[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5856001A - N:1 backup system for decentralized microcontroller power source - Google Patents

N:1 backup system for decentralized microcontroller power source

Info

Publication number
JPS5856001A
JPS5856001A JP15378381A JP15378381A JPS5856001A JP S5856001 A JPS5856001 A JP S5856001A JP 15378381 A JP15378381 A JP 15378381A JP 15378381 A JP15378381 A JP 15378381A JP S5856001 A JPS5856001 A JP S5856001A
Authority
JP
Japan
Prior art keywords
controller
controllers
control
priority
slc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15378381A
Other languages
Japanese (ja)
Inventor
Akihiro Tsuji
辻 明弘
Masayuki Kumazaki
昌幸 熊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP15378381A priority Critical patent/JPS5856001A/en
Publication of JPS5856001A publication Critical patent/JPS5856001A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/0709Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in a distributed system consisting of a plurality of standalone computer nodes, e.g. clusters, client-server systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

PURPOSE:To relieve a burden on an operator greatly when a power source is faulty, by monitoring the number of normal power sources and stopping the arithmetic of a controller in case of the fault of the power source in accordance with priority. CONSTITUTION:For example, if one of five power sources has a fault, the arithmetic of only a local controller SLC-4 with low priority is stopped to reduce the current consumption of the system. Then, a transmission controller SLC-5, a device master controller MC, a fuel system controller SLC-1, an air system controller SLC-2, and a water feed system controller SLC-3 which control a control system with high priority are allowed to perform arithmetic continuously. Thus, the number of normal power sources is monitored to allow the controllers to perform control, and as the number of faulty power sources increases, the arithmetic is stopped starting at the controller with the lowest priority. Consequently, automatic control by the controllers is performed.

Description

【発明の詳細な説明】 本発明は、分散型マイクロコントローラ電源めN:1バ
ックアップ方式に係り、特許、1台、2台と順に電源装
置が故障した場合に、優先順位の高い制御系を制御する
コントローラの自動制御を可能とするN:1バックアッ
プ方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distributed microcontroller power supply N:1 backup system, which controls a control system with a high priority when one power supply fails, then two power supplies fail in that order. The present invention relates to an N:1 backup method that enables automatic control of controllers.

°゛従来分散型マイクロコントローラ電源のN:1バッ
クアップ方式は、電源装置の台数が、コントローラの消
費電流により決定されており、2台・ 以上の電源装置
が故障した場合、全コントローラは演算停止するため、
コントローラによる自動制御は不可能となっていた。こ
のため、それぞれのコントローラで制御されていた制御
系は、全て、手動操作に切替わるので、全ての制御を手
動操作で行なわなければならず、操作が困難となり、か
つ、熟練を要するという欠点があった。
° In the N:1 backup method of conventional distributed microcontroller power supplies, the number of power supplies is determined by the current consumption of the controller, and if two or more power supplies fail, all controllers will stop computing. For,
Automatic control by a controller was impossible. For this reason, all control systems that were previously controlled by individual controllers are switched to manual operation, so all controls must be performed manually, making operation difficult and requiring skill. there were.

本発明の目的は、分散型マイクロコントローラの電源の
N:1バックアップ方式において、2台以上の電源装置
が故障しても、全コントローラが・ 手動に切替わるこ
となく、優先順位の高い制御系は、コントローラによる
自動制御を継続させることにより、運転員の負担を軽減
でき、電源断時の信頼性が向上した制御装置を提供する
にある。
An object of the present invention is to use an N:1 backup system for the power supply of a distributed microcontroller, so that even if two or more power supplies fail, all controllers do not switch to manual mode, and the control system with the highest priority is It is an object of the present invention to provide a control device that can reduce the burden on an operator and improve reliability when the power is cut off by continuing automatic control by a controller.

