[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5856454A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5856454A
JPS5856454A JP56155126A JP15512681A JPS5856454A JP S5856454 A JPS5856454 A JP S5856454A JP 56155126 A JP56155126 A JP 56155126A JP 15512681 A JP15512681 A JP 15512681A JP S5856454 A JPS5856454 A JP S5856454A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
layers
insulating layer
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56155126A
Other languages
Japanese (ja)
Inventor
Sunao Shibata
直 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56155126A priority Critical patent/JPS5856454A/en
Priority to US06/425,513 priority patent/US4500905A/en
Priority to EP82109010A priority patent/EP0075945B1/en
Priority to DE8282109010T priority patent/DE3278871D1/en
Publication of JPS5856454A publication Critical patent/JPS5856454A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06551Conductive connections on the side of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To reduce the delay of the propagation of a signal between semiconductor layers in a semiconductor device by communicating a signal between the layers with a contacting hole formed at an insulating layer on an oblique surface and a semiconductor element formed on the insulating layer. CONSTITUTION:An oblique surface 31 having an angle of theta (<90 deg.) to the main surface of each semiconductor layer is formed at the periphery of a chip over n-th semiconductor layer 11, (n+1)-th semiconductor layer 13 and an insulating layer 16 therebetween, a semiconductor layer 33 is formed through an insulating layer 32 thereon, and an MOS transistor having a source 34, a drain 35 and a gate 36 is formed. The source 34 of the MOS transistor is connected to the source 12 of the MOS transistor formed on the layer 11 through a through hole formed at the layer 32, a drain 35 is connected similarly to the drain 14 of the MOS transistor, the data at the n-th layer is selected at the gate 36, and is transmitted to (n+1)-th layer.

Description

【発明の詳細な説明】 本発明は半導体装置に係り特に、機能が多層に集積され
九半導体装置の層間でのすぐれた信号の伝達技術に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, and more particularly to an excellent signal transmission technique between layers of a semiconductor device in which functions are integrated in multiple layers.

近年、半導体集積回路に於ける集積度の向上はめざまし
く、特に、微細加工技術の著しい進歩によって、一平面
内では最少寸法が1μm程度の素子や配線が容易に形成
される様になっている。最近では、さらに集積度を上げ
る為、単なる一平面への集積ではなく、素子を集積形成
した半導体層を多層に積み上げたいわゆる三次元ICの
開発が盛んになって来ている0この様な三次元ICに於
ける基本的な問題の一つに、層間の信号の授受がある。
In recent years, there has been a remarkable increase in the degree of integration in semiconductor integrated circuits, and in particular, with remarkable progress in microfabrication technology, elements and interconnections with a minimum dimension of about 1 μm can now be easily formed in one plane. Recently, in order to further increase the degree of integration, the development of so-called three-dimensional ICs, in which semiconductor layers with integrated elements are stacked in multiple layers, has become active, rather than simply integrating them on one plane. One of the basic problems in original ICs is the transmission and reception of signals between layers.

つまりある層内で処理された信号を他の層に伝える配線
の形成には、多くの問題があった。
In other words, there are many problems in forming wiring that transmits signals processed in one layer to other layers.

第1図によって従来例の問題点を簡単に説明する。第1
図は多層に積層された■cに於ける2つの層間の配線を
例として簡単化した断面図で示したものである。即ち第
n番目の半導体層zxVc含4れるMOS )ランジス
タのドレイン12と第n + 1番目の半導体層13に
含まれるMOS )ランジスタのソース14とを電気的
に接続する場合を示している。ここで例えばドレイン1
2には、半導体層11内で処理されたデータがセレクト
・f−ト15を通して出力され、そのデータが層間絶縁
層16を介してその上部に形成された半導体層13内に
出来たMOS )ランゾスタのソース14に、導体11
を介して伝えられ、さらにその信号はセレクト・r−)
18を通ってこの半導体層13内の回路にとり込まれ信
号処理される。
The problems of the conventional example will be briefly explained with reference to FIG. 1st
The figure is a simplified cross-sectional view showing, as an example, the wiring between two layers in multi-layer stacked circuit board 1c. That is, a case is shown in which the drain 12 of the MOS transistor included in the n-th semiconductor layer zxVc is electrically connected to the source 14 of the MOS transistor included in the n+1-th semiconductor layer 13. For example, drain 1
2, the data processed in the semiconductor layer 11 is outputted through the select gate 15, and the data is transferred to the MOS transistor (MOS) formed in the semiconductor layer 13 formed on the top via the interlayer insulating layer 16. to the source 14 of the conductor 11
and the signal is transmitted via select r-)
18, and is taken into the circuit within this semiconductor layer 13 and subjected to signal processing.

