[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5861833A - Calcining method of phosphorus and molybdenum type catalyst - Google Patents

Calcining method of phosphorus and molybdenum type catalyst

Info

Publication number
JPS5861833A
JPS5861833A JP56161232A JP16123281A JPS5861833A JP S5861833 A JPS5861833 A JP S5861833A JP 56161232 A JP56161232 A JP 56161232A JP 16123281 A JP16123281 A JP 16123281A JP S5861833 A JPS5861833 A JP S5861833A
Authority
JP
Japan
Prior art keywords
catalyst
gas
molybdenum
parts
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56161232A
Other languages
Japanese (ja)
Other versions
JPH0215255B2 (en
Inventor
Masaaki Kato
正明 加藤
Masaki Kamogawa
鴨川 正毅
Toshiharu Nakano
敏治 中野
Jiyunji Furuse
古瀬 順史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP56161232A priority Critical patent/JPS5861833A/en
Publication of JPS5861833A publication Critical patent/JPS5861833A/en
Publication of JPH0215255B2 publication Critical patent/JPH0215255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst having high performance and uniform activity in an industrial scale, by treating a catalytic composn. under heating in a flow of a gas contg. a specified range of ammonia and water vapor. CONSTITUTION:A catalytic composn. is prepared by adding ammonia or an ammonium compd. to a starting material of catalyst contg. molybdenum and oxygen in manufacturing the catalyst by an oxide mixing process or the like, and drying the obtained slurry. This catalytic composn. can be converted into a catalyst having high performance and uniform activity by calcining this composition in a flow of gas contg. 0.05-3% ammonia and/or water vapor at 300-500 deg.C for 1-several ten hr, when needed, with the gaseous flow direction reversed.

Description

【発明の詳細な説明】 本発明は不飽和アルデヒドを気相接触酸化して相当する
不飽和酸を製造する際に使用するリン、モリブデンおよ
び酸素を含む触媒の焼成法に関する。更に詳しくはアク
ロレン又はメタクロレンを気相接触酸化してアクリル酸
又はメタクリル酸を製造する際に使用するリン、モリブ
デンおよび酸素を含む触媒の焼成法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for calcination of a catalyst containing phosphorus, molybdenum and oxygen used in the gas phase catalytic oxidation of unsaturated aldehydes to produce the corresponding unsaturated acids. More specifically, the present invention relates to a method for firing a catalyst containing phosphorus, molybdenum, and oxygen used when producing acrylic acid or methacrylic acid by vapor phase catalytic oxidation of acrolene or methachlorolene.

従来、アクロレン又はメタクロレンの気相接触酸化用触
媒として種々のものが提案されているが、リン、モリブ
デンおよび酸素を含む触媒が比較的すぐれた性能を示し
ている。本発明者らの一部も特公昭50−23015、
同50−25014などでリン、モリブデンおよび酸素
を含む触媒を提案した。上記触媒は特定の条件の下にI
iI製すると、活性および目的生成愉の選択性が著しく
向上する。しかし、性能の再現性が不十分であり、製造
の規模が大きくなるに従って性能のバラツキが大となり
、工業的な実施の観点からは必ずしも充分ではなかった
Conventionally, various catalysts have been proposed for gas phase catalytic oxidation of acrolene or methachlorolene, but catalysts containing phosphorus, molybdenum, and oxygen have shown relatively excellent performance. Some of the present inventors also
No. 50-25014, etc., proposed a catalyst containing phosphorus, molybdenum, and oxygen. The above catalyst under certain conditions I
When prepared with iI, the activity and selectivity of target production are significantly improved. However, the reproducibility of performance is insufficient, and the variation in performance increases as the scale of production increases, so it is not necessarily sufficient from the viewpoint of industrial implementation.

本発明者らは高性能を具備し、均質性の高い上記触媒を
特に工業的規模で製造する場合に有利に製造する方法に
ついて鋭意研究した結果、公知の方法によって得られた
触媒組成物を活性賦与する際にアンモニアおよび/また
は水蒸気を厳密に管理された濃度で含んだガス流通下3
00〜500℃の温度で、1〜数十時゛関、必要であれ
ば該アンモニアまたは水を含んだガスの流通方向を反転
して焼成することにより、高性能で高均質性の触媒が得
られることを見出し、本発明を完成するに到った。
The inventors of the present invention have conducted extensive research into methods for manufacturing the above-mentioned catalysts, which have high performance and high homogeneity, and which are advantageous especially when manufactured on an industrial scale. Under gas flow containing strictly controlled concentrations of ammonia and/or water vapor during feeding 3
A high-performance and highly homogeneous catalyst can be obtained by calcining at a temperature of 00 to 500°C for 1 to several tens of hours, reversing the flow direction of the ammonia or water-containing gas if necessary. The present invention has been completed based on this discovery.

