[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5864182A - Mechanism for controlling amount of water in continuous water-electrolyzing apparatus - Google Patents

Mechanism for controlling amount of water in continuous water-electrolyzing apparatus

Info

Publication number
JPS5864182A
JPS5864182A JP16390081A JP16390081A JPS5864182A JP S5864182 A JPS5864182 A JP S5864182A JP 16390081 A JP16390081 A JP 16390081A JP 16390081 A JP16390081 A JP 16390081A JP S5864182 A JPS5864182 A JP S5864182A
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
routes
flow rate
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16390081A
Other languages
Japanese (ja)
Inventor
Tatsuo Okazaki
龍夫 岡崎
Yasukichi Okazaki
岡崎 弥寿吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16390081A priority Critical patent/JPS5864182A/en
Publication of JPS5864182A publication Critical patent/JPS5864182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To control the formation ratio of water contg. alkali ion to acidic water, by dividing the line of supplying water from the first electric insulating means to an electrolytic cell into two routes, communicating the routes to anode and cathode chambers, and increasing a flow amount in one of the routes. CONSTITUTION:Water poured into a water intake cell 3a is introduced through routes 5, 5' into each of a chamber 2c' provided with an anode 2c and a chamber 2a' provided with a cathoe 2a, and subjected to electrolyzing and electroosmotic reactions through a bisque partition wall 5b during flowing from the upside to the downside inside and electrolytic cell 2. Consequently, alkali ion water is formed outside the biscuit partition wall 2b, while acidic water is formed inside. The water is supplied to either one or both of separated chambers 3d from which the water is not discharged, but not supplied to the separated chamber from which the water is being discharged. As a result, a short circuit to a water-supply nozzle 3f is not formed even when the water is continuously supplied to the electrolytic cell 2.

Description

【発明の詳細な説明】 この発明は、主として飲用に供するアルカリイオン水を
生成するための連続式水電解装置における水量制御機構
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water flow rate control mechanism in a continuous water electrolysis device for producing alkaline ionized water primarily for drinking.

この糧の連続式水電解装置においては、水源(例えば水
道管)@あるいは末1使用口(蛇口)1mK、電解のた
めの電流が漏出するのを防止しなくてはならない。この
ため、電解槽には電気絶縁手段を介して水を供給し、ま
た電解槽からの水は電気絶縁手段を介して取出すことに
なる。このような安全を配慮した連続式水電解装置にお
いて、問題になる点は、アルカリイオン水および酸性水
の使用量が時に応じて相違することである。もし、アル
カリイオン水を多量に使用する状況下で、酸性水をそn
はど必要としないならば、たとえ、ペーハ値が著しく低
下しても酸7性水の量を減少させることが望ましい。書
友、逆に酸性水を多量に必要とする時には、たとえペー
ノ・僅が著しく高くなっても、アルカリイオン水の量を
減少させることが望ましい。
In this type of continuous water electrolysis device, the electric current for electrolysis must be prevented from leaking from the water source (for example, a water pipe) or from the end (faucet) of 1 mK. For this reason, water is supplied to the electrolytic cell via electrically insulating means, and water is taken out from the electrolytic cell via electrically insulating means. In such a continuous water electrolysis device that takes safety into consideration, a problem is that the amounts of alkaline ionized water and acidic water used vary depending on the time. If you are using a large amount of alkaline ionized water, do not use acidic water.
If water is not required, it is desirable to reduce the amount of acidic water even if the pH value is significantly reduced. On the other hand, when a large amount of acidic water is required, it is desirable to reduce the amount of alkaline ionized water, even if the amount of water becomes significantly higher.

このようK、水生成の割合を上記連続式水電解装置にお
いて制御することが、水の無駄を省く上で11!’であ
る。
Controlling the rate of K and water production in the above-mentioned continuous water electrolysis device is a great way to avoid wasting water! 'is.

この発明は、上記事情にもとづいてなさrtたもので、
電気絶縁手段から電解槽への水供給経路において簡単な
流量制御手段を設けて、アルカリイオン水と酸性水との
生成割合を制御できるようにした連続式水電解装置にお
ける水量制御機構を提供しようとするものである。
This invention was made based on the above circumstances,
The present invention aims to provide a water flow rate control mechanism in a continuous water electrolysis device that is capable of controlling the ratio of alkaline ionized water and acidic water produced by providing a simple flow rate control means in the water supply path from the electrically insulating means to the electrolytic cell. It is something to do.