さて、この様な層間配線の形成には、第a番目の半導体
層11への素子の集積形成を完了した後、例えば、5I
O2等の眉間絶縁層16をその上に設け、それにスルー
・ホールを形成する。
Now, in order to form such an interlayer wiring, for example, after completing the integration of elements in the a-th semiconductor layer 11,
A glabellar insulating layer 16, such as O2, is provided thereon and through holes are formed therein.

これに導体17として例えば不純物をドープした。j?
 IJシリコン等を充填し、次にその上に半導体層13
が形成され、これにMOS )ランジスタなどがつくり
込まれる。この場合、図に示したように、ソース14と
導体17をつなぐには深い拡散層19等を用いている。
This was doped with impurities as the conductor 17, for example. j?
Fill IJ silicon, etc., and then form a semiconductor layer 13 on top of it.
is formed, and MOS transistors and the like are built into it. In this case, as shown in the figure, a deep diffusion layer 19 or the like is used to connect the source 14 and the conductor 17.

この様な従来の構造では先ず細いスルーホールを歩留り
よく形成することが困難であシ、又、出来たスルー・ホ
ールに導電性材料をうまく充填することが極めて困難で
あった0 第2図にこの様な従来技術で構成された三次元ICの一
例を概念図で示す。即ちこれは5層の半導体層21〜2
5を積層して作られた1チ、デコンピエータであり、M
1層21および、第2#22はそれぞれI MbitR
AMになっており、第3層23は、信号処理を行うマイ
クロゾロセフす、即ち、CPU (中央演算装置)にな
っている。更に第4層24け、プログラムの保持されて
いる4MbitROMであり、最上層の第5層25け各
層への信号をコントロールしたり外部とのイアター7エ
イス等を含み且つシーケンサ−の機能等も含むコントロ
ーラである。かかる構成のチップを有効に機能させる為
には、各層間の信号の授受を自由に行うことが肝要であ
り、特に、コントローラ層は常に各層との信号をやりと
りをしている。従ってこの様な構造では、第5層から第
1層へのスリーホールの形成と導電性材料の充填技術が
必要とされ、これは大きな技術的困難をはらんでbた。
In such conventional structures, it was first difficult to form thin through holes with a good yield, and it was also extremely difficult to properly fill the formed through holes with conductive material. An example of a three-dimensional IC constructed using such a conventional technique is shown in a conceptual diagram. That is, this consists of five semiconductor layers 21 to 2.
It is a decompiler made by laminating 5 and M.
The first layer 21 and the second #22 are each I MbitR
The third layer 23 is a microprocessor that performs signal processing, that is, a CPU (central processing unit). Furthermore, the fourth layer is a 4Mbit ROM that stores programs, and the fifth layer (the topmost layer) controls signals to each layer, and also includes the functions of a sequencer, etc. It is a controller. In order for a chip with such a configuration to function effectively, it is important to freely exchange signals between each layer, and in particular, the controller layer constantly exchanges signals with each layer. Therefore, in such a structure, a technique for forming three holes from the fifth layer to the first layer and filling the conductive material is required, which involves great technical difficulties.

又、信号は、度々、コン)o−ラ層を介して他の層に伝
えられることが多く、従来の構成では、信号の遅延も大
きな問題となった。
Additionally, signals are often transmitted to other layers via the controller layer, and signal delay is also a major problem in conventional configurations.

