating valve provided in the air branch pipe or the fuel gas branch pipe are connected to the differential pressure regulating valve mechanism. The fuel gas pressure or air pressure is automatically changed according to the air pressure or fuel gas pressure by connecting the downstream side of the provided fuel gas pressure control valve with a pipe so that the optimum air-fuel ratio is always maintained immediately after passing through the heating furnace. The temperature of the copper strip is detected for each part corresponding to each block in the latter stage, and based on the detected value, the air pressure or The gist of this paper is a method for heating a copper strip in a direct-fired heating furnace, which is characterized by controlling the fuel gas pressure and bringing the temperature of the copper strip in each subsequent block to a target temperature. In other words, the method of the present invention raises the temperature of the copper strip to a target temperature while maintaining the air-fuel ratio of all burners in the front and rear stages to an optimum level, detects the temperature distribution in the width direction of the copper strip immediately after passing through the heating furnace, and measures the temperature distribution of the copper strip in the width direction. Depending on the detected value,
The air pressure or fuel gas pressure to the burner is finely adjusted for each of the multiple parallel blocks in the latter stage to manage the firing state of the steel strip while maintaining the optimum air-fuel ratio, enabling quick and accurate heating control. As a result, it is possible to effectively eliminate uneven firing, and the optimum air-fuel ratio is always ensured for all burners, so it has the characteristics of being highly effective in saving fuel.0 The present invention is as follows: will be explained in more detail with reference to the drawings.
第1図は直火式加熱炉におけるバーナ設置状態を示す模
式図で、(イ)は平面図、(ロ)は縦断正面図をそれぞ
れ示す。この種加熱炉では一般に、バーナは符号(la
)の如く炉の天井(2)に高密度で備わシ、あとは符号
(1b)のように両側壁(3)(3)に若干数設置され
ている。FIG. 1 is a schematic diagram showing the state of burner installation in a direct-fired heating furnace, with (a) showing a plan view and (b) showing a longitudinal sectional front view. In this type of heating furnace, the burners generally have the sign (la
) are installed in high density on the ceiling (2) of the furnace, and a few are installed on both side walls (3) (3) as shown in (1b).
本発明方法の実施に当ってはまず、上記天井バーナ(1
)群を、例えば第2図に破線で示す如く複数ブロックに
区分けする。すなわち、天井バーナ群をまず前段(2)
と後段■に別ける。前段(2)が、天井バーナの全本数
のうち騒〜に程度を占めるように別けるのが好ましい。In carrying out the method of the present invention, first, the above-mentioned ceiling burner (1
) group is divided into a plurality of blocks, for example, as shown by broken lines in FIG. In other words, the ceiling burner group is first placed in the front stage (2).
Separate into the following part■. It is preferable to divide the first stage (2) so that it accounts for the largest number of ceiling burners among the total number of ceiling burners.
次に、上記後段■の会−す群を更に、ライン直角方向に
並列する複数のブロック(BI XB2 )・・・に区
分けする。この区分は数が図示例では3つになつそいる
が、これは特に限定されるものではない。しかしながら
、実際L1鋼帯巾にもよるが区分は数が2つでは制御効
果が今一つの感が否めず、他方これが4つをこえても装
置が複雑になるだけで効果上大差なく、3〜4つに区分
けするのが適当とかえる。なお、側壁バーナ(1b)に
ついては、これをまとめて一つのブロック(Qと考え、
後述のように制御に組入れるのがよい。Next, the meeting group in the second stage (2) is further divided into a plurality of blocks (BI XB2) arranged in parallel in the direction perpendicular to the line. Although the number of these divisions approaches three in the illustrated example, this is not particularly limited. However, depending on the actual L1 steel strip width, it is undeniable that the control effect is not good if there are only two divisions, while if there are more than four divisions, the device will only become more complicated, but there will be no significant difference in effectiveness; It seems appropriate to divide it into four categories. In addition, regarding the side wall burner (1b), it is considered as one block (Q,
It is best to incorporate it into the control as described below.
加熱炉のバーナをこのように区分ケシ、バーナへの燃料
・空気の各供給系を以下の如く構成する。The burners of the heating furnace are thus divided into sections, and the fuel and air supply systems to the burners are constructed as follows.
