[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5858740A - Measuring device for warp of semiconductor wafer - Google Patents

Measuring device for warp of semiconductor wafer

Info

Publication number
JPS5858740A
JPS5858740A JP15775781A JP15775781A JPS5858740A JP S5858740 A JPS5858740 A JP S5858740A JP 15775781 A JP15775781 A JP 15775781A JP 15775781 A JP15775781 A JP 15775781A JP S5858740 A JPS5858740 A JP S5858740A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
reference plate
objective lens
warpage
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15775781A
Other languages
Japanese (ja)
Other versions
JPS629217B2 (en
Inventor
Sunao Nishioka
西岡 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15775781A priority Critical patent/JPS5858740A/en
Publication of JPS5858740A publication Critical patent/JPS5858740A/en
Publication of JPS629217B2 publication Critical patent/JPS629217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To easily measure the warp of a semiconductor wafer by a method wherein the focusing of an optical microscope magnifying a part of the optical image of a pattern in an integrated circuit is automatized. CONSTITUTION:A semiconductor wafer 1 is mounted on a reference plate 2 and the reference plate 2 is fixed to a scanning stage mechanism 3. A TV camera 5 is installed on the ocular section 13 of the optical microscope 4. The image signal from the camera 5 is sent to a picture image processing section 9. The processing in the processing section 9 is performed by the kind and condition decided by a control section 10. The control section 10 controls an objective lens driving mechanism 7 and a scanning driving mechanism 8. The number of pulses sent to the mechanisms 8, 7 from the control section 10 corresponds to the moving distances of the wafer 1 and the lens 6. This information is sent to a data processing section 11 and is converted into the warp value and the position coordinate on the wafer 1 measured the warf value.

Description

【発明の詳細な説明】 本発明は集積回路等のパターンを有する半導体ウェハに
用いられる顕微鏡焦点深度法によるそり測定装置に関す
る。近年の集積回路等の製造に於いては、歩留り向上の
ため大口径の半導体ウェハを用い、微細パターンによる
高集積化が図られている。しかしその反面、大口径化は
高温熱処理工程等によるそりの発生・増大、それに伴う
写真製版工程におけるパターン重ね合わせ精度の低下等
の問題が起る。従って歩留り向上を碇保するには製造工
程中の半導体ウェハのそりへの対策、そのためのそり測
定装置が必要となってくる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a warpage measuring device using a microscope depth of focus method used for semiconductor wafers having patterns such as integrated circuits. In recent years, in the manufacture of integrated circuits and the like, large-diameter semiconductor wafers are used and fine patterns are used to achieve high integration in order to improve yields. On the other hand, however, increasing the diameter causes problems such as the occurrence and increase of warpage due to high-temperature heat treatment processes, etc., and a corresponding decrease in pattern overlay accuracy in the photolithography process. Therefore, in order to maintain yield improvement, it is necessary to take measures against warping of semiconductor wafers during the manufacturing process, and to provide a warpage measuring device for this purpose.

こうしたそり測定装置として、現在、その計測方式から
いえば機械式(ダイアルゲージ等)、電気式(キャパシ
タンス・メータ等)、光学式(オプトマイクロメータ、
モワレ組法、各種干渉計、顕微鏡焦点深度法等)がある
。だが集積回路等の微細なパターン、製造工程の進行と
ともに種類が増加し濃密になってくるパターンを有する
半導体ウェハのそり測定方法としては光学顕微鏡焦点深
度法が優れている。すなわち顕微鏡焦点深度法は、計測
端が試料と非接触で、あること。拡大倍率を大きくすれ
ば2次元分解能が小さくなって微細複雑なパターンを有
する半導体ウェハの適用が容易となり、且つ焦点深度も
深くなって感度が向上する利点がある。
Currently, such warpage measurement devices are mechanical (dial gauge, etc.), electrical (capacitance meter, etc.), optical (optomicrometer,
(Moiré method, various interferometers, microscope depth of focus method, etc.). However, the optical microscope depth of focus method is an excellent method for measuring warpage of semiconductor wafers that have fine patterns such as integrated circuits, patterns that increase in variety and density as the manufacturing process progresses. In other words, in the microscope depth of focus method, the measurement end is not in contact with the sample. If the magnification is increased, the two-dimensional resolution becomes smaller, making it easier to apply semiconductor wafers having fine and complex patterns, and the depth of focus becomes deeper, which has the advantage of improving sensitivity.