本発明は上記の如き問題を解決した多層構造の半導体装
置を提供するものである。
The present invention provides a multilayered semiconductor device that solves the above problems.

本発明に係る半導体装置は、素子が集積形成された複数
の半導体層が互いに絶縁層で分離されて積層され、この
積層された半導体層の2層以上にまたがる傾斜面を有し
、この傾斜面上に絶縁層を介して半導体層が設けられ、
この半導体層に形成された半導体素子を介して前記積層
された各半導体層間の信号授受を行うようにしたことを
特徴としている。
A semiconductor device according to the present invention includes a plurality of semiconductor layers in which elements are integrated and stacked and separated from each other by an insulating layer, and has an inclined surface spanning two or more layers of the stacked semiconductor layers, and this inclined surface. A semiconductor layer is provided on top via an insulating layer,
The present invention is characterized in that signals are exchanged between the stacked semiconductor layers through semiconductor elements formed in this semiconductor layer.

本発明によれば、傾斜面上の絶縁層に形成するフンタク
トホールとこの絶縁層上に形成した半導体素子により、
積層された任意の半導体層間の信号授受を行うから、従
来のように多数積層された半導体層間を縦方向に導電材
料を貫通させて眉間の信号授受を行うものく比べ、製造
は容易であり、また各層間の信号伝播の遅れも小さくす
ることができる。
According to the present invention, the hole formed in the insulating layer on the inclined surface and the semiconductor element formed on this insulating layer,
Since signals are exchanged between arbitrary laminated semiconductor layers, manufacturing is easier compared to conventional methods in which signals are exchanged between the eyebrows by passing a conductive material vertically between multiple laminated semiconductor layers. Further, the delay in signal propagation between each layer can also be reduced.

以下本発明の詳細な説明する。第3図は、第1図と同様
の状況での本発明の一実施例を示したものであり、第1
図と対応する部分には第1図と同一符号を付しである。
The present invention will be explained in detail below. FIG. 3 shows an embodiment of the present invention in a situation similar to that of FIG.
The same reference numerals as in FIG. 1 are given to parts corresponding to those in the figure.

第1図と異なり、第n番目の半導体層11、第n + 
1番目の半導体層13及びその間の絶縁層16にまたが
って各半導体層の主面に対してθ(θく90)の角度を
持つ傾斜面31がチャ2周辺に形成されている0そして
その傾斜面31上(例えば5tO2等の絶縁層32を介
して半導体層33が形成され、これにソース34、ドレ
イン35およびr−ト36を有するMOS )ランジス
タが形成されている。この半導体層33は例えばぼりシ
リコンであり、またレーデアニールやEBアニールなど
を用いて単結晶化されたものを用いてもよい。
Unlike FIG. 1, the n-th semiconductor layer 11, the n-th
An inclined surface 31 having an angle of θ (θ×90) with respect to the main surface of each semiconductor layer is formed around the first semiconductor layer 13 and the insulating layer 16 between the first semiconductor layer 13 and its inclination. A semiconductor layer 33 is formed on the surface 31 (eg, a MOS transistor having a source 34, a drain 35, and an r-t 36 on which a semiconductor layer 33 is formed via an insulating layer 32 such as 5tO2). This semiconductor layer 33 is made of, for example, silicon, or may be made into a single crystal by using radar annealing, EB annealing, or the like.

このMOS )ランジスタのソース34は絶縁層32に
設けたスルーホー2ルを介して半導体層11に形成され
たMOS )ランジスタのソース12に接続され、ドレ
イン35は同様に絶縁層32に設けたスルーホールを介
して半導体層13に形成されたMOS )ランジスタの
ドレイン14に接続されている。こうして、第n層での
データがr−ト36でセレクトされて第n + 1層に
伝えられる様になっている。即ち、第n層のデータを単
に@ n + 1層に伝るだけでなく、選択という機能
が加っていることになり、従来例より機能が増加してい
るのが分る。
The source 34 of this MOS transistor is connected to the source 12 of the MOS transistor formed in the semiconductor layer 11 through a through hole 2 provided in the insulating layer 32, and the drain 35 is connected to the through hole 2 provided in the insulating layer 32. It is connected to the drain 14 of the MOS transistor formed in the semiconductor layer 13 via the MOS transistor. In this way, the data in the nth layer is selected by the r-t 36 and transmitted to the n+1th layer. In other words, the data of the n-th layer is not only transmitted to the @n+1 layer, but also has the function of selection, and it can be seen that the number of functions is increased compared to the conventional example.