以下、この発明を図示の実施例にもとづいて具体的に説
明する。図において符号1は水の電解装置の画体であり
、上記―体IV′3には、ll111長い電解槽2、第
1の電気絶縁手段3および第2の電気絶縁手段4が設置
さnている。
Hereinafter, the present invention will be specifically explained based on illustrated embodiments. In the figure, reference numeral 1 is a picture body of a water electrolyzer, and the body IV'3 is equipped with a long electrolytic cell 2, a first electrically insulating means 3, and a second electrically insulating means 4. There is.

上記電解槽2は、その外壁で囲まnる内側空間に配役さ
′nfC円筒状の陰を極2aと、上記陰電極2aと同心
的に内側に配置さnた円筒状の素焼隔壁2b’と、上記
素焼隔壁2bの内側に配設され次棒状の陽電11j2c
と、上記外壁の上下端に設けらnた頂板2dおよび底板
2eとよりS成さnている。上記底板2eには素焼隔壁
2bの内側および外側に位置して上記電解槽2内に連通
さnる水導入口2fおよび2gが設けらnており、また
、上記頂板ZdKは同じく素焼隔壁2bの内側および外
91に位置して上記電解槽2内に連通さnる水溝出口2
hおよび21が設けらrている。
The electrolytic cell 2 has a cylindrical negative pole 2a arranged in an inner space surrounded by its outer wall, and a cylindrical unglazed partition wall 2b' arranged inside concentrically with the negative electrode 2a. , a rod-shaped positive electrode 11j2c disposed inside the bisque partition wall 2b.
and a top plate 2d and a bottom plate 2e provided at the upper and lower ends of the outer wall. The bottom plate 2e is provided with water inlets 2f and 2g located on the inside and outside of the bisque partition wall 2b and communicated with the electrolytic cell 2, and the top plate ZdK is also provided with water inlets 2f and 2g located on the inside and outside of the bisque partition wall 2b. Water groove outlets 2 located on the inside and outside 91 and communicating with the electrolytic cell 2
h and 21 are provided.

上記電気絶縁手段3および4け、それぞれ受水槽3aお
よび4a、4a’を具備しており、上記受水槽3aおよ
び4at4a’には傾斜軸3bおよび4b、4b’によ
って回転駆動される水分離器3Cおよび4e%4e’が
配設さ扛ている。上記水分離器3Cおよび4cb4c’
は回転方向に、放射方向に延びる壁で検数に分割さn次
(その数は3個以上である必要があり)分離室3dおよ
び4d14d′を具備し、上記分離用の壁の上には、山
形状の分水嶺部材3 e sおよび4e、4e’がある
。上記水分離器3Cおよび4ch4e’の上方には、傾
斜軸3bおよび4b、4b’の上側において水供給ノズ
ル3fおよび4f%4 f’が配電さnている。ま九、
上記受水槽3aおよび4ab4a’には、それぞA2系
統の経路5、ぎおよび6、Cが設けらnており、上記&
*5.ダは電解槽2の水導入口2fおよび2gに連通さ
れ、上記経路6、“dはそれぞn蛇ロア、τに連通さル
ている。また、上記水供給ノズル4f、4f’は管路8
、ぎを介して電解4t12の水溝出口2hおよび21に
連通さnている。
The electrical insulating means 3 and 4 are each equipped with water receiving tanks 3a and 4a and 4a', and the water receiving tanks 3a and 4at4a' are equipped with a water separator 3C rotatably driven by inclined shafts 3b and 4b and 4b'. and 4e%4e' are arranged. The above water separators 3C and 4cb4c'
is equipped with n-th (the number must be 3 or more) separation chambers 3d and 4d14d' which are divided into n-th order (the number must be 3 or more) by walls extending in the rotation direction and radial direction, and above the separation wall is , mountain-shaped watershed members 3e, 4e, and 4e'. Water supply nozzles 3f and 4f' are electrically distributed above the water separators 3C and 4ch4e' above the inclined shafts 3b, 4b, and 4b'. Maku,
The water receiving tanks 3a and 4ab4a' are provided with routes 5, 6, and C of the A2 system, respectively, and the above &
*5. The water supply nozzles 4f and 4f' are connected to the water inlets 2f and 2g of the electrolytic cell 2, and the passages 6 and d are connected to the snake lower and τ, respectively. 8
, to the water groove outlets 2h and 21 of the electrolyzer 4t12.