しかし従来の顕微鏡焦点深度法によるそり測定装置には
、測定の自動化が困難であるという欠点があった。この
欠点のひとつの原因は被測定試料面と対物レンズの焦点
位置の合致の自動化、すなわち焦点合わせの自動化が困
難であったことである。この困難は顕微鏡焦点深度法の
そり測定装置の計測モードが主として手動の一点計測型
という弱点となって現われている。焦点合わせの自動化
としてエア・マイクロメータを用いる方法もあるが、吹
きつける空気圧力によって被測定試料の半導体ウェハが
変形しそりを計測できない。測定自動化の困難性の他の
原因は、半導体ウェハを載置する試料台表面の確実な水
平面の設定、傾斜角による補正が繁雑なことであった。
However, the conventional warpage measuring device using the microscope depth of focus method has the drawback that it is difficult to automate the measurement. One reason for this drawback is that it is difficult to automate the alignment of the focal position of the objective lens with the surface of the sample to be measured, that is, to automate focusing. This difficulty is manifested as a weakness in that the measurement mode of the warpage measuring device using the microscope depth of focus method is mainly a manual single point measurement type. There is also a method of using an air micrometer to automate focusing, but the air pressure that blows deforms the semiconductor wafer to be measured, making it impossible to measure warpage. Another reason for the difficulty in automating measurements is that it is complicated to ensure that the surface of the sample stage on which the semiconductor wafer is placed is horizontal, and to make corrections based on the angle of inclination.

すなわち被測定試料の半導体ウェハの裏面と接触する試
料台表面が平坦であっても、水平面より傾斜していると
、焦点位置をこの傾斜角で補正しなければそり値を知る
ことができない。この補正を不必要とするためには試料
台表面を確実な水平面としなければならないが、大口径
ウェハに対して満足できるそり測定を行おうとするには
こめ水平化の調整は極めて繁雑である。また傾斜角で補
正する場合には傾斜角の計測を要し、この計測に顕微鏡
焦点深度法を準用するならば前記弱点が現われ、他の計
測法を用いるならばこの計測のための傾斜角度測定装置
が更に必要となる。
That is, even if the surface of the sample stage that contacts the back surface of the semiconductor wafer of the sample to be measured is flat, if it is tilted from the horizontal plane, the warpage value cannot be determined unless the focal position is corrected using this tilt angle. In order to eliminate the need for this correction, the surface of the sample stage must be made a reliably horizontal plane, but the leveling adjustment is extremely complicated in order to perform satisfactory warpage measurements on large-diameter wafers. In addition, when correcting by tilt angle, it is necessary to measure the tilt angle, and if the microscope depth of focus method is applied to this measurement, the above-mentioned weak point will appear, and if other measurement methods are used, the tilt angle measurement for this measurement More equipment is required.

本発明上記の点に鑑み、焦点合わせ自動化のための画像
処理部、傾斜角の補正を自動化するための基準板等を組
合せることにより、従来の装置より正確かつ容易に半導
体ウェハのそりを測定し得る装置を提供しようとするも
のである。
In view of the above points, the present invention measures the warpage of semiconductor wafers more accurately and easily than conventional devices by combining an image processing unit for automating focusing, a reference plate for automating tilt angle correction, etc. The aim is to provide a device that can do this.

以下図面を参照しながら、本発明の半導体ウェハのそり
測定装置について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor wafer warpage measuring apparatus according to the present invention will be described below with reference to the drawings.

第1図(a)は本発明の半導体ウェハのそり測定装置の
構成概略図、同図(b) (c)は作用・動作の説明の
ための部分斜視図、(c)部分断面図である。
FIG. 1(a) is a schematic diagram of the configuration of a semiconductor wafer warpage measuring device of the present invention, FIGS. 1(b) and 1(c) are partial perspective views for explaining the function and operation, and FIG. 1(c) is a partial sectional view. .