ここでは、単純な、ff−)素子としてのMO8トラン
ジスタを傾斜面上(設ける場合のみを例示したが、これ
はトランジスタを2個以上組合せたもっと複雑な回路で
もあってもよい。又、ここでは傾斜面に一層の半導体層
を設けた場合を述べたが、2層以上の半導体層を形成し
てより高度な機能を持たせてもよいことは言うまでもな
い。又、ここでは傾斜面上の半導体層31は直接スルー
ホールを介して積層半導体層11゜13と接する如く、
設置する場合を説明したが、接続の方式はこれ以外のい
かなる方法を用いてもよい。例えば傾斜面上の半導体層
と積層半導体層の間を別途、導体配線で接続してもよい
ことは言うまでもない。いずれにしてもスルーホールは
傾斜面上の絶縁層にのみ開口すればよいので極めて容易
であり、歩留り信頼性も向上する。
Here, only the case where an MO8 transistor as a simple ff-) element is provided on a slope is illustrated, but this may also be a more complicated circuit combining two or more transistors. Although we have described the case where a single semiconductor layer is provided on an inclined surface, it goes without saying that two or more semiconductor layers may be formed to provide a more advanced function. The layer 31 is in direct contact with the laminated semiconductor layers 11 and 13 through the through holes.
Although the installation case has been described, any other connection method may be used. For example, it goes without saying that the semiconductor layer on the inclined surface and the laminated semiconductor layer may be connected separately by conductor wiring. In any case, the through holes need only be opened in the insulating layer on the inclined surface, which is extremely easy, and the yield reliability is also improved.

第4図は第2図に対応する1チップコンビ為−タを本発
明により実現した一例を示す、概念図である0この実施
例では、積層構造はIMbltRAM層41 、 I 
MbitRAM層42.マイクロ・プロセッサ層43 
、4 MbitROM層44の4層であ抄、これら4層
にまたがる傾斜面上にコントローラ層45が形成されて
いる。各層間の信号の授受はすべてこのコントローラ層
45内の配線によって行えるだけでなく、これらの信号
に任意の処理を加えて他の層に伝える事が出来る。
FIG. 4 is a conceptual diagram showing an example of realizing a one-chip combiner according to the present invention corresponding to FIG.
MbitRAM layer 42. Microprocessor layer 43
, 4 Mbit ROM layer 44, and a controller layer 45 is formed on an inclined surface spanning these four layers. Not only can all signals be sent and received between each layer through wiring within the controller layer 45, but these signals can also be subjected to arbitrary processing and transmitted to other layers.

そして、従来の様にいちいち最上層のコントローラ層に
信号を伝えてから他層に伝える必要がない為、高速動作
を可能にすることが出来る。
In addition, since there is no need to transmit signals to the uppermost controller layer and then to other layers as in the past, high-speed operation can be achieved.

又、スルーホールは、従来の様に第1層から第5層に及
ぶものは不必要となりコントローラ層と各層間でのみ開
口すればよいので歩留りよく開口でき、又信頼性も高い
などの特徴をもつ。
In addition, through-holes extending from the first layer to the fifth layer are not needed as in the past, and they only need to be opened between the controller layer and each layer, so they can be opened with a high yield and are highly reliable. Motsu.