従って本発明はアクロレン又はメタクロレンな気相接触
酸化してアクリル酸又はメタクリル酸を製造する際に使
用するリン、モリプデ/および酸素を含む触媒の焼成法
を提供するものである。以下に本発明の詳細な説明する
Accordingly, the present invention provides a method for calcination of a catalyst containing phosphorus, molypide/and oxygen, which is used in the gas phase catalytic oxidation of acrolene or methachlorolene to produce acrylic acid or methacrylic acid. The present invention will be explained in detail below.

す/、およびモリブデンを含む触媒は前述の引例に示”
されているように種々の調製法で活性を示す、%に空気
流通下焼成した触媒は流通しないで焼成した触媒に比べ
て著しく高い活性を示すことが多い。し々)しながら、
この時の焼成では触媒量が多くなればなる程触媒間に活
性の違いが生ずることから、不均一な性能を有する触媒
が得られて再現性が悪く工業的規模での焼成が困難であ
り、改良が待たれていた。
Catalysts containing molybdenum and molybdenum are shown in the above cited references.
Catalysts calcined under air flow often exhibit significantly higher activity than catalysts calcined without air flow, which exhibit activity in various preparation methods as described above. while)
In this calcination, the larger the amount of catalyst, the more the difference in activity between the catalysts, resulting in a catalyst with non-uniform performance, poor reproducibility, and difficulty in calcination on an industrial scale. Improvements were awaited.

そこで、本発明者らはリン、モリブデンおよび酸素を含
む触媒の焼成における活性発現の機構および活性の不均
一性の原因を解明するために種々の検討を行なった。そ
の結果、触媒活性の不均一性は空気などのガスを通じて
触媒を焼成した場合、原料塩の分解などにより触媒中よ
り、水蒸気、アンモニア、窒素酸化物、その他ガスある
いはガス状物質が発生するので焼成中の触媒組成物はガ
ス流通の入口部から出口sKわたって一様でない雰囲気
にさらされるためであることをつきとめた。
Therefore, the present inventors conducted various studies in order to elucidate the mechanism of activity expression and the cause of the non-uniformity of activity in the calcination of a catalyst containing phosphorus, molybdenum and oxygen. As a result, non-uniformity in catalytic activity is caused by the generation of water vapor, ammonia, nitrogen oxides, and other gases or gaseous substances from the catalyst due to decomposition of raw material salts when the catalyst is fired through gas such as air. It was found that this was because the catalyst composition inside was exposed to a non-uniform atmosphere from the inlet to the outlet sK of the gas flow.

本発明者らは、これらの事実に基いて触媒を工°東的規
模で均一に焼成する方法を種々の角度から研究した結果
、通常の方法によって得られた触媒組成物をアンモニア
および/または水蒸気を全量で005〜3チの範囲で含
むように規制されたガス流通下で処理することにより高
性能で、均一性の高い性能を有する触媒となし5ること
を見い出したのである。
Based on these facts, the present inventors studied methods for uniformly firing catalysts on an industrial scale from various angles. They have discovered that by treating the catalyst under gas flow that is regulated to contain a total amount of 0.05 to 3.0%, a catalyst with high performance and highly uniform performance can be obtained.

本発明が焼成の対象とし得る触媒系はリンおよびモリブ
デンを含む組成物であり、かつ調製の過程でアンモニア
またはアンモニウム基が関与する系である。例えば触媒
の原料化合物から、蒸発乾固法、共沈法あるいは酸化物
混合法によって触媒を調製する際に原料物質中にアンモ
ニアまたはアンモニウム基が存在しなければ添加するな
どしてアンモニアまたはアンモニウム基の存在下でms
を行ない、得られたスラリーな乾燥して得られる組成物
である。本発明の触媒焼成法はリン、モリブデンおよび
酸素の他に種種の元素を含む触媒に適用することができ
る。
Catalyst systems that can be subjected to calcination in the present invention are compositions containing phosphorus and molybdenum, and systems in which ammonia or ammonium groups are involved in the preparation process. For example, when preparing a catalyst from a raw material compound of a catalyst by evaporation to dryness method, coprecipitation method, or oxide mixing method, if ammonia or ammonium group does not exist in the raw material, the ammonia or ammonium group may be added. ms in the presence of
This is a composition obtained by drying the resulting slurry. The catalyst calcination method of the present invention can be applied to catalysts containing various elements in addition to phosphorus, molybdenum, and oxygen.