また、上記経路5.5′の入口部分には、流量制御手段
とL7て、それぞnの流通断面積を調節するための弁機
構9が設けられている。上記弁機構9は、上記経路5、
ダにそれぞn連通する2つの弁口9 a h  9 m
’を具備し、この弁口9a、9a’を開度制御する扇形
の弁板9bを具備していて、上記弁板9bは枢軸9Cで
枢支され、左右に回動さnることで、一方の開度全減少
し、他方の開度を増大させるようになっている。
Furthermore, a valve mechanism 9 is provided at the inlet portion of the passage 5,5' to adjust the flow cross-sectional area of the flow rate control means L7, respectively. The valve mechanism 9 includes the path 5,
Two valve ports 9 a h 9 m each communicating with n
', and a fan-shaped valve plate 9b that controls the opening of the valve ports 9a, 9a', and the valve plate 9b is pivoted on a pivot 9C and rotates left and right. The opening degree of one is completely decreased and the opening degree of the other is increased.

なお、上記受水槽3&内の水レベルよりも、管路8、ぎ
の水レベルが低くなるように、上記受水槽のレベルを電
解槽2上に位置させて置く必要がある。
Note that the level of the water receiving tank must be positioned above the electrolytic cell 2 so that the water level in the pipe line 8 is lower than the water level in the water receiving tank 3&.

このような構成において、電極2aおよび2e間に直流
電圧を印加させて置いて、水供給ノズル3fより水を水
分離器3C上にもたらし、かつ分離器3c′jk傾斜軸
3bの回転で駆動しておくと、順欠、分smaciに入
った水は、傾斜軸3bの下。
In such a configuration, a DC voltage is applied between the electrodes 2a and 2e, water is brought onto the water separator 3C from the water supply nozzle 3f, and the separator 3c'jk is driven by the rotation of the inclined shaft 3b. If you keep it in order, the water that has entered the smaci will be under the inclined shaft 3b.

側において、受水槽3a内に放出される。水の供給は、
放出さnていない分離室3dのいづnかあるいは両方に
跨って供給さnているが、放出中の分離室には注がnな
いので、電気的には遮断さnており、受水槽31にうけ
九本が電解槽2に連続的にもたらきnていても、水供給
ノズル3fへ漏電することはない。とくに、上記分水嶺
部材の働きで、各分離室は電気的に遮断さnているので
、このよ艷な電気絶縁効果を達成できるのである。
At the side, it is discharged into the water receiving tank 3a. The water supply is
The water is supplied to one or both of the separation chambers 3d that are not being discharged, but there is no water to the separation chamber that is being discharged, so it is electrically cut off, and the water receiving tank 31 is Even if nine water pipes are continuously introduced into the electrolytic cell 2, there will be no electrical leakage to the water supply nozzle 3f. In particular, each separation chamber is electrically isolated by the function of the watershed member, so that such a strong electrical insulation effect can be achieved.

受水槽3&に入った水は、経路5.5′を経由して、陽
極2Cがある部屋2C′および陽極21のある部屋2 
a’にそnぞnもたらさn1電解檜2内を下から上に流
nる過程で、素焼隔壁2bt−介して電気分解および電
気滲透作用をうける。そして、素焼隔壁2bの外側でア
ルカリイオン水を生成し、内側で酸性水を生成する。生
成さ几たアルカリイオン水および酸性水け、そnぞれ管
路8%ぎを介して水供給ノズル4t% 4 f’にもた
らされ、第2の電気絶縁手段4で、その藁1の電気絶縁
手段3の場合と同じように処理され、電解槽と電気的に
遮断された状態で受水槽4a、411’にそれぞnうけ
られる。
The water that has entered the water tank 3& passes through the path 5.5' to the room 2C' where the anode 2C is located and the room 2 where the anode 21 is located.
In the process of flowing from bottom to top in the electrolytic hinoki 2, it is subjected to electrolysis and electropermeation through the unglazed partition wall 2b. Then, alkaline ionized water is generated on the outside of the unglazed partition wall 2b, and acidic water is generated on the inside. The produced alkaline ionized water and acidic water are each brought to the water supply nozzle 4t%4f' through the pipe line 8%, and the second electrically insulating means 4 injects the straw 1 into It is treated in the same manner as the electrically insulating means 3, and is received in the water receiving tanks 4a and 411' while being electrically isolated from the electrolytic cell.

この場合、弁板9bを操作して弁口9&の開度増大さn
る。この部屋2 a/への流通量の増大に見合っただけ
直流電圧の印加を高めると、上記弁機構9の流量制御に
も拘らず、アルカリイオン水の濃度は−ずに保たれる。
In this case, the opening degree of the valve port 9 & can be increased by operating the valve plate 9b.
Ru. When the application of the DC voltage is increased in proportion to the increase in the amount of flow to the chamber 2a/, the concentration of alkaline ionized water is maintained without decreasing despite the flow rate control by the valve mechanism 9.