第5図は、本発明の半導体装置の製造方法の一例を説明
するだめのもので、ウェハ51の主面に対して角度θを
もって形成された傾斜面52に対していかに、素子パタ
ーンを形成するかを示したものである。即ち、ウェハ5
1をθだけ傾けることにより、従来の縮少投撮露光の光
軸に対して傾斜面52を直交させてΔターン転写を可能
としたものである。−傾斜面の露光転写を完了したらウ
エノS51をθ傾けた状態で平行移動することにより、
他の同様の傾斜面にすべて同じ)4’ターンを転写する
ことが出来る。
FIG. 5 is for explaining an example of the method for manufacturing a semiconductor device of the present invention, and shows how an element pattern is formed on an inclined surface 52 formed at an angle θ with respect to the main surface of a wafer 51. This shows that. That is, wafer 5
1 by θ, the inclined surface 52 is made orthogonal to the optical axis of conventional reduced projection exposure, thereby enabling Δturn transfer. - After completing the exposure transfer of the inclined surface, by moving the Ueno S51 in parallel while tilted by θ,
All the same 4' turns can be transferred to other similar inclined surfaces.

この場合、θ≦45°のであれば、図に示した様に、隣
りのケッデの一部が転写の妨げとなるのを防ぐことが出
来る。この様にウェハを傾けて平行移動する方式は、光
学転写だけでなく、例えば電子ビーム直接描画と組合せ
てもよい、この場合は作動距離(Worklmg dl
stanee )をかえないで、従来の装置にウニ/S
を傾けて平行移動出来るステージを装着するだけで露光
が可能となる。
In this case, if θ≦45°, as shown in the figure, it is possible to prevent a part of the adjacent kede from interfering with the transfer. This method of tilting the wafer and moving it parallelly may be combined with not only optical transfer but also direct writing with an electron beam. In this case, the working distance (Worklmg dl
Add sea urchin/S to conventional equipment without changing the
Exposure can be performed simply by attaching a stage that can be tilted and moved in parallel.

第6図は、ウェハ61に対しX線を用いて一括露光する
一方法を示したものである。図の様に、主面に対しXa
露光マスク63を平行に置きこれに垂直にX線を照射す
ればX線の焦点深度が数μmと深い為、傾斜面62上に
も微細・臂ターン素子を形成することが可能である。こ
の第6図に示した方法は必ずしもX線でなくてもよ〈ツ
ヤターン精度、斜面の角度等に応じた波長の紫外線を用
いてもよい。
FIG. 6 shows one method of exposing a wafer 61 at once to X-rays. As shown in the figure,
If the exposure mask 63 is placed parallel and X-rays are irradiated perpendicularly to it, the depth of focus of the X-rays is as deep as several μm, so it is possible to form fine arm-turn elements even on the inclined surface 62. The method shown in FIG. 6 does not necessarily require the use of X-rays; it is also possible to use ultraviolet rays with a wavelength depending on the gloss turn precision, the angle of the slope, etc.

なお、第4図では、コントローラ層45を傾斜面上に設
けているが、これはROM層であってもマイクロ・デロ
セ、す層であってもよく、またRAM層や他のいかなる
機能をもつ層であってもよい。
Although the controller layer 45 is provided on the inclined surface in FIG. 4, it may be a ROM layer, a micro layer, a RAM layer, or any other layer having any other function. It may be a layer.

また第7図に示すように、4辺形のチ、デの4辺に傾斜
面を形成し、それぞれの傾斜面上にコントローラ層71
および72.−’Pイクロ・プロセッサ層13および1
4を配設し、内部の積層部75をRAMとROMのみと
する様な構成も可能である。又適宜真中の積層中にも必
要に応じて!イクロ・デロセ、す層コントローラ層等を
挿入してもよい。又、チ、デ形状は4辺形に限る必要は
なく、例えば6角形にして周辺の面の数を増やしそれぞ
れに傾斜面を、設けてこれらに新たな機能をもつ半導体
回路を配してもよい。
Further, as shown in FIG. 7, sloped surfaces are formed on the four sides of the quadrilateral, and a controller layer 71 is formed on each sloped surface.
and 72. -'P microprocessor layers 13 and 1
It is also possible to arrange a configuration in which the internal stacked section 75 is made up of only RAM and ROM. Also, if necessary, during lamination in the middle! A microcontroller layer, a sublayer controller layer, etc. may be inserted. In addition, the shapes of C and D do not have to be limited to quadrilaterals; for example, they can be made hexagonal, increase the number of peripheral surfaces, provide sloped surfaces for each, and place semiconductor circuits with new functions on these. good.