含有させることの出来る元素の例示としてはアルカリ土
類金属、ヒ素、アンチモン、ビスマス、銅、バナジウム
、タングステン、鉄、マンガン、錫、ジルコニウム、コ
バルト、ニッケル、亜鉛、セレン、カドミウム、ニオブ
、タンタル、珪素、アルミニウム、チタン、ロジウム、
セリウム、ゲルマニウム、鉛、クロム、タリウム、イン
ジウム、パラジウム、銀、テルルなどを挙げることがで
きる。触媒の調製に用いられる原料物質は水酸化物、酸
化物、塩、塩化物、遊離酸のいずれでもよい。これらの
例としてはリン酸、モリブデン酸、リンモリブデン酸、
モリブデン酸アンモニウム、リンモリブデン酸アンyニ
ウム、三酸化モリブデン等が挙げられる。調製法の一例
を挙げると、次の通りである。
Examples of elements that can be contained include alkaline earth metals, arsenic, antimony, bismuth, copper, vanadium, tungsten, iron, manganese, tin, zirconium, cobalt, nickel, zinc, selenium, cadmium, niobium, tantalum, and silicon. , aluminum, titanium, rhodium,
Examples include cerium, germanium, lead, chromium, thallium, indium, palladium, silver, and tellurium. The raw materials used for preparing the catalyst may be hydroxides, oxides, salts, chlorides, or free acids. Examples of these are phosphoric acid, molybdic acid, phosphomolybdic acid,
Examples include ammonium molybdate, ammonium phosphomolybdate, molybdenum trioxide, and the like. An example of the preparation method is as follows.

モリブデン酸アンモニウム水溶液にリン酸水溶液を添加
し、必要であれば他の元素の化合物例えばヒ酸、硝酸鋼
、メ′タバ17ジン酸アンモンなどを添加した後攪拌し
ながら蒸発乾固し、乾燥する。ケークを粉砕した後打錠
成形、あるいは希釈剤で希釈して成形しても良い。また
°、適当な担体に担持しても良い。得られた触媒を七3
C(。
Add a phosphoric acid aqueous solution to an ammonium molybdate aqueous solution, and if necessary, add other elemental compounds such as arsenic acid, steel nitrate, ammonium metabazate, etc., and then evaporate to dryness while stirring. . The cake may be crushed and then molded into tablets, or it may be diluted with a diluent and molded. Alternatively, it may be supported on a suitable carrier. The obtained catalyst was
C(.

のまへ焼成しても良いし、幹事1℃以下の温度で熱処理
した後焼成することもできる。
It may be fired while still in use, or it may be fired after being heat-treated at a temperature of 1°C or less.

本発明の方法ではアンモニア含有ガスの場合はアンモニ
ア濃度は(105〜3嗟、とくに(LD5〜t5−が好
ましい。水蒸気含有ガスまたはアンモニアおよび水蒸気
含有ガスの場合はα05〜3嗟の範囲が好ましい。
In the method of the present invention, in the case of an ammonia-containing gas, the ammonia concentration is preferably (105 to 3 mo, particularly (LD5 to t5-). In the case of a water vapor-containing gas or ammonia and water vapor-containing gas, the ammonia concentration is preferably in the range of α05 to 3 mo.

いずれの場合でも上記の下限より小さいと効果が小さく
、不均一な活性の触媒となる。また、上記の上限より大
きくても熱処理後得られた触媒の活性は不均一となり、
かつ活性発現が全体く不十分となる。焼成の温度は30
0〜500℃、特に300〜420℃が好ましい。焼成
に要する時間は焼成温度、雰囲気あるいはその濃度によ
り異なるが1〜数十時間、とくに1〜30時間が好まし
い。
In any case, if it is smaller than the above lower limit, the effect will be small and the catalyst will have non-uniform activity. In addition, even if the temperature exceeds the above upper limit, the activity of the catalyst obtained after heat treatment will be non-uniform.
In addition, the expression of activity becomes insufficient as a whole. The firing temperature is 30
0 to 500°C, particularly 300 to 420°C is preferred. The time required for firing varies depending on the firing temperature, atmosphere, or concentration thereof, but is preferably 1 to several tens of hours, particularly 1 to 30 hours.

本発明による焼成は通常用いられる装置、炉で充分であ
る。さらに本発明の方法によると、触媒の均一性の高い
触媒が得られるため焼成時の触媒層を大きくすることが
出来る。例えば、全長5〜6mの反応器等に充填して行
うこともできる。この場合より均一性を高めるため必要
ならガスの方向を反転してもよい。
For firing according to the present invention, commonly used equipment and furnaces are sufficient. Furthermore, according to the method of the present invention, a highly homogeneous catalyst can be obtained, so that the size of the catalyst layer during firing can be increased. For example, it can be carried out by filling a reactor with a total length of 5 to 6 m. In this case, the direction of the gas may be reversed if necessary to improve uniformity.

