JPS5853531B2 - stereo demodulation circuit - Google Patents
stereo demodulation circuitInfo
- Publication number
- JPS5853531B2 JPS5853531B2 JP1583579A JP1583579A JPS5853531B2 JP S5853531 B2 JPS5853531 B2 JP S5853531B2 JP 1583579 A JP1583579 A JP 1583579A JP 1583579 A JP1583579 A JP 1583579A JP S5853531 B2 JPS5853531 B2 JP S5853531B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- stereo
- main channel
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H40/00—Arrangements specially adapted for receiving broadcast information
- H04H40/18—Arrangements characterised by circuits or components specially adapted for receiving
- H04H40/27—Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
- H04H40/36—Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
- H04H40/45—Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
- H04H40/72—Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for noise suppression
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/1646—Circuits adapted for the reception of stereophonic signals
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Stereo-Broadcasting Methods (AREA)
Description
【発明の詳細な説明】
本発明はステレオ復調回路の改良に係り、特に弱電界信
号受信時におけるSN比(信号対雑音比)の改善を遠戚
せんとするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a stereo demodulation circuit, and particularly aims to improve the SN ratio (signal-to-noise ratio) when receiving a weak electric field signal.
FM放送受信機においては、弱電界信号受信時の方が中
味電界信号受信時よりもSN比が悪化し、特にステレオ
受信状態の方がモノラル受信状態よりも悪化することが
知られている。It is known that in an FM broadcast receiver, the SN ratio is worse when receiving a weak electric field signal than when receiving a medium electric field signal, and in particular, it is worse in a stereo reception state than in a monaural reception state.
特に車載用のFM受信機においては、電界強度の変化が
激しく、弱電界時のSN比の悪化による不快な聴取状態
が応々にして存在する。Particularly in vehicle-mounted FM receivers, the electric field strength changes rapidly, and the SN ratio worsens when the electric field is weak, resulting in uncomfortable listening conditions.
従来前記SN比の悪化を防止する為、弱電界時において
ステレオ信号を受信したとき、受信機を強制的にモノラ
ル状態としてSN比の改善を計ることが行なわれている
。Conventionally, in order to prevent the SN ratio from deteriorating, when a stereo signal is received in a weak electric field, the receiver is forcibly put into a monaural state in order to improve the SN ratio.
これは、第1図に示す如く、入力信号が小となり、従っ
て出力信号(第1図実線イ)も小となったとき、ステレ
オ受信状態のSN比(第1図一点鎖線口)よりもモノラ
ル受信状製のSN比(第1図点線ハ)の方が良好である
ことに着目したもので、例えば第1図点Bにおいて受信
機をモノラル状態に切換えることにより大巾なるSN比
の改善が行なわれる。As shown in Fig. 1, when the input signal becomes small and the output signal (solid line A in Fig. 1) also becomes small, the SN ratio in the stereo reception state (dotted chain line in Fig. 1) is higher than the mono signal. It focuses on the fact that the signal-to-noise ratio of the receiver (dotted line c in Figure 1) is better.For example, by switching the receiver to monaural mode at point B in Figure 1, the signal-to-noise ratio can be greatly improved. It is done.
しかしながら、前記従来の方法においては、ステレオ受
信状態を強制的にかつ急激にモノラル状態に切換える為
、聴取者に異和感を与えるとともに、例えば第1図点A
よりも小なる入力信号時には、モノラル受信状態であっ
てもSN比の悪化がひどすぎ、聴取に耐えたいという欠
点を有していた。However, in the conventional method, the stereo reception state is forcibly and abruptly switched to a monaural state, which gives a sense of discomfort to the listener and, for example, at point A in Figure 1.
When the input signal is smaller than , the deterioration of the signal-to-noise ratio is too severe even in a monaural reception state, and the problem is that it is difficult to listen to it.
又、耳ざわりな高域雑音をカットして実質的にSN比を
改善する方法も従来公知である。Furthermore, a method of substantially improving the signal-to-noise ratio by cutting unpleasant high-frequency noise is also conventionally known.