又これらの面に形成する回路を任意に変更することで、
他の構成をほとんど変更することなく、異る機能を持つ
三次元ICを実現することも出きる@又本発明での傾斜
面はチ、デの周辺面に限る必要はなく、チ、デ内に適宜
設けてもよい。
Also, by arbitrarily changing the circuits formed on these surfaces,
It is also possible to realize a three-dimensional IC with different functions without changing the other components. may be provided as appropriate.

これらけスクライブラインの如く、溝状であっても又、
穴状のものであってもよい。又傾斜面の角度も一定に保
つ必要はなく適宜必要に応じて変えてもよい 以上の様に本発明によれば、三次元ICを従来の様に単
に積層にした場合に比して、層間の信号授受が容易にな
り、高速化4図ることができ、また機能を飛躍的に多様
化することが可能となった。
Even if it is groove-like like these scribe lines,
It may also be hole-shaped. Furthermore, the angle of the inclined surface does not need to be kept constant and may be changed as needed.As described above, according to the present invention, the angle between the layers is much smaller than when three-dimensional ICs are simply laminated as in the past. It has become easier to send and receive signals, increasing the speed4, and dramatically diversifying functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の三次元ICの眉間接続の様子を示す断面
図、第2図は同じ〈従来の三次元ICの一例の模式図、
第3図は本発明の一実施例での眉間接続の様子を示す断
面図、第4図は第3図に対応する三次元ICK本発明を
適用した実施例の模式図、第5図は本発明の装置を得る
ための傾斜面に対する露光方法を説明するための図、第
6図は同じく他の露光方法を説明するための図、第7図
は第4図の変形例を示す模式図である。 11.13・・・半導体層、16一層間絶縁層、31・
・・傾斜面、33・・・半導体層。 出願人代理人  弁理土鈴、江 武 彦第5図 第7図
Figure 1 is a sectional view showing the glabella connection of a conventional 3D IC, and Figure 2 is the same (schematic diagram of an example of a conventional 3D IC).
FIG. 3 is a cross-sectional view showing the state of the glabella connection in an embodiment of the present invention, FIG. 4 is a schematic diagram of an embodiment to which the present invention is applied to the three-dimensional ICK corresponding to FIG. 3, and FIG. FIG. 6 is a diagram for explaining an exposure method for an inclined surface to obtain the apparatus of the invention, FIG. 6 is a diagram for explaining another exposure method, and FIG. 7 is a schematic diagram showing a modification of FIG. 4. be. 11.13... Semiconductor layer, 16 interlayer insulating layer, 31.
... Slope, 33... Semiconductor layer. Applicant's Agent: Patent Attorney Tosuzu, Takehiko E, Figure 5, Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)素子が集積形成された複数の半導体層が互いに絶
縁層で分離されて積層されてなる半導体装置において、
前記積層された半導体層の2層以上にま九がる傾斜面を
有し、この傾斜面上に絶縁層を介して半導体層が設けら
れ、この半導体層に形成された半導体素子を介して前記
積層された各半導体層間の信号授受を行うようにしたこ
とを特徴とする半導体装置。
(1) In a semiconductor device in which a plurality of semiconductor layers in which elements are integrated are stacked and separated from each other by an insulating layer,
It has an inclined surface that extends over two or more of the stacked semiconductor layers, a semiconductor layer is provided on the inclined surface with an insulating layer interposed therebetween, and the semiconductor element formed on the semiconductor layer is provided with the A semiconductor device characterized in that signals are exchanged between stacked semiconductor layers.
(2)  傾斜面は半導体チ、デの周辺に設けられてい
る特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the inclined surface is provided around the semiconductor chips.
JP56155126A 1981-09-30 1981-09-30 Semiconductor device Pending JPS5856454A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56155126A JPS5856454A (en) 1981-09-30 1981-09-30 Semiconductor device
US06/425,513 US4500905A (en) 1981-09-30 1982-09-28 Stacked semiconductor device with sloping sides
EP82109010A EP0075945B1 (en) 1981-09-30 1982-09-29 Stacked semiconductor device and method for manufacturing the device
DE8282109010T DE3278871D1 (en) 1981-09-30 1982-09-29 Stacked semiconductor device and method for manufacturing the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155126A JPS5856454A (en) 1981-09-30 1981-09-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5856454A true JPS5856454A (en) 1983-04-04