従来の分散型マイクロコントローラ電源のN:1バック
アップ方式は、2台以上の電源装置が故障した場合、全
コントローラを演算停止させている。本発明では、電源
装置が1台、2台と故障するにつれて、優先順位の低い
制御系を制御するコントローラから順に演算を停止させ
、コントローラ全体の消費を流を減らすことにより、優
先順位の高イ制御系は、コントローラによる自動制御を
可能とする。
In the conventional N:1 backup method of distributed microcontroller power supplies, if two or more power supplies fail, all controllers stop operating. In the present invention, as one or two power supplies fail, the controllers that control the control system with the lowest priority stop calculations in order, reducing the consumption of the entire controller. The control system enables automatic control by a controller.

以下、本発明の全体構成及び、動作の説明を第1図〜第
3図により行なう。第1図は、火力発電プラントにおけ
るプラント統括制御装置の例を示す。
The overall configuration and operation of the present invention will be explained below with reference to FIGS. 1 to 3. FIG. 1 shows an example of a plant integrated control device in a thermal power plant.

全体構成は、従来のN:1バックアップ方式と同じで、
第1図の場合は、4:1バツクアツプ用の電源とマスク
制御部、サブループ制御部を受持つマイクロコントロー
ラ群(S LC−1〜8 LC−4)、さらに、t(/
A切替部Tより成る。この4:1バックアップ方式は、
第2図に示すように、5台のうち何台の電源が故障して
も、優先順位の高いコントローラは、自動制御可能なよ
うに消費電流を考慮し、電源台数を決定している。この
システムにおいて、従来電源が2台以上故障した場′合
゛、すべてのコントローラの駆動電流を供給できなくな
り、全コントローラを停止させ、H/A切替切替部子動
に切替えていた。本発明のシステムでは第3図のように
、各コントローラはそれぞれ電源が何台正常かを監視し
ており、正常電源台数により、どのコントローラを動作
させるかを、インターロック的に決定しておけば、コン
トローラの優先順位が決定される。
The overall configuration is the same as the conventional N:1 backup method,
In the case of FIG.
It consists of A switching section T. This 4:1 backup method is
As shown in FIG. 2, the controller with a higher priority determines the number of power supplies in consideration of current consumption so that automatic control can be performed no matter how many of the five power supplies fail. In this system, conventionally, if two or more power supplies failed, it became impossible to supply drive current to all controllers, all controllers were stopped, and the H/A switching section was switched to slave operation. In the system of the present invention, as shown in Fig. 3, each controller monitors how many power supplies are normal, and it is possible to determine which controller to operate based on the number of normal power supplies in an interlock manner. , the controller priorities are determined.

すなわち、次のようにマイクロコントローラの優先順位
を決めておく。
That is, the priorities of the microcontrollers are determined as follows.

(1)  伝送コントローラ(SLC−5)(2)  
ユニットマスクコントローラ(MC)(3)燃料系コン
トローラ(8LC−1)(4)  空気系コントローラ
(SLC−2)(5)給水系コントローラ(SLC−3
)(6)  ローカル制御系コントローラ(8LC−4
)各コントローラの中で、ローカル制御系コントローラ
5LC−4は、プラント運転中において、NO×制御、
温度制御等の特にプラントの運転に影響を与える割合が
比較的少ない制御であり、手動操作を行なうのは、それ
ほどの困難ではないため、このコントローラの優先順位
を低くしておく。
(1) Transmission controller (SLC-5) (2)
Unit mask controller (MC) (3) Fuel system controller (8LC-1) (4) Air system controller (SLC-2) (5) Water supply system controller (SLC-3)
) (6) Local control system controller (8LC-4
) Among the controllers, the local control system controller 5LC-4 controls NOx control,
Since this control, such as temperature control, has a relatively small influence on plant operation, and it is not very difficult to perform manual operation, this controller is given a low priority.