例えば、第2図に示す如く、ステレオ復調回路上の左右
出力端子2及び3にそれぞれ高域成分をカットする為の
コンデンサ4及び5をスイッチ6及び7を介して接続し
、入力信号の電界強度が所定レベル以下となったとき前
記スイッチを投入して高域成分をカットしSN比の改善
を行っている。For example, as shown in Fig. 2, capacitors 4 and 5 for cutting high-frequency components are connected to the left and right output terminals 2 and 3 on the stereo demodulation circuit via switches 6 and 7, respectively, and the electric field strength of the input signal is When the signal becomes below a predetermined level, the switch is turned on to cut high-frequency components and improve the S/N ratio.
しかしながら、その様な方法では、スイッチの投入の前
後でSN比が急激に変化するとともに、周波数特性も急
激に変化するという欠点を有し、しかも車載用の受信機
の場合、電界強度の変化に伴い頻繁に切換えが行なわれ
るので、聴取者に非常に耳障りであるという欠点を有し
ていた。However, such a method has the disadvantage that the S/N ratio changes rapidly before and after the switch is turned on, and the frequency characteristics also change rapidly.Moreover, in the case of a car-mounted receiver, it is difficult to respond to changes in electric field strength. As a result, switching is performed frequently, which has the disadvantage of being extremely jarring to listeners.
本発明は、上述の点に鑑み威されたもので、以下実施例
に基き図面を参照しながら説明する。The present invention has been developed in view of the above points, and will be described below based on embodiments with reference to the drawings.
第3図は本発明の一実施例を示すもので、8は副チャン
ネル信号((L−fl ) sinωt)を復調する為
の差信号復調回路である。FIG. 3 shows an embodiment of the present invention, in which 8 is a difference signal demodulation circuit for demodulating the sub-channel signal ((L-fl) sinωt).
前記復調回路1は、第1及び第2制御端子9及び10に
印加された正及び負の38KHzスイッチング信号によ
り制御される第1及び第2トランジスタ11及び12か
ら成る第1差動回路L3と、第3及び第4トランジスタ
14及び15から成る第2差動回路Uと、コレクタカ揃
記第1差動回路L3に、ベースがバイアス電源に接続さ
れた第5トランジスタ1Tと、コレクタが前記第2差動
回路Uに、ベースがステレオコンポジット信号入力端子
18に接続された第6トランジスタ19と、定電流トラ
ンジスタ20とから成り、前記第6トランジスタ19の
ベースに印加されるステレオコンポジット信号中の副チ
ャンネル信号を、38KHzスイッチング信号によって
スイッチングすることにより、第3トランジスタ14の
コレクタに第1ステレオ差信号(L−R)を、又第4ト
ランジスタ15のコレクタに第2ステレオ差信号(R−
L)を得るものである。The demodulation circuit 1 includes a first differential circuit L3 comprising first and second transistors 11 and 12 controlled by positive and negative 38 KHz switching signals applied to first and second control terminals 9 and 10; A second differential circuit U consisting of third and fourth transistors 14 and 15, a first differential circuit L3 whose collectors are aligned, a fifth transistor 1T whose base is connected to a bias power supply, and whose collector is connected to the second differential circuit L3; The dynamic circuit U includes a sixth transistor 19 whose base is connected to the stereo composite signal input terminal 18 and a constant current transistor 20, and a sub-channel signal in the stereo composite signal applied to the base of the sixth transistor 19. is switched by a 38 KHz switching signal, thereby sending the first stereo difference signal (L-R) to the collector of the third transistor 14 and the second stereo difference signal (R-R) to the collector of the fourth transistor 15.
L).
