[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5855646B2 - Jiseiri Yutaino Seizouhouhou - Google Patents

Jiseiri Yutaino Seizouhouhou

Info

Publication number
JPS5855646B2
JPS5855646B2 JP49075732A JP7573274A JPS5855646B2 JP S5855646 B2 JPS5855646 B2 JP S5855646B2 JP 49075732 A JP49075732 A JP 49075732A JP 7573274 A JP7573274 A JP 7573274A JP S5855646 B2 JPS5855646 B2 JP S5855646B2
Authority
JP
Japan
Prior art keywords
magnetic
spinel
heavy metal
magnetic fluid
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49075732A
Other languages
Japanese (ja)
Other versions
JPS514598A (en
Inventor
克 金森
正勝 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP49075732A priority Critical patent/JPS5855646B2/en
Publication of JPS514598A publication Critical patent/JPS514598A/en
Publication of JPS5855646B2 publication Critical patent/JPS5855646B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は廃水中の重金属イオンをフェライト化して系外
に除くことによって発生した強磁性スピネル化合物を原
料とする磁性流体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a magnetic fluid using a ferromagnetic spinel compound generated by converting heavy metal ions in wastewater into ferrite and removing them from the system as a raw material.

詳しく述べれば重金属イオンを含む廃水に溶解により第
一鉄イオンとなる物質および全酸根に対して等量以上の
アルカリ性物質を加え、次いで酸化剤を用いて生じた沈
殿を酸化し、最終的に強磁性スピネル化合物とし、生成
した該スピネル化合物の結晶中に該重金属イオンを組み
込んで除去した後該スピネル化合物とオレイン酸などの
分散剤およびケロシンなどの分散媒を混合して製造する
ことを特徴とする磁性流体の製造方法に関するものであ
る。
Specifically, a substance that becomes ferrous ions by dissolution into wastewater containing heavy metal ions and an alkaline substance in an amount equal to or more than the total acid radicals are added, then an oxidizing agent is used to oxidize the resulting precipitate, and finally a strong A magnetic spinel compound is produced by incorporating and removing the heavy metal ions into the crystals of the spinel compound produced, and then mixing the spinel compound with a dispersant such as oleic acid and a dispersion medium such as kerosene. The present invention relates to a method for producing magnetic fluid.

磁性流体は近年開発された磁性を有するコロイド状の微
粒子を含有する液体で興味ある現象を示すため各方面で
その応用の研究が進められている。
Magnetic fluid is a recently developed liquid containing magnetic colloidal particles that exhibits interesting phenomena, and research into its application is progressing in various fields.

例えば磁性流体を非磁性金属の分離回収への利用、水面
に漂う油の回収への利用など資源回収公害防止への応用
に対しても広い用途が考えられている。
For example, a wide range of applications are being considered for applications in resource recovery and pollution prevention, such as the use of magnetic fluids to separate and recover non-magnetic metals and the recovery of oil floating on water surfaces.

しかしながら現在磁性流体そのものが非常に高価なもの
であり、経済的な面から応用の分野が限定されるおそれ
がある。
However, the magnetic fluid itself is currently very expensive, and the field of application may be limited from an economical point of view.

本発明は重金属を含む廃水の処理工程から生じた強磁性
スピネル化合物(マグネタイトやフェライト)粒子を単
に産業廃棄物として放棄することなくこれらの微粒子か
ら大量かつ安価に磁性流体を製造し種々の応用への可能
性を拡げることを目的とするものである。
The present invention enables the production of ferromagnetic spinel compound (magnetite and ferrite) particles produced from the treatment process of wastewater containing heavy metals in large quantities and at low cost from these fine particles, without simply discarding them as industrial waste, and for various applications. The purpose is to expand the possibilities of

ここで磁性流体について簡単に述べれば、これは液体自
身が強磁性を示すのではなく、粒径約百λ以下のマグネ
タイトやフェライトなどの強磁性スピネル型化合物を炭
化水素(溶油なと)、シリコンオイル、フルオロカーボ
ンなどに懸濁させたコロイド溶液である。
To briefly explain about magnetic fluids, the liquid itself does not exhibit ferromagnetism, but it is made by combining ferromagnetic spinel-type compounds such as magnetite and ferrite with a particle size of about 100λ or less into hydrocarbons (such as molten oil). It is a colloidal solution suspended in silicone oil, fluorocarbon, etc.

これに似たものとして従来から電極クラッチ用液体が知
られているが、これはミクロンオーダーの鉄の微粒子を
油に懸濁させたものであり、磁界中においた場合、粒子
が集合するが、磁性流体では粒子の大きさがはるかに小
さく、磁気的には超常磁性を示し、磁界内においた場合
、あたかも液体自身が磁性をもっているがごとく液体は
まとまって移動する。
Electrode clutch liquid has been known as something similar to this, but this is made by suspending micron-order iron particles in oil, and when placed in a magnetic field, the particles aggregate. Magnetic fluids have much smaller particles and exhibit superparamagnetic properties; when placed in a magnetic field, the liquid moves as if it were magnetic.