図において、半導体ウェハ1は基準板2の上に載置され
、基準板2はスキャンニング・ステージ機構8に載置ま
たは固定されている。半導体ウェハ1の上部には光学顕
微鏡4があり、その接眼部1Bにはテレビ・カメラ5が
取付けられている。テレビ・カメラ6の映像信号は画像
処理部9へ送られる。画像処理部9における画像処理は
、コントロール部10で決められた種類・条件で行われ
、画像処理されたデータはコントロール部1ト、取り込
まれる。またコントロール部10は、光学顕微鏡4の1
部である対物レンズ6の位置を上下移動させる対物レン
ズ駆動機構7、半導体ウェハ1及び基準板2をX−Y移
動させるスキャンニング・ステージ機構8を駆動・制御
する。スキャンニング・ステージ機tR8及び対物レン
ズ駆動機構7には、いずれも図示していないが、ステッ
ピング・モータがあす、歯車、ビニオン、ラック等の機
械的伝達によって、半導体ウェハl及び基準板2をX−
Y方向に、対物レンズ6を上下の2方向へ段階的に微小
距離の繰り返して移動できるようになっている。対物レ
ンズ駆動機構7は、対物レンズ6が最上端まで移動した
ときその移動を停止させるストッパ8を有している。コ
ントロール部10からスキャンニング・ステージ機構8
及び対物レンズ駆動機構7のステッピング・モータへ送
った駆動パルス数は、それぞれ半導体ウェハ1のX−Y
移動距離及び対物レンズ6の上下移動距離の情報に対応
する。この情報はコントロール部10からデータ処理部
11へ送られ、ここで上下移動間する情報はそり値に、
またX−Y移動に関する情報はそり値を測定した箇所の
半導体ウェハ1面上の位置座標に変換される。
In the figure, a semiconductor wafer 1 is placed on a reference plate 2, and the reference plate 2 is placed on or fixed to a scanning stage mechanism 8. An optical microscope 4 is provided above the semiconductor wafer 1, and a television camera 5 is attached to its eyepiece 1B. The video signal from the television camera 6 is sent to an image processing section 9. Image processing in the image processing section 9 is performed under the type and conditions determined by the control section 10, and the image-processed data is taken into the control section 1. Further, the control section 10 controls one of the optical microscopes 4.
It drives and controls an objective lens driving mechanism 7 that vertically moves the position of an objective lens 6, which is a section, and a scanning stage mechanism 8 that moves the semiconductor wafer 1 and reference plate 2 in the X-Y direction. Although neither of the scanning stage machine tR8 and the objective lens drive mechanism 7 are shown, a stepping motor moves the semiconductor wafer l and the reference plate 2 in the −
In the Y direction, the objective lens 6 can be moved stepwise and repeatedly over small distances in two directions, up and down. The objective lens drive mechanism 7 has a stopper 8 that stops the movement of the objective lens 6 when it moves to the uppermost end. From the control section 10 to the scanning stage mechanism 8
The number of drive pulses sent to the stepping motor of the objective lens drive mechanism 7 is
This corresponds to information on the movement distance and the vertical movement distance of the objective lens 6. This information is sent from the control unit 10 to the data processing unit 11, where the information about the vertical movement is converted into a warpage value.
Further, information regarding the X-Y movement is converted into positional coordinates on the surface of the semiconductor wafer at the location where the warpage value was measured.

焦点合わせの自動化は次のようにして行われる。Automation of focusing is performed as follows.

光学顕微鏡4による半導体ウェハ1のパターン1aの拡
大光学像をテレビ・カメラ5で光電変換して得られた電
気的画像を画像処理部9で2値化画像とする。この2値
化は、半導体ウェハ1面に対物レンズ6の焦点12を結
ばせたとき、半導体ウェハlのパターン1aのエツジの
みが“l”レベルもしくは“θ″レベルなるような明暗
レベル範囲を決める上限、下限の2つのしきい値で行わ
れる。このしきい値は一度設定するだけでよい。そして
同じ画像処理部9で2値化画像面積中にl”レベルもし
くは0”レベルの占める相対面積(面積率)を計測でき
るようにしである。相対面積は、焦点′12が半導体ウ
ェハ1面に結ばれたとき最大となる。焦点12が半導体
ウェハ1面の上方または下方へはずれているときは、パ
ターン・エツジの明暗レベルがより明るい方へ移るので
前記2つのしきい値の間の明暗レベル範囲の1”レベル
もしくは“0”レベルの占める相対面積が小さくなる。
An electrical image obtained by photoelectrically converting an enlarged optical image of the pattern 1a of the semiconductor wafer 1 by the optical microscope 4 by the television camera 5 is converted into a binarized image by the image processing section 9. This binarization determines the bright/dark level range such that only the edge of the pattern 1a of the semiconductor wafer l is at the "l" level or the "θ" level when the focal point 12 of the objective lens 6 is focused on one surface of the semiconductor wafer. This is done using two thresholds, an upper limit and a lower limit. This threshold only needs to be set once. The same image processing unit 9 is designed to be able to measure the relative area (area ratio) occupied by the l'' level or the 0'' level in the area of the binarized image. The relative area becomes maximum when the focal point '12 is connected to one surface of the semiconductor wafer. When the focal point 12 is shifted above or below the surface of the semiconductor wafer 1, the brightness level of the pattern edge shifts to the brighter side, so that the brightness level range between the two thresholds is 1'' or 0. ``The relative area occupied by the level becomes smaller.