又、υ及びυ′は、それぞれ前記第1及び第2ステレオ
差信号に加える為の主チヤンネル信号(ステレオ和信号
(L+R) )を発生する第1及び第2和信号回路で、
前記第1和信号回路υは、第3及び第4制御信号t1及
びt2で制御される第7及び第8トランジスタ22及び
23から成る第3差動回路ハと、第9及び第10)ラン
ジスタ25及び26から成る第4差動回路υと、コレク
タが前記第3差動回路L」に、ベースがステレオコンポ
ジット信号入力端子18に接続された第11トランジス
タ28と、コレクタが前記第4差動回路27に、ベース
が抵抗29及びコンデンサ30から成る高域カット回路
Iを介して前記ステレオコンポジット信号入力端子1B
に接続された第12トランジスタ32とから成り、第2
差動回路Uの第3トランジスタ14のコレクタに得られ
る第1ステレオ差信号(L−R)に対して加算されるス
テレオ和信号(L+R)を発生する為に配置されている
。Further, υ and υ' are first and second sum signal circuits that generate main channel signals (stereo sum signal (L+R)) to be added to the first and second stereo difference signals, respectively;
The first sum signal circuit υ includes a third differential circuit C, which is composed of seventh and eighth transistors 22 and 23, which are controlled by third and fourth control signals t1 and t2, and a ninth and tenth) transistor 25. and 26, an eleventh transistor 28 whose collector is connected to the third differential circuit L and whose base is connected to the stereo composite signal input terminal 18, and whose collector is connected to the fourth differential circuit L. 27, the stereo composite signal input terminal 1B is connected to the stereo composite signal input terminal 1B via a high frequency cut circuit I whose base is composed of a resistor 29 and a capacitor 30.
a twelfth transistor 32 connected to the second transistor 32;
It is arranged to generate a stereo sum signal (L+R) to be added to the first stereo difference signal (LR) obtained at the collector of the third transistor 14 of the differential circuit U.
第2和信号回路J′は、第2差動回路1Jの第4トラン
ジスタ15のコレクタに得られる第2ステレオ差信号(
R−L)に対して加算されるステレオ和信号(L+R)
を発生する為に配置されているもので、その構成及び動
作は第1和信号回路υと同一に付、説明は省略する。The second sum signal circuit J' includes a second stereo difference signal (
Stereo sum signal (L+R) added to R−L)
The configuration and operation are the same as those of the first sum signal circuit υ, and the explanation thereof will be omitted.
尚、第2和信号回路J′の回路素子には、対応する第1
和信号回路1の図番にダッシュをつけて表示しである。Note that the circuit elements of the second sum signal circuit J' include the corresponding first
The figure number of the sum signal circuit 1 is shown with a dash added.
次に動作を説明する。Next, the operation will be explained.
受信信号の電界強度が十分大、すなわち第1図における
点Bよりも入力信号が犬なる範囲では、復調回路旦、第
1及び第2和信号回路υ及びυ′は第1動作状態となり
、第2差動回路Uの第4トランジスタ14のコレクタに
得られる第1ステレオ差信号(L−R)と、第1和信号
回路υからのステレオ和信号(L+R)とが加算され、
第1出力端子33にm2L)ステレオ信号が、又第2差
動回路Uの第4トランジスタ15のコレクタに得られる
第2ステレオ差信号(R−L)と、第2和信号回路2−
1′からのステレオ和信号(L+R)とが加算され、第
2出力端子34に右(2R)ステレオ信号が得られる。When the electric field strength of the received signal is sufficiently large, that is, within the range where the input signal is lower than point B in FIG. The first stereo difference signal (L-R) obtained at the collector of the fourth transistor 14 of the two-differential circuit U and the stereo sum signal (L+R) from the first sum signal circuit υ are added,
m2L) stereo signal at the first output terminal 33, a second stereo difference signal (R-L) obtained at the collector of the fourth transistor 15 of the second differential circuit U, and a second sum signal circuit 2-
The stereo sum signal (L+R) from 1' is added, and a right (2R) stereo signal is obtained at the second output terminal 34.
