[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5849911A - Optical surface image converting element - Google Patents

Optical surface image converting element

Info

Publication number
JPS5849911A
JPS5849911A JP6471181A JP6471181A JPS5849911A JP S5849911 A JPS5849911 A JP S5849911A JP 6471181 A JP6471181 A JP 6471181A JP 6471181 A JP6471181 A JP 6471181A JP S5849911 A JPS5849911 A JP S5849911A
Authority
JP
Japan
Prior art keywords
insulating layer
transparent
thin plate
protective film
optical image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6471181A
Other languages
Japanese (ja)
Inventor
Takashi Shibakuchi
芝口 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6471181A priority Critical patent/JPS5849911A/en
Publication of JPS5849911A publication Critical patent/JPS5849911A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To guarantee the quality of an image over a long term by forming a transparent insulating layer on a thin plate of a crystal body having both of photocnductive and electrooptical effects and by laying a protective film on the insulating layer with a transparent electrode in-between to enhance the moisture resistance and to maintain the insulating property of the insulating layer. CONSTITUTION:The surfaces of a thin plate 21 of a single crystal body of Bi12SiO20 having body of photoconductive and electrooptical effects are photopolished, and high molecular poly-p-xylylene is vacuum-deposited to form transparent insulating layers 22 on both sides of the plate 21 or a layer 30 on one side. Transparent In2O3-base electrodes 23, 24 contg. SnO2 are formed by an ion plating method, and lead wires 25, 26 are connected to the electrodes, respectively. Protective films 27 of high molecular poly-p-xylylene are then laid on both sides, or a film is laid on one glass substrate 28. Thus, a symmetry or asymmetry type optical surface image converting element 1 is obtd. The outer protective film inhibits the absorption of moixture in the air to prevent the deterioration of the insulating layer, and the quality of an image is guaranteed.

Description

【発明の詳細な説明】 本発明は光画像変換素子の改良に関する。[Detailed description of the invention] The present invention relates to improvements in optical image conversion elements.

光情報処理技術における光画像変換素子として電気光学
特性や光伝導特性を有するBL12SL02o。
BL12SL02o has electro-optical properties and photoconductive properties as an optical image conversion element in optical information processing technology.

Bi12Ge 020  等(Dビスマスシレナイト族
単結晶を用いたインコヒーレント光像をコヒーレント光
像に変換する素子がすでに刊行物(J、Fe1rlei
h etal、 Applted optics Vo
l 11.NO12,1972,2752)で発表され
ており、それによると第1図(a)の様な構造を有する
。第1図(a)において1は光画像質r素子、2はBL
12 St 020単結晶、3.4は絶縁層ポリパラキ
7リレン、5,6はAa、 P’+ l7L20.3゜
Sル02等の透明な電極である。又第1図(h)に示し
た如く絶縁層3がない非対称型の構造をもつ光画像変換
素子1も提案されている。これらの構造をもつ光画像変
換素子1は第2図に示す様に電極5゜6間に電源7よシ
スイッチ8を介して電圧を印加し画像情報源9よりレン
ズ10で画像情報を投影すると、単結晶2の光照射部に
電子−正孔対が生ずる。この電子−正孔対は印加電圧に
よって両極に移動して絶縁層3.4との界面でトラップ
され、単結晶2内の電位勾配は光照射部分が光来照射部
分に比べて小さくなり画像が書込まれる。画像書込み光
11としてはBi 12 Si 020  単結晶2の
波長依存性を利用するため光伝導効果の大きい5QQr
tm以下の短波長の光を用いる。次に画像を読み出す時
は光伝導効果の小さい長波長の光例えばHt −Neレ
ーザー光12を偏光子13、ノ1−7ミラー14を介し
て光画像変換素子lの入射面に均一に照射し、その透過
光を検光子15を通すことによって、強度変調されたコ
ヒーレント光像16が得られる。この時光画像変換素子
1に入射する読み出し光の偏光方向は結晶軸に対して4
5°にする。
A device that converts an incoherent optical image into a coherent optical image using a bismuth sirenite group single crystal such as Bi12Ge 020 (D) has already been published in a publication (J, Fe1rlei
h etal, Applied optics Vo
l 11. No. 12, 1972, 2752), and according to it, it has a structure as shown in FIG. 1(a). In FIG. 1(a), 1 is an optical image quality r element, 2 is a BL
12 is a St 020 single crystal, 3.4 is an insulating layer made of polyparakylylene, 5 and 6 are transparent electrodes such as Aa, P'+ 17L20.3°S 02, etc. Furthermore, an optical image conversion element 1 having an asymmetric structure without an insulating layer 3 as shown in FIG. 1(h) has also been proposed. As shown in FIG. 2, the optical image conversion element 1 having these structures applies a voltage between the electrodes 5.6 through the power supply 7 and the switch 8, and projects image information from the image information source 9 through the lens 10. , electron-hole pairs are generated in the light-irradiated portion of the single crystal 2. These electron-hole pairs move to both poles by the applied voltage and are trapped at the interface with the insulating layer 3.4, and the potential gradient within the single crystal 2 is smaller in the light-irradiated area than in the light-irradiated area, resulting in an image. written. The image writing light 11 is 5QQr, which has a large photoconductive effect because it utilizes the wavelength dependence of the Bi 12 Si 020 single crystal 2.
Light with a short wavelength of tm or less is used. Next, when reading out an image, a long-wavelength light with a small photoconductive effect, such as Ht-Ne laser light 12, is uniformly irradiated onto the incident surface of the optical image conversion element l via a polarizer 13 and a mirror 1-7. By passing the transmitted light through an analyzer 15, an intensity-modulated coherent optical image 16 is obtained. At this time, the polarization direction of the readout light incident on the optical image conversion element 1 is 4 with respect to the crystal axis.
Set it to 5°.