したがってコントロール部10により、画像処理部9に
よる相対面積の計測と、対物レンズ駆動部7を通じて対
物レンズ6の上方より下方への移動を同時に動作させ、
相対面積が最大となるときの対物レンズ6の位置で対物
レンズ6の移動を停止してやれば焦点12は自動的に半
導体ウェハ1面に結ばれる。なおこの焦点合わせの自動
化法については特願昭55−177800号明細書に詳
述されている。対物レンズ6が最上端に移動したとき動
作するストッパ8は、この最上端を対物レンズ6の位置
Zfの原点に設定するものである。従って対物レンズ6
を最上端へ移動させてから焦点12が半導体ウェハ1面
に合致するまでに、対物レンズ6を下方へ移動させるに
要した対物レンズ駆動部7のステッピングモータへのパ
ルス数を計数すれば、焦点合わせ終了時の対物レンズ6
の位置(Zsi)を定散的に知ることができる。
Therefore, the control section 10 causes the image processing section 9 to measure the relative area and the objective lens drive section 7 to move the objective lens 6 from above to below at the same time.
If the movement of the objective lens 6 is stopped at the position where the relative area becomes the maximum, the focal point 12 is automatically brought to the surface of the semiconductor wafer. This method of automating focusing is described in detail in Japanese Patent Application No. 177800/1983. The stopper 8, which operates when the objective lens 6 moves to the uppermost end, sets this uppermost end as the origin of the position Zf of the objective lens 6. Therefore, objective lens 6
If you count the number of pulses to the stepping motor of the objective lens drive unit 7 required to move the objective lens 6 downward until the focal point 12 matches the surface of the semiconductor wafer after moving it to the top end, the focal point Objective lens 6 at the end of alignment
The position (Zsi) of can be known in a constant manner.

半導体ウェハ1面上の1箇所で焦点合わせが行われて得
られた対物レンズ6の位置(Zsi)の位置情報はデー
タ処理部11へ送られる。そして、コントロール部10
からスキャンニング・ステージ機構8へX−Y移動のパ
ルス信号を送り、基準板2とともに半導体ウェハ1を移
動させ、半導体ウェハ1面の他の箇所で同様な操作を行
う。X−Y移動は2次元平面上での移動であって、そり
の測定箇所すなわち焦点合わせ箇所への移動は、コント
ロール部1Gで設定されているその箇所の位置座標(X
i。
Position information on the position (Zsi) of the objective lens 6 obtained by focusing at one location on the surface of the semiconductor wafer 1 is sent to the data processing section 11 . And the control section 10
A pulse signal for X-Y movement is sent to the scanning stage mechanism 8 to move the semiconductor wafer 1 together with the reference plate 2, and similar operations are performed at other locations on the surface of the semiconductor wafer 1. X-Y movement is movement on a two-dimensional plane, and movement to the measurement point of the warp, that is, the focusing point, is based on the position coordinates (X
i.

Yi)に対応するパルス数をスキャンニング・ステージ
機構8のX用及びY用のステッピング・モータへ送るこ
とで行われる。そりの測定箇所は、半導体ウェハ1上の
任意箇所でよく、その位置座標値は予めコントロール部
10で設定しておくとともに、この位置情報をデータ処
理部11へ送っておく。
This is done by sending the number of pulses corresponding to Y i) to the X and Y stepping motors of the scanning stage mechanism 8. The warpage measurement point may be any arbitrary point on the semiconductor wafer 1, and its positional coordinate values are set in advance by the control section 10, and this positional information is sent to the data processing section 11.

次に半導体ウェハ1を取り除いて、基準板2に対し同様
な操作′を行う。
Next, the semiconductor wafer 1 is removed and the same operation is performed on the reference plate 2.