第3及び第4制御端子35及び36に印加される第3及
び第4制御信号t、及びt2は、第4図に示す如きアン
テナ37、RF増幅回路■、混合回路亀」、局部発振回
路40、IF増幅回路0、FM検波回路(2及びステレ
オ復調回路0から成るFMステレオ受信機のIF増幅回
路りから取り出される。The third and fourth control signals t and t2 applied to the third and fourth control terminals 35 and 36 are as shown in FIG. , IF amplifier circuit 0, FM detection circuit (2), and stereo demodulation circuit 0.
IF増幅回路0を通過する信号は、電界強度に比例した
振幅を有する。The signal passing through the IF amplifier circuit 0 has an amplitude proportional to the electric field strength.
従って、前記信号を検出回路0によって取り出し、制御
信号発生回路0で所定の関係を有する第3及び第4制御
信号t1及びt2を発生すれば、該第3及び第4制御信
号t1及びt2は、電界強度に関係した信号となる。Therefore, if the signal is extracted by the detection circuit 0 and the third and fourth control signals t1 and t2 having a predetermined relationship are generated by the control signal generation circuit 0, the third and fourth control signals t1 and t2 will be This is a signal related to electric field strength.
ちなみに、第3制御信号t1と第4制御信号t2との関
係は、t2=(A tt)となる様に設定されている
。Incidentally, the relationship between the third control signal t1 and the fourth control signal t2 is set so that t2=(Att).
(ただし、Aは定数)。第1動作状態においては、電界
強度が十分に犬であるから、tl〉t2という関係にな
り、従って、第1和信号回路υに関して、第3差動回路
L4の第7トランジスタ22及び第4差動回路Hの第1
0トランジスタ26が導通し、第8及び第9トランジス
タ23及び25が非導通になるから、ステレオコンポジ
ット信号入力端子18から第11トランジスタ28のベ
ース・コレクタ路を介して第3差動回路L4に印加され
たステレオ和信号(L+R)が、第7トランジスタ22
のコレクタより第1ステレオ差信号(L−R)が得られ
る第2差動回路t」の第3トランジスタ14のコレクタ
に供給され、第1出力端子33に左ステレオ信号(2L
)が得られる。(However, A is a constant). In the first operating state, since the electric field strength is sufficiently large, the relationship tl>t2 holds, and therefore, with respect to the first sum signal circuit υ, the seventh transistor 22 of the third differential circuit L4 and the fourth differential circuit L4 The first of the dynamic circuit H
Since the zero transistor 26 is conductive and the eighth and ninth transistors 23 and 25 are non-conductive, the signal is applied from the stereo composite signal input terminal 18 to the third differential circuit L4 via the base-collector path of the eleventh transistor 28. The resulting stereo sum signal (L+R) is transmitted to the seventh transistor 22
is supplied to the collector of the third transistor 14 of the second differential circuit t from which the first stereo difference signal (L-R) is obtained, and the left stereo signal (2L) is supplied to the first output terminal 33.
) is obtained.
第2和信号回路1′に関しても同様で、前記状態の第3
及び第4制御信号t1及びt2の印加により、出力端に
ステレオ和信号(L+R)が得られ、それが、第2差動
回路t」の第4トランジスタ15のコレクタに得られる
第2ステレオ差信号(トL)と加算されて、第2出力端
子34に右ステレオ信号(2R)が得られる。The same applies to the second sum signal circuit 1', and the third sum signal circuit 1' in the above state
By applying the fourth control signals t1 and t2, a stereo sum signal (L+R) is obtained at the output terminal, which is a second stereo difference signal obtained at the collector of the fourth transistor 15 of the second differential circuit t. (L), and a right stereo signal (2R) is obtained at the second output terminal 34.
電界強度が低下し、入力信号が第1図の点Bより小とな
ると、差信号復調回路且の出力信号が小となる。When the electric field strength decreases and the input signal becomes smaller than point B in FIG. 1, the output signal of the difference signal demodulation circuit becomes smaller.
すなわち、第3図における第1及び第2制御端子9及び
10には、第5図に示す38KHzスイッチング信号レ
ベル制御回路の第1及び第2出力端子46及び47に得
られる信号が印加される。That is, the signals obtained at the first and second output terminals 46 and 47 of the 38 KHz switching signal level control circuit shown in FIG. 5 are applied to the first and second control terminals 9 and 10 in FIG. 3.