Family

ID=15599122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155126A Pending JPS5856454A (en) 1981-09-30 1981-09-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5856454A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890763A (en) * 1981-11-25 1983-05-30 Mitsubishi Electric Corp Semiconductor device
JPS62219550A (en) * 1986-03-19 1987-09-26 Sharp Corp Semiconductor memory element
JPH07183453A (en) * 1993-09-13 1995-07-21 Internatl Business Mach Corp <Ibm> Structure and preparation of integrated multichip memory module
US7638362B2 (en) 2005-05-16 2009-12-29 Elpida Memory, Inc. Memory module with improved mechanical strength of chips

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890763A (en) * 1981-11-25 1983-05-30 Mitsubishi Electric Corp Semiconductor device
JPS62219550A (en) * 1986-03-19 1987-09-26 Sharp Corp Semiconductor memory element
JPH0582983B2 (en) * 1986-03-19 1993-11-24 Sharp Kk
JPH07183453A (en) * 1993-09-13 1995-07-21 Internatl Business Mach Corp <Ibm> Structure and preparation of integrated multichip memory module
US7638362B2 (en) 2005-05-16 2009-12-29 Elpida Memory, Inc. Memory module with improved mechanical strength of chips

Similar Documents

Publication Publication Date Title
TWI770072B (en) Package substrate with high-density interconnect layer having pillar and via connections for fan out scaling
US4500905A (en) Stacked semiconductor device with sloping sides
US6486066B2 (en) Method of generating integrated circuit feature layout for improved chemical mechanical polishing
US20230005904A1 (en) Stacked interposer structures, microelectronic device assemblies including same, and methods of fabrication, and related electronic systems
CN1314117C (en) System on a package fabricated on a semiconductor or dielectric wafer
JP2008187061A (en) Laminated memory
KR20150043933A (en) Integrated circuit device having through-silicon via structure and method of manufacturing the same
JP2007129233A (en) Electronic device, multichip stack, semiconductor device, and method (accessible chip stack and manufacturing method thereof)
DE112015007068T5 (en) ALTERNATIVE SURFACES FOR CONDUCTIVE CONTACT INLAYS OF SILICON BRIDGES FOR SEMICONDUCTOR HOUSINGS
JPH09162279A (en) Semiconductor integrated circuit device and manufacture thereof
US11508587B2 (en) Microelectronic assemblies
CN107316840A (en) The 3DIC structures and method of mixing engagement semiconductor wafer
WO2020190587A1 (en) Interposer, microelectronic device assembly including same and methods of fabrication
TWI602266B (en) Embedded packages, methods of fabricating the same, electronic systems including the same, and memory cards including the same
JPS5856454A (en) Semiconductor device
JP2003142647A (en) Semiconductor device
TWI548094B (en) Semiconductor constructions and methods of forming semiconductor constructions
TW202329391A (en) Microelectronic assemblies including bridges
JPS5856455A (en) Semiconductor device and manufacture thereof
JP2006108571A (en) Semiconductor device
KR101928421B1 (en) Method for manufacturing perpendicularity laminating chip and multi chip package and Apparatus for multi chip package
JP2016157839A (en) Wiring board, semiconductor device, and method of manufacturing wiring board
KR100583948B1 (en) Semconductor device and method thereof
JPH04218943A (en) Manufacture of large-scale integrated circuit device
JP2003007818A (en) Method of manufacturing semiconductor device