次に読み出し動作について詳しく述べるに、光画像変換
素子1に電圧が印加されると、結晶2は複屈折特性を示
す。っまシ結晶面(100)に平行で互いに垂直な二つ
の方向(S方向とF方向)の直線偏光に対する屈折率が
異なる。そして結晶2はこのS方向とF方向に対する二
等分方向に直線偏光した強度I、なるコヒーレント光が
入射すると、複屈折特性のために両面閾電圧Vに応じて
楕円偏光となる(ポッケルス効果)。したがってその出
力側に入射偏光方向と直交する検光子15を置くと、結
晶2の電圧分布をコヒーレント光の光強度分布で取り出
すことができ、出力光の強度■。は次式で与えられる。
Next, to describe the readout operation in detail, when a voltage is applied to the optical image conversion element 1, the crystal 2 exhibits birefringence characteristics. The refractive index for linearly polarized light in two directions (S direction and F direction) parallel to the crystal plane (100) and perpendicular to each other is different. When coherent light with an intensity I that is linearly polarized in the bisecting direction with respect to the S direction and the F direction is incident on the crystal 2, it becomes elliptically polarized light according to the double-sided threshold voltage V due to the birefringence property (Pockels effect). . Therefore, by placing an analyzer 15 perpendicular to the incident polarization direction on the output side, it is possible to extract the voltage distribution of the crystal 2 as a light intensity distribution of coherent light, and the intensity of the output light is 2. is given by the following equation.

ただし λ/2 は半波長電圧で、Bi 12 Si 
020の場合3.9 KVである。
However, λ/2 is the half-wave voltage, and Bi 12 Si
020 is 3.9 KV.

しかしこの光画像変換素子では印加電圧が高いので、繰
シ返し動作させると絶縁層3,4が劣化し画像品質が低
下する。これは主に絶縁層3,4が大気中の水分を吸収
してその絶縁特性が悪くなるためである。
However, since the applied voltage is high in this optical image conversion element, repeated operation causes the insulating layers 3 and 4 to deteriorate, resulting in a decrease in image quality. This is mainly because the insulating layers 3 and 4 absorb moisture from the atmosphere and their insulating properties deteriorate.

本発明は上述の欠点を除去し、絶縁層の絶縁特性を向上
させた光画像変換素子を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide an optical image conversion element in which the insulating properties of the insulating layer are improved.

以下図面を参照しながら本発明について実施例をあげて
説明する。
The present invention will be described below by way of examples with reference to the drawings.