すなわち、5台全ての電源が正常で動作し、正常電源が
4台以下となった場合に、ローカル制御コントローラ5
LC−4,を停止させるようにインターロックを組んで
おく。これは、第2図に示すように、1台目の電源がダ
ウンした時は、全コントローラの消費電流は確保できる
が、2台目の電源がダウンした場合、ローカル制御系コ
ントローラ5LC−4が停止する前に、瞬時だが全コン
トローラを駆動するのに必要な消費電流以下になってし
まう。そのため、全コントローラが一時的に停止してし
まい、全制御系が瞬間的に手動に切替わる。この不具合
をなくすため、電源が1台ダウンした時、この手動操作
でもプラント運転に影響が少ないローカル制御系のコン
トローラ5LC−4を停止させれば、電源が2台ダウン
した瞬間でも、残りのコントローラを駆動するのに必要
な消費電流は確保されるので、全コントローラが、一時
的にでも停止することはない。つまり、電源が何台′ダ
ウンしても動作中のコントローラに対しては、常にN:
1のバックアップが行なわれているように考慮する。
In other words, when all five power supplies are operating normally and the number of normal power supplies is four or less, the local control controller 5
Set up an interlock to stop the LC-4. This is because, as shown in Figure 2, when the power of the first unit goes down, the current consumption of all controllers can be secured, but when the power of the second unit goes down, the local control system controller 5LC-4 Before it stops, the current consumption drops below the amount required to drive all controllers, albeit instantaneously. As a result, all controllers temporarily stop, and the entire control system instantly switches to manual mode. In order to eliminate this problem, when one power supply goes down, if you stop the local control system controller 5LC-4, which has little effect on plant operation even with this manual operation, even if two power supplies go down, the remaining controllers Since the current consumption necessary to drive the controllers is secured, all controllers will not stop even temporarily. In other words, no matter how many controllers are powered down, the number of controllers that are still operating is always N:
1 backup is being performed.

同様に、給水系5LC−3、空気系コントローラ5LC
−2は5台中4台以上の電源が正常に動作し、正常電源
が3台以下となった場合、コントローラを停止させるよ
うにインターロックを組んでおく。このように正常電源
台数を監視することにより、故障電源台数が増えるにつ
れて、優先順位の低いコントローラから順に演算を停止
させれば、重要な制御系については、電源台数が少なく
なってもコントローラによる自動制御が可能となり、電
源異常時における運転員の負担が大幅に減少する。
Similarly, water supply system 5LC-3, air system controller 5LC
-2: If four or more out of five power supplies are operating normally, and three or less power supplies are operating normally, an interlock is set up to stop the controller. By monitoring the number of normal power supplies in this way, as the number of failed power supplies increases, if the calculations are stopped in order from the controllers with the lowest priority, important control systems can be automatically controlled by the controller even if the number of power supplies decreases. control becomes possible, greatly reducing the burden on operators in the event of a power outage.

本発明によれば、分散型マイクロコントローラ電源のN
:1バックアップ方式における2台以上の電源装置故障
時に、全てのコントローラが停止し、制御系が手動に切
替わることなく、重要な制御系については、コントロー
ラによる制御が可能となり、電源断時の運転員の操作量
を軽減すると同時に、制御装置自体の信頼性が向上する
According to the invention, N of the distributed microcontroller power supply
:1 When two or more power supplies fail in the backup method, all controllers stop and the control system does not switch to manual mode, and important control systems can be controlled by the controller, allowing operation even when the power is cut off. At the same time, the reliability of the control device itself is improved while reducing the amount of operation required by the operator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分散型マイクロコントローラを用いた制御装置
のシステム構成図、第2図はシステムを構成するコント
ローラの台数と、コントローラの消費電流による電源台
数の関係図、第3図は電源断時にどのコントローラを動
作させるかを決定するためのインターロック回路図であ
る。 MC・・・マスクコントローラ、SLC・・・サフルー
プコントローラ、H/A・・・ハン)’、 、t−ト切
L T(5埋tt5!L、) 早 3 図 (θ (2)
Figure 1 is a system configuration diagram of a control device using a distributed microcontroller, Figure 2 is a diagram showing the relationship between the number of controllers that make up the system and the number of power supplies depending on the controller's current consumption, and Figure 3 shows how FIG. 4 is an interlock circuit diagram for determining whether to operate the controller. MC...Mask controller, SLC...Safloop controller, H/A...Han)', , t-cut L T (5 filled tt5!L,) Fast 3 Figure (θ (2)