第2図は基準板2の一例を示めす部分斜視図である。基
準板2の主面2aは平坦であり、この主面2aの上に半
導体ウェハ1が載置される。主面2aには凹の格子状の
パターン2bが形成されており、凹の段差dは、第1図
における対物レンズ駆動機構7による対物レンズ6の一
定の微小移動距離、(いいかえれば対物レンズ駆動機構
7のステッピング・モータを1パルスで駆動したときの
対物レンズ6の移動単位)よりも小さくしである。パタ
ーン2bの寸法a、b、cは、光学顕微鏡4のとり得る
最大の拡大倍率のときでもパターン2bの一部がテレビ
・カメラ5の視野内に常に入るような値としておく。基
準板2の材質は光学的に不透明であり、大きい硬さのも
のが望ましい。こうした基準板2のパターン2bの段差
部、すなわちパターン・エツジは、半導体ウェハ1のパ
ターン・エツジと光学的に同等で・あるから、基準板2
に対しても第1図でもって説明したような焦点合わせの
自動化が可能であり、この基準板2に対する焦点合わせ
終了時の対物レンズ6の位置(Zei)を半導体ウニハ
トの測定箇所と同じ位置座標(Xi 、Yi )で知る
ことができる。そしてこの基準板2の場合の対物レンズ
6の位置(Zoi)のデータ群は、半導体ウェハlの裏
面と接触する主面2aが平坦であるから、主面2aの水
平面よりの傾斜角(θ)に関する情報を含んでいること
となる。したがって、基準板2に対する対物レンズ6の
位置(Zoi)情報をデータ処理部11へ送り、これと
すでに送り済みの半導体ウェハ1に対する対物レンズ6
の位置(Zsi)情報を各測定箇所の位置(Xi 、Y
i )で比較すれば、傾斜角θを考慮した半導体ウェハ
lのそり値を各測定箇所で求めることができる。すなわ
ち、データ処理部分11において、各ステッピング・モ
ータへのパルス数ヲ、対物レンズ6の位置の絶対値(Z
si、Zoi)、測定箇所の位置座標の絶対値(Xi 
、Yi )へ変換し各位置座標(Xi 、Yi )にお
ける対物レンズ6の位置の差δ1(lZsi−Zo i
 1 )を求め、差δiの最小値δ馴を調べたのち(Δ
1=ai −Jm)  を算出すればこのΔiが半導体
ウェハ1面上の位置(Xi 、Yi )の測定箇所のそ
り値となる。なおデータ処理部11におけるデータ処理
のとき、少なくとも8点の測定箇所の位置座標(Xi 
、Yi )における基準板2の主面2aに対する対物レ
ンズ6の位置(Zoi)から、立体幾何学的に主1fi
2aの傾斜角θが求められるので、これでそり値Δiを
より正確に求めることができる。また(Xi 、Yi 
、Δi)の値で8次元曲面を描かせば半導体ウェハのそ
り状態がよくわかるようになる。
FIG. 2 is a partial perspective view showing an example of the reference plate 2. FIG. The main surface 2a of the reference plate 2 is flat, and the semiconductor wafer 1 is placed on this main surface 2a. A concave lattice pattern 2b is formed on the main surface 2a, and the concave step d corresponds to a certain minute movement distance of the objective lens 6 by the objective lens drive mechanism 7 in FIG. This is smaller than the unit of movement of the objective lens 6 when the stepping motor of the mechanism 7 is driven by one pulse. Dimensions a, b, and c of the pattern 2b are set to values such that a part of the pattern 2b is always within the field of view of the television camera 5 even when the optical microscope 4 is at the maximum possible magnification. The material of the reference plate 2 is preferably optically opaque and has high hardness. Since the stepped portion of the pattern 2b of the reference plate 2, that is, the pattern edge, is optically equivalent to the pattern edge of the semiconductor wafer 1, the reference plate 2
It is also possible to automate the focusing as explained in FIG. It can be known from (Xi, Yi). The data group of the position (Zoi) of the objective lens 6 in the case of this reference plate 2 is based on the inclination angle (θ) of the main surface 2a from the horizontal plane since the main surface 2a in contact with the back surface of the semiconductor wafer l is flat. It contains information about. Therefore, the position (Zoi) information of the objective lens 6 with respect to the reference plate 2 is sent to the data processing section 11, and the position (Zoi) information of the objective lens 6 with respect to the semiconductor wafer 1 that has already been sent is sent to the data processing section 11.
The position (Zsi) information of each measurement point (Xi, Y
i), it is possible to determine the warpage value of the semiconductor wafer l at each measurement location, taking into account the inclination angle θ. That is, in the data processing section 11, the number of pulses to each stepping motor, the absolute value of the position of the objective lens 6 (Z
si, Zoi), the absolute value of the position coordinates of the measurement point (Xi
, Yi) and the difference in the position of the objective lens 6 at each position coordinate (Xi, Yi) δ1(lZsi-Zo i
1), check the minimum value δ of the difference δi, and then find (Δ
1=ai-Jm), this Δi becomes the warpage value of the measurement point at the position (Xi, Yi) on one surface of the semiconductor wafer. Note that during data processing in the data processing unit 11, the position coordinates (Xi
, Yi), the position (Zoi) of the objective lens 6 with respect to the main surface 2a of the reference plate 2,
Since the inclination angle θ of 2a is determined, the warp value Δi can be determined more accurately. Also (Xi, Yi
, Δi), the warped state of the semiconductor wafer can be clearly seen.