そして前記レベル制御回路は、差動接続されたトランジ
スタ48及び49と、定電流トランジスタ50と、該定
電流トランジスタ50のコレクタ電流を制御する信号が
印加される制御端子51とを有し、前記制御端子51に
印加される制御信号に応じて、差動接続されたトランジ
スタ48及び49のベースにそれぞれ印加される38K
Hzスイッチング信号を減衰させる為のものである。The level control circuit includes differentially connected transistors 48 and 49, a constant current transistor 50, and a control terminal 51 to which a signal for controlling the collector current of the constant current transistor 50 is applied. 38K applied to the bases of differentially connected transistors 48 and 49, respectively, in response to a control signal applied to terminal 51.
This is for attenuating the Hz switching signal.
しかして、前記制御信号は、受信信号の電界強度に対応
するものであり、第4図のIF増幅回路41から、検出
回路44及び加工回路52を介して出力端子53に取り
出されるものである。The control signal corresponds to the electric field strength of the received signal, and is taken out from the IF amplifier circuit 41 in FIG. 4 to the output terminal 53 via the detection circuit 44 and the processing circuit 52.
従って、入力信号が第1図の点Bより小となると、制御
端子51に印加される制御信号も小となり、第3図の第
1及び第2制御端子9及び10に印加される互いに逆相
の38KHzスイッチング信号も小となり、復調された
第1及び第2ステレオ差信号(L−R)及び(R−L)
の値も小となる。Therefore, when the input signal becomes smaller than point B in FIG. 1, the control signal applied to the control terminal 51 also becomes smaller, and the control signals applied to the first and second control terminals 9 and 10 in FIG. The 38KHz switching signal of the demodulated first and second stereo difference signals (L-R) and (R-L) also becomes small.
The value of is also small.
その為、第1及び第2和信号回路1及びLPからのステ
レオ和信号(L+R)と加算した時、第1出力端子33
に右ステレオ信号が、又第2出力端子34に左ステレオ
信号がクロストークひとして残り、分離度が悪化する。Therefore, when added to the stereo sum signal (L+R) from the first and second sum signal circuits 1 and LP, the first output terminal 33
The right stereo signal remains at the second output terminal 34, and the left stereo signal remains at the second output terminal 34 as crosstalk, deteriorating the degree of separation.
入力信号の一層の減少により、前記クロストーク分は更
に増加し、最終的には、ステレオ差信号の発生が停止し
、第1及び第2出力端子33及び34にはステレオ和信
号(L+R)が等しく生じ、モノラル聴取状態となる。As the input signal further decreases, the crosstalk component further increases, and eventually the generation of the stereo difference signal stops, and the stereo sum signal (L+R) is output to the first and second output terminals 33 and 34. They occur equally, resulting in a monaural listening condition.
第1及び第2出力端子33及び34に生じる出力信号が
ステレオ状態からモノラル状態に連続的に移行し、それ
に応じてSN比もステレオの状態からモノラルの状態に
連続的に移行し、SN比の改善を急激にでは無く、なめ
らかに改善出来るので、聴取者に違和感や不快感を与え
ることが防止される。The output signals generated at the first and second output terminals 33 and 34 continuously shift from a stereo state to a monaural state, and accordingly, the SN ratio also continuously shifts from a stereo state to a monaural state, and the SN ratio changes continuously from a stereo state to a monaural state. Since the improvement can be made smoothly rather than suddenly, it is possible to prevent the listener from feeling uncomfortable or uncomfortable.
その間、和信号回路の状態は、何ら変化しない。During this time, the state of the sum signal circuit does not change at all.
第1図における範囲(A−B)においては、前述の如く
、ステレオ状態からモノラル状態への移行及びモノラル
状態の保持を行うことによって、SN比の改善が達成さ
れる。In the range (A-B) in FIG. 1, an improvement in the SN ratio is achieved by transitioning from a stereo state to a monaural state and maintaining the monaural state, as described above.