本発明による高活性化処理をほどこした触媒を使用して
アクロレ/又はメタクロレンな酸化してアクリル酸又は
メタクリル酸を製造するにあたって原料ガスとしてアク
ロレン又はメタクロレンと分子状酸、素例えば空気との
混合ガスが使用される。希釈剤として水蒸気、窒素、炭
酸ガス等を導入しても良い。特に水蒸気の存在はアクロ
レン又はメタクロレン転化率およびアクリル酸又はメタ
クリル酸の選択率の向上に好ましい影響を与える。原料
ガス中のアクロレン又はメタクロレン濃度は広い範囲で
変えることが出来るが1〜20 vol−が適当であり
、とくに好ましくは3〜15 vol ’4である。酸
素濃度はアクロレンに対するモル比で0.5〜4とくに
3.2゜ 14〜誠か好ましい。反応圧は常圧から数気圧までが良
い。反応温度は240〜590℃、とくに270〜54
0℃が適当である。ガス空間速度は反応圧と反応温度に
よって変るが5oO〜IQ、DO(If//Hが適当で
ある。
In producing acrylic acid or methacrylic acid by oxidizing acrolene/or methacrolene using the highly activated catalyst according to the present invention, a mixed gas of acrolene or methacrolene and a molecular acid, such as an element such as air, is used as a raw material gas. is used. Steam, nitrogen, carbon dioxide gas, etc. may be introduced as a diluent. In particular, the presence of water vapor has a favorable effect on improving the acrolene or methacrolene conversion rate and the selectivity of acrylic acid or methacrylic acid. The concentration of acrolene or methachlorolene in the raw material gas can be varied within a wide range, but is suitably 1 to 20 vol-, particularly preferably 3 to 15 vol'4. The oxygen concentration is preferably 0.5 to 4, particularly 3.2.degree. 14 to acrolene in molar ratio. The reaction pressure is preferably from normal pressure to several atmospheres. The reaction temperature is 240-590℃, especially 270-54℃
0°C is suitable. The gas hourly space velocity varies depending on the reaction pressure and reaction temperature, but is suitably 5oO to IQ, DO (If//H).

以下に実施例および比較例を挙げて本発明の方法を更に
詳しく説明する。以下においては部は重量部を表わし、
転化率および選択率は次の通りである。
The method of the present invention will be explained in more detail below with reference to Examples and Comparative Examples. In the following, parts represent parts by weight,
The conversion rate and selectivity are as follows.

×100 × 100 実施例1 パラモリブデン酸アンモニウム3,000部を70℃の
純水亀000部に溶解させ、これに85慢リン酸163
部と60嘔ヒ酸水溶液147部の水溶液を添加した。
×100 × 100 Example 1 3,000 parts of ammonium paramolybdate was dissolved in 1,000 parts of pure water at 70°C, and 163 parts of 85% phosphoric acid was added to this.
60 parts and 147 parts of arsenic acid aqueous solution were added.

この混合液を攪拌しながら加熱して蒸発乾固させ、更に
1500  に約16時間保って乾燥させた。得られた
ケークを粉砕後成形した。
The mixture was heated with stirring to evaporate to dryness, and was further dried at 1500°C for about 16 hours. The resulting cake was crushed and molded.

得られた成形品660部を内径27.5 s/1m、長
す1 mのステンレスパイプに充填した後゛α06vo
l−のアンモニアを含む空気1000 L/Hを通じな
がら80℃/時の速度で380℃に昇温。
After filling 660 parts of the obtained molded product into a stainless steel pipe with an inner diameter of 27.5 s/1 m and a length of 1 m,
The temperature was raised to 380°C at a rate of 80°C/hour while passing 1000 L/H of air containing 1-1 of ammonia.

2時間保持した後、流通方向を逆にして更に4時間熱処
理した。冷却後ir等分に5分割して取出し、最初のガ
ス流通の入口側より■■■■■とした。これら■■■■
■の触媒を内径16〜−の反応管にそれぞれ充填して炉
温280℃に保ち、容量でメタクロシン5チ、空気47
.8チ、水蒸気20−1窒素27.2−の組成の原料ガ
スを空間速度10001/i(で送入してそれぞれ反応
した。
After holding for 2 hours, the flow direction was reversed and the heat treatment was further carried out for 4 hours. After cooling, it was divided into 5 equal parts and taken out, and was separated from the inlet side of the first gas flow. These■■■■
Fill the reaction tubes with an inner diameter of 16~- with the catalysts (1) and keep the furnace temperature at 280°C.
.. A raw material gas having a composition of 20 -1 water vapor and 27.2 - nitrogen was introduced at a space velocity of 10,001/i (10,001/i) and reacted with each other.

その結果を下に示した。The results are shown below.

比較例1 実施例1において熱処理に使用するガスを101%のア
ンモニアを含む空気に変えた以外は実施例1と同様にし
た。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the gas used for heat treatment in Example 1 was changed to air containing 101% ammonia.