本発明の一実施例を第3図如示す。第3図で21はBz
12 St 020又はB’12 Ge 020単結晶
の薄板であシ、その両端面は/10以上の面精度で光学
研摩されたものである。この結晶210両端面を含む全
面には高分子膜であるポリパラキシリレンを5μ厚に真
空蒸着して絶縁層22を形成し、この絶縁層22の両端
面にIyc203に少量の5rLo2 を含んだものよ
シなる透明な電極23.24をイオンブレーティング法
で順次形成して素子本体を構成する。その後、電圧を電
極23.24に印加するためのリード線25.26を電
極23.24に接続し、素子本体の外面に高分子膜であ
るポリパラキシリレンを20μ厚程度に真空蒸着して透
明な保護膜27を形成する。
An embodiment of the present invention is shown in FIG. In Figure 3, 21 is Bz
It is a thin plate of 12 St 020 or B'12 Ge 020 single crystal, and both end surfaces thereof are optically polished to a surface precision of /10 or more. On the entire surface of this crystal 210 including both end faces, a polymer film of polyparaxylylene was vacuum-deposited to a thickness of 5μ to form an insulating layer 22, and on both end faces of the insulating layer 22, Iyc203 containing a small amount of 5rLo2 was formed. The element body is constructed by sequentially forming very transparent electrodes 23 and 24 by the ion blating method. After that, lead wires 25.26 for applying voltage to the electrodes 23.24 are connected to the electrodes 23.24, and a polymer film of polyparaxylylene is vacuum-deposited on the outer surface of the element body to a thickness of about 20 μm. A transparent protective film 27 is formed.

この実施例によれば素子本体の上に保護膜27を形成し
たので、絶縁層22が大気中の水分を吸収するのを保護
膜27で押えることができ絶縁層22の耐久性が向上す
る。
According to this embodiment, since the protective film 27 is formed on the element body, the protective film 27 can prevent the insulating layer 22 from absorbing moisture in the atmosphere, thereby improving the durability of the insulating layer 22.

第4図は本発明の他の実施例である。Bi12 Si 
020又はBt Ge 02Q単結晶の薄板21は両端
面が旬。以上の面精度で光学研摩されたものである。ま
ずこの薄板21の片面は光学研摩して工nO2に少量の
5rLO2を含んだ透明電極23を真空蒸着により形成
した後、ガラス基板28上に透明の光学接着剤29で固
定し、リード線25を電極23よりガラス基板28の孔
28αを通して引き出す。次に薄板21の他の面を光学
研摩して薄板21の厚さを100μ程度にする。
FIG. 4 shows another embodiment of the invention. Bi12 Si
020 or Bt Ge 02Q single crystal thin plate 21 has both end faces. It has been optically polished to a surface precision of above. First, one side of this thin plate 21 is optically polished and a transparent electrode 23 containing a small amount of 5rLO2 in nO2 is formed by vacuum evaporation, and then fixed on a glass substrate 28 with a transparent optical adhesive 29, and a lead wire 25 is attached. The electrode 23 is drawn out through the hole 28α of the glass substrate 28. Next, the other surface of the thin plate 21 is optically polished so that the thickness of the thin plate 21 is about 100 μm.

この薄板21の光学研摩した面には高分子膜であるポリ
パラキシリレンを5μ厚に真空蒸着して絶縁層30を形
成した後、I?1203に少量の5rLO2を含んだ透
明電極24をイオンブレーティング法で形成してリード
線26を電極24に接着し、その上に高分子膜であるポ
リパラキシリレンを20μ厚程度に真空蒸着して保護膜
31を形成する。
On the optically polished surface of this thin plate 21, a polymer film of polyparaxylylene is vacuum-deposited to a thickness of 5 μm to form an insulating layer 30, and then an I? A transparent electrode 24 containing a small amount of 5rLO2 is formed on 1203 by the ion-blating method, a lead wire 26 is bonded to the electrode 24, and a polymer film of polyparaxylylene is vacuum-deposited on the electrode 24 to a thickness of about 20 μm. A protective film 31 is then formed.

この実施例によると薄板21をガラス基板28に接着し
てから薄板21を研摩するため薄板21を所望の厚さに
薄くすることができて解像力が向上すると同時に前記実
施例と同様に保護層31で絶縁層30の大気中水分の吸
収を押えてその耐久性を向上させることができる。
According to this embodiment, since the thin plate 21 is bonded to the glass substrate 28 and then polished, the thin plate 21 can be made thinner to a desired thickness, improving resolution. This can suppress absorption of atmospheric moisture by the insulating layer 30 and improve its durability.