すなわち、第2図には本発明方法の実施に適した1記供
給系が示されているが、同図において、まず空気は、そ
の供給源(図示していないが、コンプレッサー)から元
管(6)に送られ、そこから前記各ブロック(A) (
BIXB2XB3XQに通じる分岐管(71X72)・
・・へ分かれて、ブロック単位で同じ分岐管(7)から
一つ一つのバーナへ分岐、供給されるようをこなってい
る。前記元管(6)には空気元圧調節弁(8)が設けら
れているとともに、そこから分岐した各分岐管(71X
7り・・・にはブロック別空気圧調節弁(91X92)
・・・が設置しである。一方、燃料供給系についても、
コークス炉(図示せず)九らの燃料ガスが、元管OQに
送り込まれ、そこから前記同様各ブロックに対応して設
けた分岐管(111)(112)・・・に分流し、各ブ
ロック毎に同じ分岐管0])から各バーナへ至るよう(
こなっている。前記元管(10には元圧調節弁(6)が
設けられ、上記各分岐管(IIIXIIり・・・にはブ
ロック別差圧調節弁(13x X132 )・・・が取
付けられており、この調節弁03は、各対応する前記空
気圧調節弁(91)(92)・・・による空気圧変更を
反映して燃料ガス圧を予め設定された空燃比となるよう
に自動調整する、いわゆるレシオレギュレータが使用さ
れている。That is, FIG. 2 shows the supply system described in item 1 suitable for carrying out the method of the present invention. 6) and from there each of the blocks (A) (
Branch pipe (71X72) leading to BIXB2XB3XQ
..., and each block is branched and supplied to each burner from the same branch pipe (7). The main pipe (6) is provided with an air main pressure regulating valve (8), and each branch pipe (71X) branched from there.
7. Air pressure control valve for each block (91X92)
...is installed. On the other hand, regarding the fuel supply system,
The fuel gas from nine coke ovens (not shown) is sent to the main pipe OQ, and from there it is divided into branch pipes (111), (112), etc. provided corresponding to each block as described above, and is distributed to each block. from the same branch pipe 0]) to each burner (
It's happening. The main pipe (10) is provided with a source pressure control valve (6), and each of the branch pipes (IIIXII...) is equipped with block-specific differential pressure control valves (13x132). The control valve 03 is a so-called ratio regulator that automatically adjusts the fuel gas pressure to a preset air-fuel ratio by reflecting the air pressure changes made by the corresponding air pressure control valves (91), (92), etc. It is used.
なお、かかる差圧調節弁機構は必ずしも空気圧側を調節
の基準とする必要はなく、逆に燃料ガス圧側から操作す
るよう設けてもよい。It should be noted that such a differential pressure regulating valve mechanism does not necessarily have to be adjusted based on the air pressure side, but may be provided so as to be operated from the fuel gas pressure side.
さて、本発明に基く加熱方法を順を追って説明■ 加熱
炉から出た直後の銅帯温度(焼上り状態)を、前記後段
の各ブロック(& )(B2 )・・・に対応する部位
、例えば前記ブロックのそれぞれが加熱を担当する銅帯
面上のゾーンQAh )CW2)・・・の中央位置(P
l)(B2)・・・毎にて、温度計(4rX4s)・・
・により連続的に検出する。Now, the heating method based on the present invention will be explained step by step.■ The temperature of the copper strip (baked state) immediately after it comes out of the heating furnace is measured at the portion corresponding to each of the subsequent blocks (& ) (B2)... For example, the center position (P
l) (B2)... Thermometer (4rX4s)...
・Continuous detection.
■ この検出値に基いて、まず銅帯の平均的な加熱温度
を目標値に近づけるべく空気元圧調節弁(8)を調節す
る。すなわち、例えば上記検出した加熱温度の平均値を
出し、この値を実測値とみなし目標の銅帯加熱温度と比
較してその間の差をとり、この差の値の正、負に基いて
空気元圧調節弁(8)を流量が増す方向、同じく減少す
る方向の何れかに調節する。今、目標値から実測値を差
し引いた値が正となったとすれば、前記元圧調節弁(8
)を流量増加の方向に調節すればよい。この操作により
、全最適空燃比が維持されるように増加し、その結果全
ブロックのバーナの燃焼が強化されて、銅帯の加熱温度
が全体的に上昇する、つまり銅帯平均加熱温度が目標【
;近づくこととなる。(2) Based on this detected value, the air source pressure regulating valve (8) is first adjusted in order to bring the average heating temperature of the copper strip closer to the target value. That is, for example, calculate the average value of the heating temperatures detected above, consider this value as the actual measurement value, compare it with the target copper strip heating temperature, calculate the difference between them, and determine the air source based on the positive or negative value of this difference. The pressure regulating valve (8) is adjusted to either increase or decrease the flow rate. Now, if the value obtained by subtracting the actual measured value from the target value is positive, then the source pressure regulating valve (8
) may be adjusted in the direction of increasing the flow rate. This operation increases the overall optimum air-fuel ratio to maintain it, thereby intensifying the burner combustion of all blocks and increasing the heating temperature of the copper strip overall, i.e. the copper strip average heating temperature is the target. [
;It will get closer.