この結果大量触媒の焼成において活性、選択性に大きな
バラツキを生ずることがわかる。
As a result, it can be seen that large variations in activity and selectivity occur during calcination of a large amount of catalyst.

比較例2 実施例1において熱処理に使用す、るガスを5−のアン
モニアを含む空気に変えた以外は実施例1と同様にした
Comparative Example 2 The same procedure as in Example 1 was carried out except that the gas used in the heat treatment in Example 1 was changed to air containing 5-ammonia.

実施例2 パラモリブデン酸アンモ73000部を約60℃の純水
14000部に溶解した。これに4tS部のメタバナジ
ン酸アンモニウムを投入し溶解した後、8.5 % 1
3ン酸165部、次いで二酸化ゲルマニウム7エ6部を
加える。更に硝酸カリウム145部を純水1700部に
、硝酸第二鉄57.2部を純水600部にそれぞれ溶解
した後添加し、加熱攪拌しながら蒸発乾固した。
Example 2 73,000 parts of ammonium paramolybdate was dissolved in 14,000 parts of pure water at about 60°C. After adding 4tS parts of ammonium metavanadate to this and dissolving it, 8.5% 1
Add 165 parts of triphosphoric acid and then 6 parts of germanium dioxide. Furthermore, 145 parts of potassium nitrate was dissolved in 1700 parts of pure water, and 57.2 parts of ferric nitrate was dissolved in 600 parts of pure water, and then added thereto, and the mixtures were evaporated to dryness while heating and stirring.

130℃で16時間乾燥した後、粉砕し滑剤を混合して
成形した。
After drying at 130°C for 16 hours, it was crushed, mixed with a lubricant, and molded.

これを内径27.5%’?ns長さ5電の反応管に充填
した後、水蒸気O,S−を含んだ空気10001711
を通じなから昇温速度25℃/Hで100℃から385
℃まで昇温し、昇温後4時間保持した後ガスの方向を逆
にして更に4時間処理した。冷却後、触媒なはy等分に
5分割して取り出し、最初のガス流通の入口側より■■
■■■とした。これら■■■■■の触媒をそれぞれ内径
22〜4の反応管に充填した。以下実施例1と同様の反
応条件で反応した。但し、反応温度は300℃とし、メ
タクロシン4チ、空気60チ、水蒸気36−とした。
Is this 27.5% of the inner diameter? After filling a reaction tube with a length of 5 ns, air containing water vapor O, S-10001711
from 100℃ to 385℃ at a heating rate of 25℃/H.
The temperature was raised to .degree. C., held for 4 hours, and then the direction of the gas was reversed and the treatment was continued for an additional 4 hours. After cooling, divide the catalyst into 5 equal parts and take it out from the inlet side of the first gas flow.
■■■ These catalysts were filled into reaction tubes having an inner diameter of 22 to 4, respectively. Thereafter, the reaction was carried out under the same reaction conditions as in Example 1. However, the reaction temperature was 300[deg.] C., 4 g of methacrosin, 60 g of air, and 36 g of water vapor.

比較例3 実施例2において熱処理に使用するガスを101−の水
蒸気を含む空気に変えた以外は実施例2と同様にした。
Comparative Example 3 The same procedure as in Example 2 was carried out except that the gas used for the heat treatment in Example 2 was changed to air containing 101- water vapor.

比較例4 実施例2において熱処理に使用するガスをs、olの水
蒸気を含む空気に変えた以外は実施例2と同様にした。
Comparative Example 4 The same procedure as in Example 2 was carried out except that the gas used for the heat treatment in Example 2 was changed to air containing s and ol water vapor.

実施例3 純水200部に三酸化モリブデーン500部、三酸化ア
ンチモン643部、三酸化クロム17.4部を添加、更
に硝酸鋼125部と硝酸カリウム29.3部の混合水溶
液を加えた後攪拌しなから85−リン酸667部を混合
する。充分に攪拌しながらSaCで3時間保持した後、
28−アンモニア水80部を徐々に添加する。更に2時
間保った後蒸発乾固する。得られたケークを150℃で
16時間乾燥後、粉砕し成形した。
Example 3 500 parts of molybdenum trioxide, 643 parts of antimony trioxide, and 17.4 parts of chromium trioxide were added to 200 parts of pure water, and then a mixed aqueous solution of 125 parts of steel nitrate and 29.3 parts of potassium nitrate was added, followed by stirring. From this, 667 parts of 85-phosphoric acid are mixed. After holding in SaC for 3 hours with sufficient stirring,
28 - Gradually add 80 parts of aqueous ammonia. After keeping for another 2 hours, it was evaporated to dryness. The resulting cake was dried at 150° C. for 16 hours, then ground and molded.