受信信号の電界強度が更に小となり、最早モノラル状態
においてもSN比の悪化が顕著となると、第1及び第2
和信号回路υ及びυ′の状態が変化し始める。When the electric field strength of the received signal becomes even smaller and the deterioration of the S/N ratio becomes noticeable even in the monaural state, the first and second
The states of the sum signal circuits υ and υ' begin to change.
すなわち、入力信号が第1図の点Aに達すると、第3及
び第4制御信号t1及びt2の値が接近して来、第1和
信号回路月の第3差動回路ハの第8トランジスタ23、
及び第4差動回路27の第9トランジスタ25が導通を
開始する。That is, when the input signal reaches point A in FIG. 23,
And the ninth transistor 25 of the fourth differential circuit 27 starts conducting.
そして、前記第9トランジスタ25の導通開始により、
ステレオコンポジット信号入力端子18から高域カット
回路Iを介して第12トランジスタ32のベースに印加
される高域カット主チャンネル信号力揃記第9トランジ
スタ25のコレクタに導出され始め、第1和信号回路I
の出力信号中に前記高域カット主チヤンネル信号が、第
3差動回路ハの第7トランジスタ22のコレクタに導出
される主チヤンネル信号とともに得られる。Then, with the start of conduction of the ninth transistor 25,
The high-frequency cut main channel signal power applied to the base of the twelfth transistor 32 from the stereo composite signal input terminal 18 via the high-frequency cut circuit I begins to be led out to the collector of the ninth transistor 25, and the first sum signal circuit I
The high-frequency cut main channel signal is obtained in the output signal of , together with the main channel signal led out to the collector of the seventh transistor 22 of the third differential circuit C.
入力信号のレベル低下に応じて、前記第3制御信号t1
は益々減少し、第4制御信号t2は益益増加するから、
前記第1和信号回路Jの出力信号中に含まれる高域カッ
ト主チヤンネル信号の割合は、益々増大する。In response to a decrease in the level of the input signal, the third control signal t1
decreases more and more, and the fourth control signal t2 increases the profit, so
The proportion of the high-frequency cut main channel signal included in the output signal of the first sum signal circuit J increases more and more.
例えば、tl−t2となると、高域カット主チヤンネル
信号と主チヤンネル信号との割合は1:1となる。For example, when it comes to tl-t2, the ratio of the high frequency cut main channel signal to the main channel signal is 1:1.
入力信号が極く小となると、tl(t2となり、第3差
動回路Uの第7トランジスタ22は非導通となり、第4
差動回路どの第9トランジスタ25は飽和状態となる。When the input signal becomes extremely small, tl(t2), the seventh transistor 22 of the third differential circuit U becomes non-conductive, and the fourth
The ninth transistor 25 in the differential circuit becomes saturated.
従って、第1和信号回路Fの出力信号は、高域カット主
チヤンネル信号のみとなり、十分なるSN比の改善が達
成される。Therefore, the output signal of the first sum signal circuit F is only the high-frequency cut main channel signal, and a sufficient improvement in the S/N ratio is achieved.
第6図は、第3制御信号t1対主チャンネル信号と高域
カット主チヤンネル信号との割合の関係を示す特性図で
、一点鎖線二は主チヤンネル信号を、実線ホは高域カッ
ト主チヤンネル信号を示す。FIG. 6 is a characteristic diagram showing the relationship between the ratio of the third control signal t1 to the main channel signal and the high-frequency cut main channel signal, where the dashed line 2 represents the main channel signal and the solid line H represents the high-frequency cut main channel signal. shows.
第2和信号回路υ′に関しては、第1和信号回路月と全
く同様に動作し、同一の出力信号が得られるので説明は
省略する。The second sum signal circuit υ' operates in exactly the same way as the first sum signal circuit and provides the same output signal, so a description thereof will be omitted.