こうしたデータ処理、焦点合わせ、x−y移動は、画像
処理部9、コントロール部10、データ処理部11の電
算機機能により自動的に迅速に行える。
Such data processing, focusing, and x-y movement can be automatically and quickly performed by the computer functions of the image processing section 9, the control section 10, and the data processing section 11.

対物レンズ6の微小移動距離は、対物レンズ駆動機構7
の歯車の組合わせで、極めて小さい単位とすることがで
き、基準板2のパターンの段差dは光学的にパターンを
識別できればよいから小さくできる。また最近の研磨技
術によれば半導体ウェハ1の素材ウェハの厚みのバラツ
キは小さく、そりの問題となる高温熱処理工程、成膜工
程で発生するそりが厚みのバラツキより大きい。また半
導体ウェハlに形成されている多数の集積回路等のパタ
ーン1aのうち、集積回路等は違っていても同じパター
ン部分のみを測定箇所とするようにコントロール部10
6、その位置座標情報を設定しておけば、半導体ウェハ
1表面の凹凸段差によるそり値への影響を無くすことが
できる。したがって本装置によれば、集積回路等の製造
歩留りの向上の対策を溝じるに十分な精度のそり値を知
ることができる。
The minute movement distance of the objective lens 6 is determined by the objective lens drive mechanism 7.
The combination of gears can be made into an extremely small unit, and the step d of the pattern on the reference plate 2 can be made small as long as the pattern can be identified optically. Furthermore, according to recent polishing techniques, the variation in the thickness of the raw wafer of the semiconductor wafer 1 is small, and the warpage that occurs during the high-temperature heat treatment process and film formation process, which cause warpage problems, is larger than the variation in thickness. Further, among the patterns 1a of a large number of integrated circuits etc. formed on the semiconductor wafer l, the control unit 10 controls the measurement points so that only the same pattern portions are measured even if the integrated circuits etc. are different.
6. By setting the position coordinate information, it is possible to eliminate the influence of uneven steps on the surface of the semiconductor wafer 1 on the warpage value. Therefore, according to the present device, it is possible to know the warpage value with sufficient accuracy to take measures to improve the manufacturing yield of integrated circuits and the like.

第8図は基準板2の他の例を示す部分斜視図である。こ
の基準板21は金属製であって平坦な主面21aに対し
、腐蝕処理を施し結晶粒界21bを露呈させである。結
晶粒界21bは寸法が小さく、周知の如く通常の金属顕
微鏡で容易に観察できるものであるから、第2図で説明
した水準板2と同等の効果を有する。
FIG. 8 is a partial perspective view showing another example of the reference plate 2. FIG. This reference plate 21 is made of metal, and has a flat main surface 21a subjected to corrosion treatment to expose grain boundaries 21b. Since the grain boundaries 21b are small in size and can be easily observed with an ordinary metallurgical microscope as is well known, they have the same effect as the level plate 2 described in FIG. 2.