■ 上記の操作とともに、後段■のバーナ群についての
み更に、前記温度計(41X4り =・の検出値の各々
に基いて、各対応する後段のブロック(&XBa)・・
・に接続する分岐管のブロック別空気圧調節弁(9!〕
(9F)・・・を調節して、鋼帯の加熱温度を巾方向に
均一化する操作を行う。例をとって云えば、合成りに、
温度計(4)による実測値が目標値を下廻ったとすると
、この測定点に対応するブロック(Bりへの空気供給量
を制御する空気圧調節弁(φを流量増加の方向に調節す
る。これによってブロック(B10への空気圧力が増す
と空気圧調節弁の下流と差圧調節弁とを接続する管によ
り空気圧変動が差圧調節弁に伝わる。これに伴い差圧調
節弁03の働きで燃料供給量も最適空燃比のまま増加し
て、ブロック(B1)のバーナの燃焼が強まり、当該測
定部位における銅帯加熱温度が高められ、目標温度との
差が縮められ゛るのであ・る。後段の各ブロック毎に、
このような制御を行うことにより、銅帯の加熱温度は中
方向について均一化する傾向となる。■ In addition to the above operations, only for the burner group in the latter stage ■, based on each of the detected values of the thermometer (41
・Pneumatic pressure control valve for each block of branch pipe connected to (9!)
(9F) An operation is performed to make the heating temperature of the steel strip uniform in the width direction by adjusting... For example, in synthesis,
If the actual value measured by the thermometer (4) is lower than the target value, the air pressure control valve (φ) that controls the air supply amount to the block (B) corresponding to this measurement point is adjusted in the direction of increasing the flow rate. When the air pressure to the block (B10 increases), the air pressure fluctuation is transmitted to the differential pressure regulating valve by the pipe connecting the downstream of the air pressure regulating valve and the differential pressure regulating valve.As a result, the fuel supply amount is increased by the action of the differential pressure regulating valve 03. The air-fuel ratio also increases with the optimum air-fuel ratio, intensifying the combustion of the burner in block (B1), increasing the heating temperature of the copper strip at the measurement location, and reducing the difference from the target temperature. For each block,
By performing such control, the heating temperature of the copper strip tends to be uniform in the middle direction.
”上記■、■の操作を、操業中繰返し継続的に行うこと
により、焼むらが可及的に防止されて狙いどおりの焼土
シ状態を連続的に得ることができ、しかも燃料使用量も
最小限に抑えられる。``By repeating and continuously performing the operations in ■ and ■ above during operation, uneven burning can be prevented as much as possible, the desired baked soil condition can be continuously obtained, and fuel consumption can also be reduced. Minimized.
以とのような操作は、熱論、制卸装置を組み込んで完全
自動的に行うのが精度1最も好ましいが、温度計(4)
による実測値、その平均値を明確に表示する機能と各調
節弁を操作する機能を備えた装置(5)を併設しておき
、その表示する値を監視しながらオペレータが運転室か
ら遠隔操作するといっだ半自動的な方法をとっても、高
精度の加熱は十分期待できる。It is most preferable to perform the following operations completely automatically by incorporating a thermal control device, but it is most preferable to use a thermometer (4).
A device (5) is installed that has the function of clearly displaying the actual measured values and the average value, and the function of operating each control valve, and the operator remotely controls the control valve from the operator's cab while monitoring the displayed values. Even if a semi-automatic method is used, high precision heating can be expected.