したがって磁性流体の原料としては粒径が数百λ程度の
強磁性スピネル型化合物微粒子が必要になる。
Therefore, ferromagnetic spinel type compound fine particles with a particle size of about several hundred λ are required as a raw material for the magnetic fluid.

一方近年水質汚染は大きな問題となってきておりこれに
対し特に水中の重金属除去の技術が種々開発され、その
技術の一つとしてフエライト法による重金属除去技術が
すでに実用化された。
On the other hand, water pollution has become a major problem in recent years, and in response to this problem, various technologies have been developed to specifically remove heavy metals from water, and one of these technologies is the heavy metal removal technology using the ferrite method, which has already been put into practical use.

この技術は簡単に述べれば、重金属を含む工業廃水に第
1鉄イオンを加え、次にアルカリ性物質を加えた後、空
気等の酸化性ガスを吹き込み最終的にフェライト等の鉄
酸化物とし、重金属を結晶格子中に組み込むかあるいは
吸着することにより、重金属を廃水中から除去するとい
う方法であり、この処理によって生ずるフェライト粒子
は反応条件により0.01μ〜1μのものが得られるが
一般的には粒径が数百穴程度の微粒子であり磁性流体の
製造には好適である。
To put it simply, this technology adds ferrous ions to industrial wastewater containing heavy metals, then adds an alkaline substance, and then blows in an oxidizing gas such as air to finally form iron oxides such as ferrite. This is a method of removing heavy metals from wastewater by incorporating them into the crystal lattice or adsorbing them.The ferrite particles produced by this process can be 0.01μ to 1μ depending on the reaction conditions, but in general They are fine particles with a particle size of several hundred holes, and are suitable for producing magnetic fluids.

すなわち本発明は湿式酸化フェライト法によって廃水中
の重金属イオンを組み込んで生成した強磁性スピネル化
合物沈殿物にオレイン酸などの分散剤とケロシンなどの
分散媒を加えて強磁性スピネル化合物微粒子を磁性流体
として回収することにより、各種重金属を組み込んだ強
磁性スピネル化合物を、利用価値の高い磁性流体として
の再利用を図ろうとするものである。
That is, the present invention involves adding a dispersing agent such as oleic acid and a dispersing medium such as kerosene to a ferromagnetic spinel compound precipitate produced by incorporating heavy metal ions in wastewater by a wet oxidation ferrite method, thereby producing fine ferromagnetic spinel compound particles as a magnetic fluid. By recovering the ferromagnetic spinel compounds incorporating various heavy metals, we aim to reuse them as magnetic fluids with high utility value.

以下実施例により詳細を説明する。Details will be explained below using examples.

実施例 I Mnイオン約100091)In、Znイオン約100
0岬、Ntイオン約70咽を含む廃水中11に塩化第一
鉄を0.1モル加え、5N−NaOHを761rll加
え、70℃で1時間空気酸化を行ない、強磁性沈殿物を
得た。
Example I Mn ion approximately 100091) In, Zn ion approximately 100
0.1 mol of ferrous chloride and 761 rll of 5N-NaOH were added to wastewater 11 containing approximately 70% of Nt ions, and air oxidation was performed at 70°C for 1 hour to obtain a ferromagnetic precipitate.

この沈殿を濾過した液中に残存したMn、Zn、Ni
、Feの濃度はそれぞれ0.05.0.02 、0.
1 、0.07ppIIlであった。
Mn, Zn, and Ni remaining in the solution obtained by filtering this precipitate
, Fe concentrations are 0.05, 0.02 and 0.02, respectively.
1, 0.07 ppII.

この沈殿にオレイン酸4ml、ケロシン40m1を加え
、混合機を用いて2時間混合させ黒褐色の磁性流体を得
た。
4 ml of oleic acid and 40 ml of kerosene were added to this precipitate and mixed for 2 hours using a mixer to obtain a dark brown magnetic fluid.

このものの飽和磁束密度Msは130ガウスであった。The saturation magnetic flux density Ms of this material was 130 Gauss.

実施例 2 Cuイオン約10 Qppm、 N iイオン約40p
pIIl、Cr6+イオン約50ppI11を含む廃水
11に硫酸第一鉄を0.05モル溶解させた後、5N−
NaOH41mlを加えて中和し40°Cで2時間酸化
を行ない黒色の強磁性沈殿物を得た。
Example 2 Cu ion about 10 Qppm, Ni ion about 40p
5N-
The mixture was neutralized by adding 41 ml of NaOH and oxidized at 40°C for 2 hours to obtain a black ferromagnetic precipitate.

次にオレイン酸3mlケロシンを25m1加えて懸濁液
の撹拌混合を行ない磁性流体を得た。
Next, 3 ml of oleic acid and 25 ml of kerosene were added and the suspension was stirred and mixed to obtain a magnetic fluid.

