[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5856989B2 - Optical branching device - Google Patents

Optical branching device

Info

Publication number
JPS5856989B2
JPS5856989B2 JP6835075A JP6835075A JPS5856989B2 JP S5856989 B2 JPS5856989 B2 JP S5856989B2 JP 6835075 A JP6835075 A JP 6835075A JP 6835075 A JP6835075 A JP 6835075A JP S5856989 B2 JPS5856989 B2 JP S5856989B2
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
amplification element
light
semiconductor amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6835075A
Other languages
Japanese (ja)
Other versions
JPS51144656A (en
Inventor
健 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6835075A priority Critical patent/JPS5856989B2/en
Publication of JPS51144656A publication Critical patent/JPS51144656A/en
Publication of JPS5856989B2 publication Critical patent/JPS5856989B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4212Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element being a coupling medium interposed therebetween, e.g. epoxy resin, refractive index matching material, index grease, matching liquid or gel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 この発明はダブルへテロ接合構造をもつ分布帰還形半導
体増幅素子を光分岐又は挿入素子として使用した光分岐
挿入装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical add/drop multiplexer using a distributed feedback type semiconductor amplification element having a double heterojunction structure as an optical drop/add element.

光フアイバ装置はクロス・トーク(crosstalk
)’L容易に小さくすることができるうえ、空間利用度
が良いことから電子計算機のデータバス等への適用が期
待され盛かんに開発されている。
Fiber optic equipment suffers from crosstalk.
)'L Since it can be easily made small and has good space utilization, it is expected to be applied to data buses of electronic computers and has been actively developed.

ところでこの稲光ファイバ装置では光ファイバからの光
信号の分岐および光ファイバへの光信号の挿入が基礎技
術として重要視されている。
By the way, in this lightning fiber device, branching of an optical signal from an optical fiber and insertion of an optical signal into the optical fiber are regarded as important basic technologies.

従来、このような光フアイバ装置としては光フアイバ間
に光分岐あるいは挿入装置を挿入して光信号の分岐ある
いは挿入を行うようにしたものが種々知られているが、
いずれも光信号の分岐、挿入時の損失が大きい欠点があ
った。
Conventionally, various types of optical fiber devices have been known in which optical branching or adding devices are inserted between optical fibers to drop or add optical signals.
Both methods have the disadvantage of large losses during branching and insertion of optical signals.

この発明はこのような欠点を除去するために考えられた
もので、光信号の分岐、挿入時における光信号の損失を
小さく抑えることができる光分岐挿入装置を提供するも
のである。
The present invention has been devised to eliminate these drawbacks, and provides an optical add/drop multiplexer that can minimize loss of optical signals during drop/add of optical signals.

以下、この発明の一実施例を回向を参照して説明する。Hereinafter, one embodiment of the present invention will be described with reference to Eko.

図中1はダブルへテロ接合構造をもつ分布帰還形半導体
増幅素子である。
In the figure, numeral 1 is a distributed feedback semiconductor amplification element having a double heterojunction structure.

この半導体増幅素子1はGaAs活性層2の一方側にn
−Ca gog Al□、1As層4およびn−Ga
As層5を順次外側へ接合するとともに上記GaAs活
性層2の他方側にpGao、9 Al□、、As層6お
よびp−GaAs層7を順次外側へ接合してダブルへテ
ロ接合構造としている。
This semiconductor amplifying element 1 has n
-Ca gog Al□, 1As layer 4 and n-Ga
The As layer 5 is sequentially bonded outward, and the pGao, 9 Al□, As layer 6 and p-GaAs layer 7 are sequentially bonded outward to the other side of the GaAs active layer 2 to form a double heterojunction structure.

そして前記n −Ga□、 g Alo、 I As層
3とn−Gao、7 A70.B As層4を光導波路
とし、その両層3,4の接合面に上記光導波路に沿って
周期的な凹凸をもつうわ構造8を形成している。
And the n-Ga□, gAlo, IAs layer 3 and n-Gao, 7 A70. The BAs layer 4 is used as an optical waveguide, and a wafer structure 8 having periodic irregularities along the optical waveguide is formed on the joint surface of both layers 3 and 4.

このうね構造8はその長さをブラッグ反射による分布帰
還によって半導体増幅素子1が発振しないように所定の
長さに制限している。
The length of the ridge structure 8 is limited to a predetermined length so that the semiconductor amplifying element 1 does not oscillate due to distributed feedback due to Bragg reflection.

つまり、上記うね構造8の長さは、半導体増幅素子1が
発振して自ら光を発することのないように制限されてい
る。
That is, the length of the ridge structure 8 is limited so that the semiconductor amplifying element 1 does not oscillate and emit light by itself.

また、前記半導体増幅素子1はそ・のnGaAs層5の
外側に中央部を開口した負極用コンタクト9を接合する
とともにそのp−GaAs層7の外側に正極用コンタク
ト10を接合し、その各コンタクト9,10間に直流電
圧を印加するようにしている。
Further, in the semiconductor amplifying element 1, a negative electrode contact 9 having an opening in the center is bonded to the outside of the nGaAs layer 5, and a positive electrode contact 10 is bonded to the outside of the p-GaAs layer 7, and each of the contacts A DC voltage is applied between 9 and 10.