Claims (1)

【特許請求の範囲】[Claims] 1、分散型マイクロコントローラ用電源のN:1バック
アップ方式において、電源装置が故障した場合、優先順
位の低い制御系を制御するコントローラのみを演算停止
することにより、システムの消費電流を減らし、優先順
位の高い制御系を制御する制御系のコントローラは、演
算を続行させて、前記コントローラによる制御が可能で
あるように、正常な電源台数を監視することにより、前
記電源装置故障時の前記コントローラの演算停止を優先
順位に従って行なうことを特徴とする分散型マイクロコ
ントローラ電源のN:1/<ツクアップ方式。
1. In the N:1 backup method of the power supply for distributed microcontrollers, if the power supply fails, only the controller that controls the control system with a lower priority will stop operating, thereby reducing system current consumption and increasing the priority A controller of a control system that controls a control system with a high level of power continues calculation and monitors the number of normal power supplies so that control by the controller is possible. An N:1/< pull-up method for a distributed microcontroller power supply characterized by stopping according to priority.
JP15378381A 1981-09-30 1981-09-30 N:1 backup system for decentralized microcontroller power source Pending JPS5856001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15378381A JPS5856001A (en) 1981-09-30 1981-09-30 N:1 backup system for decentralized microcontroller power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15378381A JPS5856001A (en) 1981-09-30 1981-09-30 N:1 backup system for decentralized microcontroller power source

Publications (1)

Publication Number Publication Date
JPS5856001A true JPS5856001A (en) 1983-04-02

Family

ID=15570038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15378381A Pending JPS5856001A (en) 1981-09-30 1981-09-30 N:1 backup system for decentralized microcontroller power source

Country Status (1)

Country Link
JP (1) JPS5856001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531129A (en) * 2004-03-31 2007-11-01 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Sequence control of functions of interactive equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531129A (en) * 2004-03-31 2007-11-01 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Sequence control of functions of interactive equipment

Similar Documents

Publication Publication Date Title
JPS5856001A (en) N:1 backup system for decentralized microcontroller power source
JPH07160370A (en) Service interruption controller
JP3169859B2 (en) Parallel operation power supply control method
JPS56140430A (en) Multiprocessor processing system
JPH0540649A (en) Redundant switching system
US6507916B1 (en) Method and circuit arrangement for using two processors to read values of two independently clocked counters, exchanging values therebetween, comparing two values to determine error when the comparison exceed a threshold
JP2564730Y2 (en) Power load shedding control device
JPH078068B2 (en) Central control device
JPH05333968A (en) Information processing system
JPH04130910A (en) Information processor
JPH04112630A (en) Battery backup unit
JPH01238436A (en) Lighting controller
JPS5920056A (en) Setting system of unit in use in duplicated constituting device
JPH11184572A (en) Power supplier
JPS56143073A (en) Multiprocessor processing system
JPH01231622A (en) Power source control system
JPS60239801A (en) Automatic operation control method of control loop
JPS61221941A (en) Back up device for programmable controller
JPS6212537B2 (en)
JPS5539948A (en) Malfunction preventing device of control system
JPS5816497B2 (en) Data processing system with system common parts
JPS62162150A (en) Managing device for input-output controller
JPH05233345A (en) Redundant switching system
JPS6121502A (en) Controller
JPS59172931A (en) Power source energizing control circuit