好ましい実施例においては、入力信号がアンテナ入力で
約30 dB程度になったとき、ステレオ副チャンネル
信号の復調回路用の出力信号の減少が開始され、約20
dB程度になったとき、高域カット主チヤンネル信号が
第1及び第2和信号回路υ及びυ′の出力信号中に混入
し始める。In a preferred embodiment, the reduction of the output signal for the stereo subchannel signal demodulation circuit begins when the input signal is on the order of about 30 dB at the antenna input;
dB, the high-frequency cut main channel signal begins to mix into the output signals of the first and second sum signal circuits υ and υ'.
以上述べた如く、本発明に係るステレオ復調回路は、弱
電界時において2段階のSN比の改善を行っているので
、大巾でかつ確実なるSN比の改善が達成出来るという
利点を有する。As described above, the stereo demodulation circuit according to the present invention improves the SN ratio in two stages in the case of a weak electric field, so it has the advantage of being able to achieve a wide and reliable improvement in the SN ratio.
又、本発明に係るステレオ復調回路は、前記2攻偕のS
N比の改善を行うに際し、急激にではなく、なめらかな
切換が行なわれる様に工夫されているので、聴取者に対
し不快感や異和感を与えることなくSN比の改善が達成
出来るから、特に車載用等電界強度が頻繁に変化する受
信機に用いて非常に効果のある優れたものである。Further, the stereo demodulation circuit according to the present invention has the above-mentioned two attacks.
When improving the N ratio, the switching is done smoothly rather than abruptly, so the S/N ratio can be improved without causing any discomfort or discomfort to the listener. It is particularly effective and excellent for use in receivers where the electric field strength changes frequently, such as those used in vehicles.
第1図は入力対出力の関係及び入力対S/Nの関係を示
す特性図、第2図は従来のSN比改善回路の一例を示す
回路図、第3図は本発明の一実施例を示す回路図、第4
図は第3図の第3及び第4制御信号t1及びt2の発生
の仕方を示すブロック図、第5図は第3図の第1及び第
2制部は号の発生の仕方を示す回路図、及び第6図は本
発明の説明に供する為の特性図である。
主な図番の説明、1・・・−・・差信号復調回路、U。
IJ、24,24’、坐、N′・・・・・・差動回路、
Ll・・・・・・第1和信号回路、υ′・・・・・・第
2和信号回路、I・・・・・・高域カット回路。Fig. 1 is a characteristic diagram showing the relationship between input and output and the relationship between input and S/N, Fig. 2 is a circuit diagram showing an example of a conventional SN ratio improvement circuit, and Fig. 3 is a diagram showing an example of the present invention. Circuit diagram shown, 4th
The figure is a block diagram showing how the third and fourth control signals t1 and t2 in FIG. 3 are generated, and FIG. 5 is a circuit diagram showing how the first and second control signals in FIG. 3 are generated. , and FIG. 6 are characteristic diagrams for explaining the present invention. Explanation of main figure numbers, 1...--Difference signal demodulation circuit, U. IJ, 24, 24', seat, N'...differential circuit,
Ll...First sum signal circuit, υ'...Second sum signal circuit, I...High frequency cut circuit.