前記半導体素子1の光導波路の両端面にそれぞれ第11
第2の光ファイバ11.12を透明なエポキシ樹脂によ
って接着するとともに、上記半導体増幅素子1の負極用
コンタクト9の開口部に第3の光ファイバ13を透明な
エポキシ樹脂によって接着している。
Eleventh electrodes are provided on both end faces of the optical waveguide of the semiconductor element 1, respectively.
The second optical fibers 11 and 12 are bonded with transparent epoxy resin, and the third optical fiber 13 is bonded to the opening of the negative electrode contact 9 of the semiconductor amplification element 1 with transparent epoxy resin.

前記半導体増幅素子1はそのうね構造8の凹凸の周期間
隔Aを等価屈折率(真空中の位相速題/′光導波路中の
位相速度)&nとし、光の波長をλ。
The semiconductor amplifying element 1 has an equivalent refractive index (phase velocity in vacuum/'phase velocity in an optical waveguide) &n, where the periodic interval A of the unevenness of the ridge structure 8 is λ, and the wavelength of light is λ.

とじたとき、光が光導波路に対して垂直方向へ放射する
ように A=−Xλ。
A=-Xλ so that the light radiates perpendicularly to the optical waveguide when closed.

(ただしmは整数)に設定している。このような構成に
おいて半導体増幅素子1を発振動作レベル以下で動作す
るようにすれば、半導体増幅素子1は光増幅器としての
機能を有するので、光分岐又は挿入素子として作用する
(where m is an integer). In such a configuration, if the semiconductor amplification element 1 is operated at a level below the oscillation operation level, the semiconductor amplification element 1 has a function as an optical amplifier, and thus acts as an optical branching or adding element.

すなわち第1の光フアイバ11側から伝送される光は半
導体増幅素子1の5ね構造8によって第3の光フアイバ
13側へ分岐される。
That is, the light transmitted from the first optical fiber 11 side is branched to the third optical fiber 13 side by the five-way structure 8 of the semiconductor amplification element 1.

また第2のファイバ12側から伝送される光は半導体増
幅素子1中に入射すると増幅されて第2の光フアイバ1
1側へ分岐されるとともに半導体増幅素子1のうね構造
8によって第3の光フアイバ13側へ分岐される。
Furthermore, when the light transmitted from the second fiber 12 side enters the semiconductor amplification element 1, it is amplified and transferred to the second optical fiber 1.
1 side, and is also branched to the third optical fiber 13 side by the ridge structure 8 of the semiconductor amplification element 1 .

しかして半導体増幅素子1は分岐素子としての作用をな
す。
Thus, the semiconductor amplifying element 1 functions as a branching element.

そしてこの場合第1の光ファイバ11から半導体増幅素
子1を介して第2、第3の光ファイバ12.13へ分岐
される光、あるいは逆に第2の光ファイバ12から半導
体増幅素子1を介して第1、第3の光ファイバ11.1
3へ分岐される光は半導体増幅素子1の増幅作用によっ
てほとんど減衰することがないから分岐時における損失
をきわめて小さくすることができる。
In this case, the light is branched from the first optical fiber 11 via the semiconductor amplification element 1 to the second and third optical fibers 12.13, or conversely, the light is branched from the second optical fiber 12 via the semiconductor amplification element 1. first and third optical fibers 11.1
Since the light branched into 3 is hardly attenuated by the amplification effect of the semiconductor amplification element 1, the loss at the time of branching can be extremely reduced.

また第3の光ファイバ13を介して挿入された光は半導
体増幅素子1のうね構造8によって分岐され、その一方
が第1の光フアイバ11側へ伝送されるとともにその他
方が第2の光フアイバ12側へ伝送される。
Further, the light inserted through the third optical fiber 13 is split by the ridge structure 8 of the semiconductor amplification element 1, one of which is transmitted to the first optical fiber 11 side, and the other is transmitted to the second optical fiber 11 side. The signal is transmitted to the fiber 12 side.

しかして半導体増幅素子1は挿入素子としての作用をな
す。
Thus, the semiconductor amplification element 1 acts as an insertion element.

そしてこの場合第3の光ファイバ13から半導体増幅素
子1を介して第11第2の光ファイバ11.12に分岐
される光は半導体増幅素子1の増幅作用によってほとん
ど減衰することがないので、挿入時における損失をきわ
めて小さくすることができる。
In this case, the light branched from the third optical fiber 13 via the semiconductor amplification element 1 to the eleventh and second optical fibers 11 and 12 is hardly attenuated by the amplification effect of the semiconductor amplification element 1, so It is possible to minimize the loss in time.