第4図もまた基準板2の他の例を示す部分斜視図である
。この基準板22は、半導体ウエノ11を製造するため
に用いたマスクまたは同種のマスクである。製造に多種
類のマスクを要していた場合には、そのうちの1柚類の
マスクでよい。この基準板22の主面22aは勿論、平
坦であり、半導体ウェハ1の集積回路等のパターン1a
のうちのどれか1種類に対応するパターン22bが例え
ばクロム簿膜等で形成されているので第2図で説明した
基準板2と同等の効果を有する。
FIG. 4 is also a partial perspective view showing another example of the reference plate 2. As shown in FIG. This reference plate 22 is a mask used for manufacturing the semiconductor wafer 11 or a similar type of mask. If many types of masks are required for manufacturing, just one of them will suffice. The main surface 22a of this reference plate 22 is of course flat, and the pattern 1a of the integrated circuit etc. of the semiconductor wafer 1 is
Since the pattern 22b corresponding to one of these types is formed of, for example, a chrome film or the like, it has the same effect as the reference plate 2 described in FIG. 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b) (c)はそれぞれ本発明のそり
測定装置を説明するための概略構成図、部分斜視図、部
分断面図であり、第2図、第8図および第4図はそれぞ
れ本発明に用いる基準板の例を示す部分斜視図である。 1は半導体ウェハ、2は基準板、8・はスキャンニング
・ステージ機構、4は光学顕微鏡、6はテレビ・カメラ
、6は対物レンズ、7は対物レンズ駆動機構、8はスト
ッパ、9は画像処理部、10はコントロール部、11は
データ処理部である。 なお図中、同一符号は同一または相当部分を示す。 代理人 葛野信− 第1図 (α) 第2図 第1図 第3図 第4図 手続補正書(自発) 特許f’l長官殿 1、事(’Iの表示    特願昭56−157757
号2、発明の名称    半導体ウェハのそ)動電装置
3、補正をする者 事件との関係   特11′「出願人 δ、NI正の対象 明細物の発明の詳細な説明の鞠 6、補正の内容
1(a), 1(b), and 1(c) are a schematic configuration diagram, a partial perspective view, and a partial sectional view for explaining the warp measuring device of the present invention, respectively, and FIGS. 2, 8, and 4 are FIG. 3 is a partial perspective view showing an example of a reference plate used in the present invention. 1 is a semiconductor wafer, 2 is a reference plate, 8 is a scanning stage mechanism, 4 is an optical microscope, 6 is a television camera, 6 is an objective lens, 7 is an objective lens drive mechanism, 8 is a stopper, 9 is an image processing 10 is a control section, and 11 is a data processing section. In the drawings, the same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 (α) Figure 2 Figure 1 Figure 3 Figure 4 Procedural amendment (spontaneous) To the Director of Patent f'l 1, Matter (Indication of 'I' Patent application 157757-1972)
No. 2, Name of the invention Electrodynamic device of semiconductor wafer 3, Relationship with the case of the person making the amendment Special feature 11' ``Applicant δ, Detailed description of the invention of the subject matter of NI Positive 6, Amendment Content

Claims (1)

【特許請求の範囲】 (1ン同一の集積回路等のパターンが繰り返し配置・形
成されている半導体ウェハのそり測定装置において、半
導体ウェハの載置される基準板、上記半導体ウェハ及び
基準板を二次元移動させるスキャンニング・ステージ機
構、上記パターンの光学像の一部を拡大する光学顕微鏡
、上記拡大光学像を光電変換するテレビ・カメラ、テレ
ビ・カメラの映像信号の2値化及び2値化画像面内の“
1″又は“0″レベル領域の相対的な全面積の計測が可
能な画像処理部、上記光学顕微鏡の対物レンズ位置を段
階的に一定の微小移動距離の繰り返しで上方又は下方へ
移動でき、かつ対物レンズ位置の最上端を設定するスト
ッパを有する対物レンズ駆動機構、上記スキャンニング
・ステージ機構、画像処理部及び対物レンズ駆動機構を
作動・制御するコントロール部、上記半導体ウェハ面上
の位置座標、そ秒置等を算出し表示するデータ処理部よ
り構成されていることを特徴とする半導体ウェハのそり
測定装置。 (2)基準板は、平坦なその主面に格子状等のパターン
が付与されていることを特徴とする特許請求の範囲第(
1)項記載の半導体ウェハのそり測定装置。 (3)基準板が、金属性であってその平坦な主面は腐蝕
等により結晶粒界を露呈していることを特徴とする特許
請求の範囲第(1)項記載の半導体ウェハのそり測定装
置。 (4)基準板が、被測定試料の半導体ウェハを製造する
ために用いたマスクまたは同種のマスクであることを特
徴とする特許請求の範囲第(1)項記載の半導体ウェハ
のそり測定装置。
[Scope of Claims] (In a semiconductor wafer warpage measuring device in which the same pattern of integrated circuits, etc. is repeatedly arranged and formed, a reference plate on which a semiconductor wafer is placed, the semiconductor wafer and the reference plate, A scanning stage mechanism that moves the dimension, an optical microscope that magnifies a part of the optical image of the pattern, a television camera that photoelectrically converts the expanded optical image, and binarization of the video signal of the television camera and a binarized image. “ within the plane”
an image processing unit capable of measuring the relative total area of the 1" or "0" level region, capable of moving the objective lens position of the optical microscope stepwise upward or downward by repeating a certain minute movement distance, and An objective lens driving mechanism having a stopper for setting the uppermost position of the objective lens, the scanning stage mechanism, an image processing section and a control section for operating and controlling the objective lens driving mechanism, positional coordinates on the semiconductor wafer surface, and the like; A semiconductor wafer warpage measurement device comprising a data processing unit that calculates and displays the second position, etc. (2) The reference plate has a flat main surface provided with a pattern such as a grid. Claim No. (
1) The semiconductor wafer warpage measuring device described in item 1). (3) Measurement of warpage of a semiconductor wafer according to claim (1), wherein the reference plate is made of metal and has a flat main surface that exposes grain boundaries due to corrosion or the like. Device. (4) The semiconductor wafer warpage measuring device according to claim (1), wherein the reference plate is a mask used to manufacture a semiconductor wafer as a sample to be measured or a mask of the same type.
JP15775781A 1981-10-02 1981-10-02 Measuring device for warp of semiconductor wafer Granted JPS5858740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15775781A JPS5858740A (en) 1981-10-02 1981-10-02 Measuring device for warp of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15775781A JPS5858740A (en) 1981-10-02 1981-10-02 Measuring device for warp of semiconductor wafer