これを内径27.5 tplm、長さ3惟の反応管に充
填して、アンモニア(LO51Gと水蒸気α85−を含
む空気を1500 t/’Elで通じながら65U/H
の昇温速度で590℃まで昇温:1時間保持した後、ガ
スの方向を反転して災にS時間熱処理した。以下実施例
2と同様の取り出しをし、反応を行なった。但し、反応
温度は510℃とし、空間速度6@ 7 o o l/
bとした。
This was packed into a reaction tube with an inner diameter of 27.5 tplm and a length of 3 liters, and was heated at 65 U/H while passing air containing ammonia (LO51G and water vapor α85-) at 1500 t/'El.
The temperature was raised to 590° C. at a heating rate of 1 hour. After holding for 1 hour, the direction of the gas was reversed and heat treatment was performed for S hours. Thereafter, the same procedure as in Example 2 was taken out and a reaction was carried out. However, the reaction temperature is 510°C, and the space velocity is 6 @ 7 o o l/
b.

実施例4 バラモリブデン酸アンモ75000部を約70℃の純水
14000部に溶解した。これに851 Qン酸163
部添加し攪拌した。更に60慢ヒ酸水溶液147部を攪
拌しながら加えた。硝酸鋼34.1部の水溶液と硝酸カ
リウム410部と硝酸セシウム193i1Sの混合水溶
液を添加した。上記の液を攪拌しながらメタバナジン酸
アンモニウム49.6部を投入、最後に三酸化アンチモ
ン415部を投入した。攪拌しながら蒸発乾固した。得
られたケークを130℃で16時間乾燥した後、粉砕し
た。この粉末なシリカ−アルミナ製球状担体に約50−
担持した。
Example 4 75,000 parts of ammonium baramolybdate was dissolved in 14,000 parts of pure water at about 70°C. To this, 851 Qnic acid 163
part was added and stirred. Furthermore, 147 parts of a 60% arsenic acid aqueous solution was added with stirring. An aqueous solution of 34.1 parts of steel nitrate and a mixed aqueous solution of 410 parts of potassium nitrate and cesium nitrate 193i1S were added. While stirring the above liquid, 49.6 parts of ammonium metavanadate was added, and finally 415 parts of antimony trioxide was added. It was evaporated to dryness while stirring. The resulting cake was dried at 130° C. for 16 hours and then ground. This powdered silica-alumina spherical carrier contains approximately 50-
carried it.

得られた触媒を内径2 z5 w−1長さ3嘱の反応管
に充填した。水蒸気αB−を含む空気1000tAlを
供給しなから昇温速度25℃/Hで昇温、380℃で8
時間焼成した。降温後、5分割して取出し、゛空気供給
側より■■■■■とした。
The obtained catalyst was packed into a reaction tube with an inner diameter of 2 z5 w-1 and a length of 3 tubes. While supplying 1000 tAl of air containing water vapor αB-, the temperature was raised at a temperature increase rate of 25°C/H, and at 380°C
Baked for an hour. After the temperature had cooled, it was divided into five parts and taken out.

得られた触媒を内116%/lIの反応管にそれぞれ充
填した後、浴温295℃に保ちながらメタクロレン40
%、空気47.8 %、水蒸気15−1窒素3\2−(
容量パーセント)の組成の原料ガスを空間速度6001
Aで供給したところ、次の結果が得られた。
After filling each reaction tube with the obtained catalyst at a concentration of 116%/lI, 40% of methachlorolene was added while keeping the bath temperature at 295°C.
%, air 47.8%, water vapor 15-1 nitrogen 3\2-(
The raw material gas has a composition of (volume percent) at a space velocity of 6001
When A was supplied, the following results were obtained.

比較例5 実施例4に於いて、焼成時−に供給したガスをアンモニ
ア1%と水蒸気4優を含む空気に変えたはか一工、実施
例4と同様にした。その結果、次の値が得られた。
Comparative Example 5 The same procedure as in Example 4 was carried out except that the gas supplied during firing was changed to air containing 1% ammonia and 4% water vapor. As a result, the following values were obtained.

実施例5 パラモリブデン酸アンモ7500部を純水1000部に
溶解した後メタバナジン酸アンモン82.8部を投入、
溶解する。更に硝酸第二鉄47、7部の水溶液を添加、
次に、水ガラス210部の水溶液を添加して、速やかに
蒸発乾固した。
Example 5 After dissolving 7500 parts of ammonium paramolybdate in 1000 parts of pure water, 82.8 parts of ammonium metavanadate was added.
dissolve. Furthermore, add an aqueous solution of 47.7 parts of ferric nitrate,
Next, an aqueous solution of 210 parts of water glass was added and quickly evaporated to dryness.

得られたケークを540℃で2時間乾緻した後粉砕した
。ついで、シリカ−アルミナ担体に約30嗟担持した。
The resulting cake was dried at 540° C. for 2 hours and then ground. Then, it was supported on a silica-alumina carrier for about 30 minutes.