磁性流体を分離した液中のCu、Nls全CrおよびF
eの残存濃度はそれぞれ0.05 、0.08 、0.
08 、0.09ppmであった。
Cu, Nls total Cr and F in the separated magnetic fluid
The residual concentrations of e are 0.05, 0.08, and 0.05, respectively.
08, 0.09 ppm.

なお得られた磁性流体の飽和磁束密度は85ガウスであ
った。
The saturation magnetic flux density of the obtained magnetic fluid was 85 Gauss.

Claims (1)

【特許請求の範囲】[Claims] 1 重金属イオンを含む廃水に溶解により第1鉄イオン
となる物質および全酸根に対し当量以上のアルカリ性物
質を加え、次いで酸化剤を用いて沈殿を酸化せしめて強
磁性スピネル型の化合物を生威し、生成した該スピネル
化合物結晶中に該重金属イオンを組み込んで除去した後
、該スピネル化合物と分散剤および分散媒を混合するこ
とを特徴とする磁性流体の製造方法。
1 Add a substance that becomes ferrous ions by dissolution into wastewater containing heavy metal ions and an alkaline substance in an amount equivalent to or more than the total acid radicals, and then oxidize the precipitate using an oxidizing agent to produce a ferromagnetic spinel-type compound. . A method for producing a magnetic fluid, which comprises incorporating and removing the heavy metal ions into the produced spinel compound crystals, and then mixing the spinel compound with a dispersant and a dispersion medium.
JP49075732A 1974-07-01 1974-07-01 Jiseiri Yutaino Seizouhouhou Expired JPS5855646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49075732A JPS5855646B2 (en) 1974-07-01 1974-07-01 Jiseiri Yutaino Seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49075732A JPS5855646B2 (en) 1974-07-01 1974-07-01 Jiseiri Yutaino Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS514598A JPS514598A (en) 1976-01-14
JPS5855646B2 true JPS5855646B2 (en) 1983-12-10

Family

ID=13584724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49075732A Expired JPS5855646B2 (en) 1974-07-01 1974-07-01 Jiseiri Yutaino Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5855646B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148471U (en) * 1976-05-06 1977-11-10
JP2003115584A (en) * 2001-10-05 2003-04-18 Canon Inc Imaging apparatus and reader
CN109574389A (en) * 2018-12-17 2019-04-05 佛山市诚德新材料有限公司 A kind of recovery method of oil-containing stainless steel waste water

Also Published As

Publication number Publication date
JPS514598A (en) 1976-01-14

Similar Documents

Publication Publication Date Title
Lobato et al. Characterization and chemical stability of hydrophilic and hydrophobic magnetic nanoparticles
US3931007A (en) Method of extracting heavy metals from industrial waste waters
US4094804A (en) Method for preparing a water base magnetic fluid and product
Tamaura et al. Ferrite process; heavy metal ions treatment system
KR101109682B1 (en) Method for preparing magnetite nanoparticle from low-grade iron ore and magnetite nanoparticle prepared by the same
Attia et al. Synthesis, physicochemical properties and photocatalytic activity of nanosized Mg doped Mn ferrite
Rahmayanti Synthesis of Magnetite Nanoparticles Using The Reverse Co-precipitation method with NH4OH as precipitating agent and its stability test at various pH
CN109967041B (en) Bimetal modified magnetic biomass active carbon adsorbent, preparation method thereof and application thereof in wastewater treatment
JP4861718B2 (en) Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object
JPH06511354A (en) Hexagonal magnetic ferrite pigments for high density recording material applications
JPS5855646B2 (en) Jiseiri Yutaino Seizouhouhou
CN108421533B (en) Surface-modified magnetic nanoparticle, preparation method, application and regeneration method
Ahalya et al. Effect of sintering on structural, morphological, magnetic properties and Cr (VI) adsorption of cobalt substituted MnFe2O4 nanoparticles
CN104692787B (en) Solidifying comprehensive recovery method of electroplating sludge ferrite
CN109894101A (en) A kind of magnetic nanometer composite material and its preparation method and application
KR100442541B1 (en) Method for preparing magnetite in aqueous solution at room temperature and Method for water-waste-treatment using the said magnetite
JP2674379B2 (en) Magnetic fluid and specific gravity sorter
JP3567221B2 (en) Method and apparatus for stabilizing harmful metals in plating wastewater
JP4621911B2 (en) Method for producing magnetite fine particles
Narasimhan et al. Synthesis of manganese zinc ferrite using ferrous pickle liquor and pyrolusite ore
Thakuria et al. Superparamagnetic nanocomposite of magnetite and activated carbon for removal of dyes from waste water
Prasanna et al. 17 Review of Ferrite
JPH0722746B2 (en) Concentration method of water-soluble magnetic fluid
Reja et al. Charge-switchable zwitterionic nanomagnets for wastewater remediation
Ye et al. Fabrication and Characterization of Magnetic GQDs Using Green Tea Extract for Environmental Remediation