Publications (2)

Publication Number Publication Date
JPS5858740A true JPS5858740A (en) 1983-04-07
JPS629217B2 JPS629217B2 (en) 1987-02-27

Family

ID=15656665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15775781A Granted JPS5858740A (en) 1981-10-02 1981-10-02 Measuring device for warp of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS5858740A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131911A (en) * 1984-07-25 1986-02-14 Toshiba Corp Surface inspecting device
JPS61124809A (en) * 1984-11-22 1986-06-12 Hitachi Ltd Inspection and inspecting apparatus
JPS6227606A (en) * 1985-07-29 1987-02-05 Hitachi Electronics Eng Co Ltd Pattern inspecting method by focus scanning
JPS62156507A (en) * 1985-12-04 1987-07-11 ケイエルエイ・インストラメンツ・コ−ポレ−シヨン Optical inspection device inspecting surface of three-dimensional body
CN113555292A (en) * 2020-04-23 2021-10-26 海太半导体(无锡)有限公司 System for monitoring substrate bending

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142511A (en) * 1987-11-27 1989-06-05 Mitsubishi Cable Ind Ltd Method for assembling connector for multi-fiber optical cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131911A (en) * 1984-07-25 1986-02-14 Toshiba Corp Surface inspecting device
JPH047807B2 (en) * 1984-07-25 1992-02-13 Tokyo Shibaura Electric Co
JPS61124809A (en) * 1984-11-22 1986-06-12 Hitachi Ltd Inspection and inspecting apparatus
JPS6227606A (en) * 1985-07-29 1987-02-05 Hitachi Electronics Eng Co Ltd Pattern inspecting method by focus scanning
JPS62156507A (en) * 1985-12-04 1987-07-11 ケイエルエイ・インストラメンツ・コ−ポレ−シヨン Optical inspection device inspecting surface of three-dimensional body
CN113555292A (en) * 2020-04-23 2021-10-26 海太半导体(无锡)有限公司 System for monitoring substrate bending

Also Published As

Publication number Publication date
JPS629217B2 (en) 1987-02-27

Similar Documents

Publication Publication Date Title
US7158233B2 (en) Alignment mark, alignment apparatus and method, exposure apparatus, and device manufacturing method
KR100512838B1 (en) Exposure method and device therefor
KR101516937B1 (en) Inspection method and inspection apparatus
US9207189B2 (en) Sample support apparatus
WO2010032857A1 (en) Pattern inspection device and method
US8017424B2 (en) Dual-sided substrate measurement apparatus and methods
JP4323608B2 (en) Exposure apparatus and device manufacturing method
JPH01202607A (en) Detection of difference for repeated fine pattern
JP3211491B2 (en) Projection exposure apparatus and semiconductor manufacturing method and apparatus using the same
US4880309A (en) Dark field target design system for alignment of semiconductor wafers
JPH07297119A (en) Method for position detection
JPS5858740A (en) Measuring device for warp of semiconductor wafer
KR20170105024A (en) Pre-alignment measuring device and method
JP2539778B2 (en) Inspection method and inspection device
JP2009010139A (en) Exposure apparatus and device manufacturing method
JPH11307567A (en) Manufacture of semiconductor device containing bump inspection process
US7626691B2 (en) Apparatus and method for inspecting overlay patterns in semiconductor device
JPH09101116A (en) Automatic focusing method and its device, and pattern detection method and its device
JP4304413B2 (en) Reticle level measurement method for semiconductor exposure apparatus
JPH06308040A (en) Foreign matter inspection device
KR20170078902A (en) method of detecting pattern image in substrate and method of inspecting substrate using the same
JPH11264718A (en) Position grasping method of wafer, and exposing method and exposing device thereof
JPH0536768A (en) Probe apparatus
JP4665679B2 (en) Photomask, distortion detection apparatus thereof, and method of manufacturing semiconductor integrated circuit
JP2011022100A (en) Substrate inspection device, and method for acquiring defect distribution on substrate in the substrate inspection device