本発明者らは、連続溶融亜鉛メツキラインの酸化炉にお
いて銅帯(、サイズ:Q、35mm厚×914喘巾)を
酸化炉出口で37o°cとなるようにライン速度90
m/’I−CI3.4 T/H)で連続加熱するに際し
、前掲の方法に基〈加熱制御を実施しだが、その結果、
以前において燃料原単位28ONm’/Hであったもの
が、同じ<24ONm″川に低減された。また、とくに
操業条件変更時等の酸化炉での焼むらによる鋼帯の巾縮
みや、曲鉛メッキ層の剥離などの発生も、本発明方法の
実施によりきわめて少なく止めることができることも、
本発明者らはすでに確認している。したがって本発明は
、直火式加熱炉における鋼帯加熱時の・燃料原単位の低
減並びに焼むらの防止に有効であり、とくに亜鉛メツキ
ラインの酸化炉制御に適用して亜鉛メッキ鋼板の品質向
上に著しい効を奏するものと云える。The present inventors installed a copper strip (size: Q, 35 mm thick x 914 mm width) in an oxidizing furnace of a continuous hot-dip galvanizing line at a line speed of 90°C so that the temperature was 37°C at the outlet of the oxidizing furnace.
m/'I-CI3.4 T/H), heating control was carried out based on the method described above, but as a result,
Previously, the fuel consumption rate was 28ONm'/H, but it has been reduced to the same <24ONm. It is also possible to minimize the occurrence of peeling of the plating layer by implementing the method of the present invention.
The inventors have already confirmed this. Therefore, the present invention is effective in reducing fuel consumption and preventing uneven heating during heating of steel strips in direct-fired heating furnaces, and is particularly applicable to oxidation furnace control in galvanizing lines to improve the quality of galvanized steel sheets. It can be said that it is extremely effective.
第1図は、直火式加熱炉のバーナ配置例を示すもので、
(イ)は平面図、(ロ)は縦断正面図である、第2図は
、本発明方法に基く加熱制御を説明するだめの説明図で
ある。
図中 1a、:天井バーナ、1b:側壁バ、−す、2:
天井、3:側壁、4:温度計、5:温度表示装置、6:
空気元管、7:ブロック別空気分岐管、8:空気元圧調
節弁、9ニブロック別空気圧調節弁、10:燃料ガス元
管、11ニブロック別燃料ガス分岐管、12:燃料ガス
元圧調節弁、13ニブロック別差圧調節弁。
第 1 図
(イ) (ロ)第2図
ζFigure 1 shows an example of burner arrangement for a direct-fired heating furnace.
(A) is a plan view, (B) is a longitudinal sectional front view, and FIG. 2 is an explanatory diagram for explaining heating control based on the method of the present invention. In the figure 1a: ceiling burner, 1b: side wall bar, -su, 2:
Ceiling, 3: Side wall, 4: Thermometer, 5: Temperature display device, 6:
Air main pipe, 7: Air branch pipe by block, 8: Air main pressure control valve, 9 Air pressure control valve by Niblock, 10: Fuel gas main pipe, 11 Fuel gas branch pipe by Niblock, 12: Fuel gas main pressure Control valve, differential pressure control valve for 13 nib blocks. Figure 1 (a) (b) Figure 2 ζ
Claims (1)
過させて鋼帯を連続的に加熱するに際し、前記バーナを
前段バーナ群と後段バーナ群に分けると共に後段のバー
ナ群を更に銅帯進行方向と直角の方向に並列する複数の
ブロックに区分けし、前記前段ブロックと後段の複数の
ブロックの各々毎に空気元管及び燃料ガス元管より分岐
管を配設して各バーナに接続し、燃料ガス元管からの分
岐管まだは空気元管からの分岐管に差圧調節弁機構を設
け、該差圧調節弁機構と前記空気分岐管に設けた空気圧
調節弁または燃料ガス分岐管に設けた燃料ガス圧調節弁
の下流とを管で接続して空気圧力または燃料ガス圧力に
応じて燃料ガス圧力または空気圧力を自動的に変動させ
常時最適空然比となるようにし、加熱炉通過直後の銅帯
の温度を前記後段の各ブロックに対応する部位毎に検出
し、該検出値に基いて前記各空気分岐管の空気圧調節弁
または燃料ガス分岐管の燃料ガス圧調節弁により空気圧
力または燃料ガス圧力を制御し、各後段ブロック毎の銅
帯温度を目標温度にすることを特徴とする直火式加熱炉
における銅帯の加熱方法。(1) When continuously heating a steel strip by passing it through a direct-fired heating furnace that has multiple burners on the ceiling, the burners are divided into a front-stage burner group and a rear-stage burner group, and the latter burner group is further heated using copper. It is divided into a plurality of blocks parallel to each other in a direction perpendicular to the direction of belt movement, and a branch pipe is provided from the air main pipe and the fuel gas main pipe for each of the front stage block and the rear stage blocks and connected to each burner. However, a differential pressure regulating valve mechanism is provided in the branch pipe from the fuel gas main pipe and the branch pipe from the air main pipe, and the differential pressure regulating valve mechanism and the air pressure regulating valve provided in the air branch pipe or the fuel gas branch pipe The fuel gas pressure or air pressure is automatically changed according to the air pressure or fuel gas pressure by connecting it to the downstream side of the fuel gas pressure control valve installed in the heating furnace, so that the optimum air-air ratio is always maintained. The temperature of the copper strip immediately after passing through is detected for each part corresponding to each block in the latter stage, and based on the