このように本発明によれば所定の長さのうね構造を有し
、ダブルへテロ接合構造をもつ分布帰還形半導体増幅素
子を発振動作レベル以下で動作させることにより光分岐
又は挿入素子として使用しているので、光信号の分岐又
は挿入時における光信号の損失を小さく抑えることがで
きる光分岐挿入装置を提供できるものである。
As described above, according to the present invention, a distributed feedback semiconductor amplifier element having a ridge structure of a predetermined length and a double heterojunction structure can be used as an optical branching or adding element by operating it below the oscillation operation level. Therefore, it is possible to provide an optical add/drop multiplexer that can suppress optical signal loss during drop/add of optical signals.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の一実施例を示す断面図である。 1・・・・・・分布帰還形半導体増幅素子、80190
1.つね構造、11,12,13・・・・・・光ファイ
バ。
The figure is a sectional view showing an embodiment of the present invention. 1...Distributed feedback semiconductor amplification element, 80190
1. Always structure, 11, 12, 13... optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 光導波路を形成するGaAlAs層に、その光導波
路に沿って周期的な凹凸をもつうわ構造を上記光導波路
に導入された光がブラッグ反射による分布帰還によって
発振することのない長さに制限して設け、上記導入され
た光を前記光導波路に沿って増幅させるとともに、上記
うね構造による回折効果によって前記光導波路に対して
垂直方向へ光を放射させるダブルへテロ接合構造をもつ
分布帰還形半導体増幅素子と、この半導体増幅素子の光
入出力端面にそれぞれ接続した光ファイバとからなり、
前記半導体増幅素子をその発振動作レベル以下で動作さ
せることによって前記光導波路に導入された光を分岐あ
るいは合波挿入してなることを特徴とする光分岐挿入装
置。
1. The GaAlAs layer forming the optical waveguide has a wafer structure with periodic irregularities along the optical waveguide, which is limited to a length that prevents the light introduced into the optical waveguide from oscillating due to distributed feedback due to Bragg reflection. Distributed feedback type having a double heterojunction structure, which amplifies the introduced light along the optical waveguide and radiates the light in a direction perpendicular to the optical waveguide due to the diffraction effect of the ridge structure. Consists of a semiconductor amplification element and optical fibers connected to the optical input and output end faces of this semiconductor amplification element,
An optical add/drop multiplexer, characterized in that the light introduced into the optical waveguide is branched or multiplexed/added by operating the semiconductor amplification element below its oscillation operation level.
JP6835075A 1975-06-06 1975-06-06 Optical branching device Expired JPS5856989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6835075A JPS5856989B2 (en) 1975-06-06 1975-06-06 Optical branching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6835075A JPS5856989B2 (en) 1975-06-06 1975-06-06 Optical branching device

Publications (2)

Publication Number Publication Date
JPS51144656A JPS51144656A (en) 1976-12-11
JPS5856989B2 true JPS5856989B2 (en) 1983-12-17

Family

ID=13371280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6835075A Expired JPS5856989B2 (en) 1975-06-06 1975-06-06 Optical branching device

Country Status (1)

Country Link
JP (1) JPS5856989B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428333A1 (en) * 1978-06-09 1980-01-04 Thomson Csf "LASER" WITH DISTRIBUTED REFLECTOR
JPS5542393U (en) * 1978-09-14 1980-03-18
JPS55171962U (en) * 1979-05-29 1980-12-10
JPS57170582A (en) * 1981-04-15 1982-10-20 Nec Corp Semiconductor laser
JPH01291207A (en) * 1988-05-18 1989-11-22 Furukawa Electric Co Ltd:The Juncture of different optical lines

Also Published As

Publication number Publication date
JPS51144656A (en) 1976-12-11

Similar Documents

Publication Publication Date Title
JPH01168077A (en) Dynamic photocoupler for integrated circuit
JPWO2018131227A1 (en) Semiconductor optical amplifier, method for manufacturing the same, and optical phase modulator
JPH0554717B2 (en)
US5471301A (en) Optical fiber gyro
JPH0883957A (en) Digital tuned integrated laser with multiple frequency operation
JPS5856989B2 (en) Optical branching device
JPS59135441A (en) Optical waveguide switch
JPS63116489A (en) Optical integrated circuit
JP2002156671A (en) Optical wavelength converter
JPS58137280A (en) Switch for optical guide
JPH0317633A (en) Optical inverter
JPH0511609B2 (en)
JPS62170907A (en) Integrated light emitting element
JP6381507B2 (en) Optical coupler, wavelength tunable light source and wavelength tunable light source module
JP4504175B2 (en) Semiconductor optical modulator
JPS59211015A (en) Optical multiplexer and demultiplexer
JPH0731314B2 (en) Optical signal modulator
US20030179441A1 (en) Polarisation insensitive optical amplifiers
JPS6333890A (en) Optical integrated circuit
JPS5941166B2 (en) semiconductor optical modulator
JPH0888436A (en) Ase light source
JPS6344208B2 (en)
JPS6310582A (en) Semiconductor laser array
JPS5929483A (en) Optical integrated circuit
JPS649750B2 (en)