Claims (1)
ネル信号を伝送する第2回路と、前記第1及び第2回路
の出力信号を加算して左右のステレオ信号を得る加算回
路とを有するステレオ復調回路において、前記第2回路
は、主チヤンネル信号と該主チヤンネル信号の高域成分
をカットした高域カット主チヤンネル信号との出力信号
中に含まれる比率を可変する回路を有し、第1所定レベ
ル以上の信号受信時においては、第2回路の出力信号を
略主チヤンネル信号のみとするとともに、第1及び第2
回路の出力信号レベルを略等しくして正常ステレオ受信
状態とし、前記第1所定レベル以下で第2所定レベル以
上の信号受信時には信号レベルの減少に伴い前記第1回
路の出力信号を連続的に小として分離度を悪化せしめて
、モノラル受信状態もしくはモノラル受信に近い状態と
し、前記第2所定レベル以下では、信号レベルの低下に
伴い、前記第2回路の出力信号中に含まれる高域カット
主チヤンネル信号の割合を大として、受信信号のSN比
を改善したことを特徴とするステレオ復調回路。1 Stereo demodulation having a first circuit that demodulates a sub-channel signal, a second circuit that transmits a main channel signal, and an addition circuit that adds the output signals of the first and second circuits to obtain left and right stereo signals. In the circuit, the second circuit includes a circuit for varying the ratio of the main channel signal and the high-frequency cut main channel signal obtained by cutting the high-frequency components of the main channel signal, which are included in the output signal, and When receiving a signal higher than the level, the output signal of the second circuit is approximately only the main channel signal, and the output signal of the first and second circuit is
The output signal levels of the circuits are made approximately equal to achieve a normal stereo reception state, and when a signal is received that is below the first predetermined level and above the second predetermined level, the output signal of the first circuit is continuously reduced as the signal level decreases. As a result, the degree of separation is deteriorated, resulting in a monaural reception state or a state close to monaural reception, and below the second predetermined level, as the signal level decreases, the high frequency cut main channel included in the output signal of the second circuit is A stereo demodulation circuit characterized in that the SN ratio of a received signal is improved by increasing the signal ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1583579A JPS5853531B2 (en) | 1979-02-13 | 1979-02-13 | stereo demodulation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1583579A JPS5853531B2 (en) | 1979-02-13 | 1979-02-13 | stereo demodulation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55109046A JPS55109046A (en) | 1980-08-21 |
JPS5853531B2 true JPS5853531B2 (en) | 1983-11-30 |
Family
ID=11899888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1583579A Expired JPS5853531B2 (en) | 1979-02-13 | 1979-02-13 | stereo demodulation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5853531B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5672551A (en) * | 1979-11-19 | 1981-06-16 | Hitachi Ltd | Frequency modulation receiver |
JPS5738038A (en) * | 1980-08-20 | 1982-03-02 | Hitachi Ltd | Fm receiver |
JPS57208743A (en) * | 1981-06-17 | 1982-12-21 | Pioneer Electronic Corp | Stereo demodulation circuit |
-
1979
- 1979-02-13 JP JP1583579A patent/JPS5853531B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55109046A (en) | 1980-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3943293A (en) | Stereo sound reproducing apparatus with noise reduction | |
US4379207A (en) | Automatic noise eliminating device for an FM receiver | |
US3573382A (en) | A stereophonic receiver muting means with substitution of a dc circuit for an ac circuit | |
US3617641A (en) | Stereo multiplex demodulator | |
EP0030874B1 (en) | Distortion reducing circuit for an fm receiver | |
JPH01162020A (en) | Fm radio receiver | |
US4032717A (en) | Circuit arrangement for a continuous adjustment of the base width in a stereo decoder | |
US4399325A (en) | Demodulating circuit for controlling stereo separation | |
US4737991A (en) | Audio multiplex television tuner | |
CA1044764A (en) | Audio processor circuit for an fm-stereo radio receiver | |
JPS5853531B2 (en) | stereo demodulation circuit | |
EP0074151A1 (en) | Arrangement for receiving tv-signals having left and right stereo sound signals | |
US4809328A (en) | FM/FMX stereophonic receiver | |
EP0013149A1 (en) | FM stereo signal demodulator | |
JPS6122366Y2 (en) | ||
JPS5853532B2 (en) | stereo demodulation circuit | |
JPS5853533B2 (en) | stereo demodulation circuit | |
JPH0628836Y2 (en) | FM stereo receiver | |
JPS6241481Y2 (en) | ||
JPS5832360Y2 (en) | FM stereo receiving circuit | |
JPS5912841Y2 (en) | stereo receiver | |
JPH02177782A (en) | Monaural tv sound demodulation circuit | |
JPH0528841Y2 (en) | ||
JPH0311976Y2 (en) | ||
JPS6221460B2 (en) |