一方、酸性水の#fは電圧上昇と流通量減少で、著しく
増大さnるが、とnは−こ・の時点では必要とさnない
ので問題はなく、放棄される水量は節約されることにな
る。もし、弁板9bを逆に操作して弁口9 a’の開度
を小さくし、弁口91の開FtLt−大きくすnば、酸
性水の流通量が増大さn1アルカリイオン水の流通量が
減少される。このような制御は、酸性水使用の時に用い
らnるとよい。
On the other hand, #f of acidic water will increase significantly due to the increase in voltage and decrease in flow rate, but since it is not needed at this point, there is no problem, and the amount of water that is wasted will be saved. It turns out. If the valve plate 9b is reversely operated to reduce the opening degree of the valve port 9a' and to increase the opening FtLt-n of the valve port 91, the flow rate of acidic water will increase.n1 The flow rate of alkaline ionized water will increase. is reduced. Such control is preferably used when using acidic water.

なお、上記実施例では、流量制御手段として弁機構を用
いたが、第7図にみられるように、経路5および5′を
受水槽3aの1ntsに連続させ、その経路の一方、例
えば経路5を可撓チューブで構成し、上記経路5のレベ
ルを上下することで、経路5側への流量制御をすること
で、両級路5およびダの相対的な流量制御を行なっても
よいこと勿論である。
In the above embodiment, a valve mechanism was used as the flow rate control means, but as shown in FIG. It goes without saying that the relative flow rates of both class passages 5 and DA may be controlled by controlling the flow rate to the route 5 side by controlling the flow rate to the route 5 side by controlling the level of the route 5 by raising and lowering the level of the route 5. It is.

この発明は、以上詳述したように、第1の電気絶縁手段
を介して電解槽に水を供給し、上記電解槽の頂部より生
成さnたアルカリイオン水および酸性水をそnぞれ第2
の電気絶縁手段を介して取出すようにしたものにおいて
、第1の電気絶縁手段から電解槽へ水を供給する経路を
二経路に分け、そ几ぞnの経路を上記電解槽の陰極室−
および陽極室に連通すると共に、上記経路に流量制御手
段を設け、一方の経路の流通tを増大する時、他方の流
通量を減少するように構fJy (、たので、必要とさ
nる生成水を多tK入手でき、不必要な側はこnを減少
して水の無駄を省くことができ、連続式の水生成におい
て、大きな経済性を発揮できるという優n次効果が得ら
nる。
As described in detail above, the present invention supplies water to an electrolytic cell through the first electrically insulating means, and supplies alkaline ionized water and acidic water produced from the top of the electrolytic cell to each of the first electrically insulating means. 2
In a device in which water is taken out through an electrically insulating means, the route for supplying water from the first electrically insulating means to the electrolytic cell is divided into two routes, and each of the two routes is connected to the cathode chamber of the electrolytic cell.
and communicates with the anode chamber, and a flow rate control means is provided in the above path, so that when the flow rate t of one path is increased, the flow rate of the other path is decreased. It is possible to obtain a large amount of water, reduce the amount of water on the unnecessary side and eliminate water waste, and achieve great economic efficiency in continuous water generation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す概略的系統図、飢2
図は電解槽の縦断側面図、第3図および第4図は電気絶
縁手段の縦Wk@面図、vR5図は水分離器の斜視図、
第6図は弁機構の斜視図、肌7図は流量制御手段の別の
実施例を示す斜視図である。 1・・・用雨体、2・・川・電解槽、3.4・・面電気
絶縁手段、5、ダ・・用経路、9・・・自弁機構&9A
%9a′・・・・・・弁口、9b・・・・・・弁板。 特許出願人岡崎龍夫(外1名)
FIG. 1 is a schematic system diagram showing one embodiment of the present invention.
The figure is a vertical side view of the electrolytic cell, Figures 3 and 4 are vertical Wk@ side views of the electrical insulation means, and Figure vR5 is a perspective view of the water separator.
FIG. 6 is a perspective view of the valve mechanism, and FIG. 7 is a perspective view showing another embodiment of the flow rate control means. 1... Rain body, 2... River/electrolytic tank, 3.4... Plane electrical insulation means, 5, Da... Usage route, 9... Self-validation mechanism & 9A
%9a'...Valve port, 9b...Valve plate. Patent applicant Tatsuo Okazaki (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 第1の電気絶縁手段を介して電解槽に水を供給し、上記
電解槽の頂部より生成されたアルカリイオン水および酸
性水をそnぞれI!2の電気絶縁手段を介して取出すよ
うにし壺ものにおいて、第1の電気絶縁手段゛から電解
槽へ水を供給する経路を二経路に分け、そtt−f:n
の経路を上記電解槽の陽極室および陽極室に連通すると
共に、上記経wI//c流量制御手段を設け、一方の経
路の流通量を増大する時、他方の流通量を減少するよう
に構成したこと1−特徴とする連続式水電解装置におけ
る水量制御機構。
Water is supplied to the electrolytic cell through the first electrically insulating means, and the alkaline ionized water and acidic water produced from the top of the electrolytic cell are each I! In the case where the water is taken out through the second electrically insulating means, the route for supplying water from the first electrically insulating means to the electrolytic cell is divided into two routes, and tt-f:n
The passage is connected to the anode chamber and the anode chamber of the electrolytic cell, and the passage wI//c flow rate control means is provided so that when the flow rate of one route is increased, the flow rate of the other route is decreased. What we did 1 - Characteristic water flow control mechanism in continuous water electrolysis equipment.
JP16390081A 1981-10-14 1981-10-14 Mechanism for controlling amount of water in continuous water-electrolyzing apparatus Pending JPS5864182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16390081A JPS5864182A (en) 1981-10-14 1981-10-14 Mechanism for controlling amount of water in continuous water-electrolyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16390081A JPS5864182A (en) 1981-10-14 1981-10-14 Mechanism for controlling amount of water in continuous water-electrolyzing apparatus