反応管に充填した後水蒸気α5%を含む空気を空間速度
5001Aで通じながら70℃/Hで570℃まで昇温
した後、2時間保持し′C亀処理した。
After filling the reaction tube, the temperature was raised to 570° C. at a rate of 70° C./hour while passing air containing 5% water vapor α at a space velocity of 5001 A, and the mixture was held for 2 hours to undergo a carbon treatment.

以下、実施例1と同じようにして取り出し、それらを反
応した。但し、メタクロレンの代りにアクロレンを使用
し、反応温度は270℃とした。
Thereafter, the samples were taken out and reacted in the same manner as in Example 1. However, acrolene was used instead of methachlorolene, and the reaction temperature was 270°C.

Claims (7)

【特許請求の範囲】[Claims] (1)不飽和アルデヒドを気相接触酸化して和尚する不
飽和酸を製造する際に使用するリン、モリブデンおよび
酸素を含む触媒を300〜500cの温度でアンモニア
および/または水蒸気をCLO5〜5%含むガスの流通
下に処理することを4黴とする触媒の焼成法。
(1) A catalyst containing phosphorus, molybdenum, and oxygen used to produce an unsaturated acid by catalytic oxidation of an unsaturated aldehyde in the gas phase is oxidized with ammonia and/or water vapor at a temperature of 300 to 500 °C to 5 to 5% CLO. A catalyst firing method that involves treating the four molds while flowing a gas containing them.
(2)  ガスが空気であることを特徴とする特許請求
の範囲第1項の触媒焼成法。
(2) The catalyst firing method according to claim 1, wherein the gas is air.
(3)焼成を不飽和アルデヒドの気相接触酸化用反応管
中で行なうことを特徴とする特許請求の範囲第1項又は
第2項の触媒焼成法。
(3) The catalyst calcination method according to claim 1 or 2, characterized in that the calcination is carried out in a reaction tube for gas phase catalytic oxidation of unsaturated aldehydes.
(4)  ガスの流通方向を焼成途中で反転させること
を特徴とする特許請求の範囲第1項、第2項又は第3項
の触媒焼成法。
(4) The catalyst firing method according to claim 1, 2, or 3, characterized in that the direction of gas flow is reversed during firing.
(5)触媒を300〜500℃の温度で焼成するに際し
、焼成温度迄の昇温速度を10〜b囲第1項、第2項、
第3項又は第4項に記載の触媒の焼成法。
(5) When calcining the catalyst at a temperature of 300 to 500°C, the temperature increase rate to the calcining temperature should be set to 10 to b.
A method for firing the catalyst according to item 3 or 4.
(6)触媒がリン、モリブデン、アルカリ金属、酸素お
よびヒ素、アンチモン、ビスマス、銅、バナジウム、タ
ングステン、鉄、マンガン、錫、ジルコニウム、コバル
ト、ニッケル、亜鉛、セレンカドミウム、ニオブ、タン
タル、!グネシウム、珪素、アルミニウム、チタン、ロ
ジウム、セリウム、カルシウム、ストロンチウム、ゲル
マニウム鉛、クロム、タリウム、インジウム、バッジク
ム、銀、テルルから選ばれる少くとも1種とからなる触
媒である特許請求の範囲第1項、第2項、第3項、第4
項又は第5項に記載の触媒の焼成法。
(6) Catalysts include phosphorus, molybdenum, alkali metals, oxygen and arsenic, antimony, bismuth, copper, vanadium, tungsten, iron, manganese, tin, zirconium, cobalt, nickel, zinc, selenium cadmium, niobium, tantalum,! Claim 1: A catalyst comprising at least one member selected from magnesium, silicon, aluminum, titanium, rhodium, cerium, calcium, strontium, germanium lead, chromium, thallium, indium, badge cum, silver, and tellurium. , 2nd term, 3rd term, 4th term
A method for calcination of the catalyst according to item 1 or item 5.
(7)  触媒がリン、モリブデン、タリウム、酸素お
よびヒ素、アンチモン、ビスマス、鋼、ノ(ナジウム、
タングステン、鉄、マンガン、錫、ジルコニウム、コバ
ルト、ニッケル、 亜鉛、″セレンカドミウム1、ニオ
ブ、タンタル、マグネクウム、珪素、アルミニウム、チ
タン、ロジウム、セリウム、カルシウム、ストロンチウ
ム、ケルマニウム、鉛、クロム、インジウム、パラジウ
ム、鎖、テルルから選ばれる少くとも1種とからなる触
媒である特許請求の範囲第1項、第2項、第3項、第4
項又・工第5項記載の触媒の焼成法。
(7) Catalysts include phosphorus, molybdenum, thallium, oxygen and arsenic, antimony, bismuth, steel, sodium,
Tungsten, iron, manganese, tin, zirconium, cobalt, nickel, zinc, selenium cadmium 1, niobium, tantalum, magnesium, silicon, aluminum, titanium, rhodium, cerium, calcium, strontium, kermanium, lead, chromium, indium, palladium Claims 1, 2, 3, and 4 are catalysts consisting of at least one member selected from , chains, and tellurium.
A method for calcination of the catalyst described in Section 5.
JP56161232A 1981-10-09 1981-10-09 Calcining method of phosphorus and molybdenum type catalyst Granted JPS5861833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161232A JPS5861833A (en) 1981-10-09 1981-10-09 Calcining method of phosphorus and molybdenum type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161232A JPS5861833A (en) 1981-10-09 1981-10-09 Calcining method of phosphorus and molybdenum type catalyst