detected value, the air pressure is adjusted by the air pressure control valve of each air branch pipe or the fuel gas pressure control valve of the fuel gas branch pipe. A method for heating a copper strip in a direct-fired heating furnace, characterized by controlling the pressure or fuel gas pressure and bringing the temperature of the copper strip in each subsequent block to a target temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16772981A JPS5867831A (en) | 1981-10-19 | 1981-10-19 | Method for heating steel strip in direct firing type heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16772981A JPS5867831A (en) | 1981-10-19 | 1981-10-19 | Method for heating steel strip in direct firing type heating furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5867831A true JPS5867831A (en) | 1983-04-22 |
Family
ID=15855068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16772981A Pending JPS5867831A (en) | 1981-10-19 | 1981-10-19 | Method for heating steel strip in direct firing type heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5867831A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3526846A1 (en) * | 1984-06-04 | 1986-02-06 | Sankyo Manufacturing Co., Ltd., Tokio/Tokyo | ROLLER FEEDING DEVICE |
EP0757307A2 (en) * | 1995-08-01 | 1997-02-05 | Flynn Controls B.V. | Arrangement for regulating the temperature in a furnace |
EP2090667A1 (en) * | 2008-01-25 | 2009-08-19 | Schwartz, Eva | Device and method for heating workpieces |
CN110184448A (en) * | 2019-06-11 | 2019-08-30 | 首钢京唐钢铁联合有限责任公司 | Method for adjusting air-fuel ratio of annealing furnace |
-
1981
- 1981-10-19 JP JP16772981A patent/JPS5867831A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3526846A1 (en) * | 1984-06-04 | 1986-02-06 | Sankyo Manufacturing Co., Ltd., Tokio/Tokyo | ROLLER FEEDING DEVICE |
EP0757307A2 (en) * | 1995-08-01 | 1997-02-05 | Flynn Controls B.V. | Arrangement for regulating the temperature in a furnace |
EP0757307A3 (en) * | 1995-08-01 | 1997-04-23 | Flynn Controls B V | Arrangement for regulating the temperature in a furnace |
EP2090667A1 (en) * | 2008-01-25 | 2009-08-19 | Schwartz, Eva | Device and method for heating workpieces |
CN110184448A (en) * | 2019-06-11 | 2019-08-30 | 首钢京唐钢铁联合有限责任公司 | Method for adjusting air-fuel ratio of annealing furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2668701A (en) | Heating control system | |
US4357135A (en) | Method and system for controlling multi-zone reheating furnaces | |
GB1420852A (en) | Method of regulating and stabilising the temperature of a fluid flowing from the outlet of a conditioning duct | |
JPS5867831A (en) | Method for heating steel strip in direct firing type heating furnace | |
JPS6127657B2 (en) | ||
US2691515A (en) | Forge furnace control | |
JPS6015870B2 (en) | How to control a heating furnace | |
JPH06281364A (en) | Temperature control method for heating furnace | |
JPS6365230A (en) | Burning control method for hot air furnace | |
JP3160374B2 (en) | Heating furnace temperature control method and apparatus | |
JPS6011018A (en) | Combustion control of side burner in direct firing type heating furnace | |
JPS629650B2 (en) | ||
JP3142460B2 (en) | Pressure control method for burner combustion air | |
JPS6280222A (en) | Combustion controlling apparatus in furnace with many burners | |
SU1121545A1 (en) | Method of controlling fuel supply to heating furnace | |
US2317927A (en) | Combustion control | |
CA1079678A (en) | Battery of coke ovens with regenerative heat exchange | |
JPH0978124A (en) | Method for simultaneously controlling pressure and component in compound heat treatment furnace | |
US20240027133A1 (en) | Furnace and method for operating a furnace | |
RU1789045C (en) | Method of heating control of blanks in multizone internally fired furnace | |
JP3046467B2 (en) | Heating furnace heating control method | |
SU1038726A1 (en) | Method of controlling tube furnace | |
CN118376100A (en) | Heating control method | |
JPH04222316A (en) | Combustion control for radiant tube burner | |
JPS6050113A (en) | Method for operating heating furnace provided with side burner |