Publications (1)

Publication Number Publication Date
JPS5864182A true JPS5864182A (en) 1983-04-16

Family

ID=15782947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16390081A Pending JPS5864182A (en) 1981-10-14 1981-10-14 Mechanism for controlling amount of water in continuous water-electrolyzing apparatus

Country Status (1)

Country Link
JP (1) JPS5864182A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050079A1 (en) * 2012-09-28 2014-04-03 ダイキン工業株式会社 Water treatment device
JP2014079733A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Water treatment equipment
JP2014079735A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Water treatment equipment
WO2015146050A1 (en) * 2014-03-28 2015-10-01 ダイキン工業株式会社 Humidification device
JP2015188834A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 water treatment unit
JP2015188837A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 water treatment unit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104661967A (en) * 2012-09-28 2015-05-27 大金工业株式会社 Water treatment device
JP2014079733A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Water treatment equipment
JP2014079735A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Water treatment equipment
JP2014079740A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Water treatment equipment
JP2014079737A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Water treatment equipment
JP2014079738A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Water treatment equipment
WO2014050079A1 (en) * 2012-09-28 2014-04-03 ダイキン工業株式会社 Water treatment device
US9334179B2 (en) 2012-09-28 2016-05-10 Daikin Industries, Ltd. Water treatment device
WO2015146050A1 (en) * 2014-03-28 2015-10-01 ダイキン工業株式会社 Humidification device
JP2015188834A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 water treatment unit
JP2015190702A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 humidifier
JP2015188837A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 water treatment unit
US9914650B2 (en) 2014-03-28 2018-03-13 Daikin Industries, Ltd. Water treatment unit

Similar Documents

Publication Publication Date Title
US5534120A (en) Membraneless water electrolyzer
US5427667A (en) Apparatus for electrochemical treatment of water
HU218057B (en) Apparatus for generating solution having increased ozone content
JPH0338293A (en) Apparatus for continuous production of electrolytic water
JPS5864182A (en) Mechanism for controlling amount of water in continuous water-electrolyzing apparatus
JP4031877B2 (en) Hypochlorous acid aqueous solution generator
US6951225B2 (en) Switching valve for ion water generator
EP0131173B1 (en) Electrolysis apparatus
JPS5864391A (en) Control mechanism for quantity of water in continuous type water electrolyzing device
JP3299591B2 (en) Electrolytic ionic water generator
JP2619644B2 (en) Electrolytic ionic water generator
JPH0889962A (en) Electrolytic water generator
JPH09192667A (en) Electrolyzed water generating device
JP2622973B2 (en) Electrolytic ionic water generator having flow rate ratio adjusting member
JP3411078B2 (en) Electrolyzed water production equipment
JP2857111B2 (en) Gas diffusion electrode with gas lift pump
JP3453528B2 (en) Electrolyzed water generator
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JPH026588B2 (en)
JPS6097088A (en) Apparatus for preparing silver ion water for use in sterilization
RU2034791C1 (en) Installation for production of disinfecting and detergent solution
WO2018147550A1 (en) Electrolysis module, electrolyzed water generating device comprising same, and method for driving electrolyzed water generating device
JPS637358Y2 (en)
JPH10235356A (en) Electrolysis water generator
JPH03188A (en) Method and device for forming magnetized ion water