Publications (2)

Publication Number Publication Date
JPS5861833A true JPS5861833A (en) 1983-04-13
JPH0215255B2 JPH0215255B2 (en) 1990-04-11

Family

ID=15731139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161232A Granted JPS5861833A (en) 1981-10-09 1981-10-09 Calcining method of phosphorus and molybdenum type catalyst

Country Status (1)

Country Link
JP (1) JPS5861833A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189247A (en) * 1985-02-18 1986-08-22 Nippon Shokubai Kagaku Kogyo Co Ltd Production of oxydicarboxylic acid salt
JP2008207068A (en) * 2007-02-23 2008-09-11 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, method for producing the catalyst and method for producing unsaturated carboxylic acid
JP2008272637A (en) * 2007-04-26 2008-11-13 Mitsubishi Rayon Co Ltd Manufacturing method of catalyst for manufacturing methacrylic acid, catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid
JP2011240219A (en) * 2010-05-14 2011-12-01 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for production of methacrylic acid
KR20200026933A (en) 2017-07-10 2020-03-11 미쯔비시 케미컬 주식회사 Method for producing catalyst, Method for producing unsaturated carboxylic acid, Method for producing unsaturated aldehyde and unsaturated carboxylic acid, and Method for producing unsaturated carboxylic ester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985017A (en) * 1972-12-23 1974-08-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985017A (en) * 1972-12-23 1974-08-15

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189247A (en) * 1985-02-18 1986-08-22 Nippon Shokubai Kagaku Kogyo Co Ltd Production of oxydicarboxylic acid salt
JPH0627099B2 (en) * 1985-02-18 1994-04-13 株式会社日本触媒 Method for producing polyethylene glycol dicarboxylate
JP2008207068A (en) * 2007-02-23 2008-09-11 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, method for producing the catalyst and method for producing unsaturated carboxylic acid
JP2008272637A (en) * 2007-04-26 2008-11-13 Mitsubishi Rayon Co Ltd Manufacturing method of catalyst for manufacturing methacrylic acid, catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid
JP2011240219A (en) * 2010-05-14 2011-12-01 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for production of methacrylic acid
KR20200026933A (en) 2017-07-10 2020-03-11 미쯔비시 케미컬 주식회사 Method for producing catalyst, Method for producing unsaturated carboxylic acid, Method for producing unsaturated aldehyde and unsaturated carboxylic acid, and Method for producing unsaturated carboxylic ester

Also Published As

Publication number Publication date
JPH0215255B2 (en) 1990-04-11

Similar Documents

Publication Publication Date Title
US7132384B2 (en) Process for producing composite oxide catalyst
JP2841324B2 (en) Method for producing methacrolein
JP2011092882A (en) Method for producing catalyst for preparation of methacrylic acid, and method for preparing methacrylic acid
JPS5826329B2 (en) Seizouhou
JPH0531368A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
US5349092A (en) Process for producing catalysts for synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JPS5861833A (en) Calcining method of phosphorus and molybdenum type catalyst
US4469810A (en) Process for the calcination of phosphorus-molybdenum catalyst
JP3288197B2 (en) Method for producing catalyst for synthesizing methacrolein and methacrylic acid
EP0113156B1 (en) Process for the calcination of phosphorus-molybdenum catalyst
JPH0971561A (en) Production of dicyanobenzene
WO2005056185A1 (en) Process for producing composite oxide catalyst
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JPH0840969A (en) Production of acrolein and catalyst
JP2847150B2 (en) Method for producing acrolein or methacrolein
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPS5879545A (en) Calcining method for phosphorus-molybdenum catalyst
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JPH04182450A (en) Production of methacrylic acid
JP2003001111A (en) Method for manufacturing catalyst for synthesizing methacrylic acid
JPH05253480A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH0463139A (en) Catalyst for production of methacrylic acid
JPS6345658B2 (en)
JPH0924277A (en) Catalyst and process for preparing methacrylic acid