以上のように本発明によれば光画像変換素子において絶
縁層の上にある電極の上に保護膜を設けたので、絶縁層
が大気中の水分を吸収するのを保護膜で押えることがで
き絶縁層の劣化を押えて画像品質の低下を押えることが
できる。
As described above, according to the present invention, since a protective film is provided on the electrode on the insulating layer in the optical image conversion element, the protective film can prevent the insulating layer from absorbing moisture in the atmosphere. It is possible to suppress the deterioration of the insulating layer and suppress the deterioration of image quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の光画像変換素子の各側を示す
正面図、第3図は光画像記録再生装置の一例を示す模型
図、第4図及び第5図は本発明の各実施例を示す断面図
である。 21・・結晶体、 22.30・・絶縁層、 23.2
4電極、 27.31・・・保護膜。 手続補正書帖式) %式% 1 事件の表示 昭和56 年 特 許  願第64711号2 発明の
名称 光画像変換素子 3 補正をする者 事件との関係          特許出願人任   
所 東京都大田区中馬込1丁目3番6号名   称 (
674)  株式会社 リ コ −4代理人〒゛156 住   所 東京都世田谷区桜丘2丁目6番28号6 
補正の対象  明細書の「図面の簡単な説明−」の欄7
 補正の内容 (1)明細書第6頁第17行乃至同頁末行の文を次の通
りに訂正する。 「 第1図(al 、 (blは従来の光画像変換素子
の各側を示す正面図、第2図は光画像記録再生装置の一
例を示す模型図、第6図及び第4図は本発明の各実施例
を示す断面図である。」
1 and 2 are front views showing each side of a conventional optical image conversion element, FIG. 3 is a model diagram showing an example of an optical image recording and reproducing device, and FIGS. 4 and 5 are each side of a conventional optical image conversion element. It is a sectional view showing an example. 21...Crystal, 22.30...Insulating layer, 23.2
4 electrodes, 27.31...protective film. Procedural amendment book type) % type % 1 Indication of the case 1982 Patent Application No. 64711 2 Name of the invention Optical image conversion device 3 Person making the amendment Relationship to the case Appointment of patent applicant
Location 1-3-6 Nakamagome, Ota-ku, Tokyo Name (
674) Rico Co., Ltd.-4 Agent〒゛156 Address 2-6-28-6 Sakuragaoka, Setagaya-ku, Tokyo
Subject of amendment: “Brief explanation of drawings” column 7 of the specification
Contents of the amendment (1) The sentences from page 6, line 17 to the last line of the same page of the specification are corrected as follows. 1 (al, (bl) is a front view showing each side of a conventional optical image conversion element, FIG. 2 is a model diagram showing an example of an optical image recording and reproducing device, and FIGS. 6 and 4 are in accordance with the present invention. It is a sectional view showing each example of.

Claims (1)

【特許請求の範囲】[Claims] 光伝導効果と電気光学効果の双方を備えだ結晶体と、こ
の結晶体の一端もしくは両端に設けられた透明な絶縁層
と、この絶縁層を介して前記結晶体の両端に設けられた
透明に電極とを有する光画像変換素子において、前記絶
縁層の上に前記電極を介して保護膜を設けたことを特徴
とする光画像変換素子。
A crystal body that has both a photoconductive effect and an electro-optical effect, a transparent insulating layer provided at one end or both ends of this crystal body, and a transparent insulating layer provided at both ends of the crystal body through this insulating layer. An optical image conversion element having an electrode, characterized in that a protective film is provided on the insulating layer via the electrode.
JP6471181A 1981-04-28 1981-04-28 Optical surface image converting element Pending JPS5849911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6471181A JPS5849911A (en) 1981-04-28 1981-04-28 Optical surface image converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6471181A JPS5849911A (en) 1981-04-28 1981-04-28 Optical surface image converting element

Publications (1)

Publication Number Publication Date
JPS5849911A true JPS5849911A (en) 1983-03-24

Family

ID=13266001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6471181A Pending JPS5849911A (en) 1981-04-28 1981-04-28 Optical surface image converting element

Country Status (1)

Country Link
JP (1) JPS5849911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092612A (en) * 2012-11-01 2014-05-19 Nippon Telegr & Teleph Corp <Ntt> Kltn optical device and encapsulation method of kltn optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092612A (en) * 2012-11-01 2014-05-19 Nippon Telegr & Teleph Corp <Ntt> Kltn optical device and encapsulation method of kltn optical device

Similar Documents

Publication Publication Date Title
FR2553906A1 (en) OPTICAL SWITCHING DEVICE WITH ELECTRICAL CONTROL
JPS57169996A (en) Magnetooptic storage element
JPH10153706A (en) Polarizer and its manufacture
JPS5849911A (en) Optical surface image converting element
US4005929A (en) Reflective imaging member
US4678286A (en) Spatial light modulator
US5085503A (en) Spatial light modulating element using uniaxial single crystal of oxide as insulating layer
JP2731220B2 (en) Image conversion element and X-ray image detection method using the same
US4763996A (en) Spatial light modulator
JPH03217825A (en) Space optical modulating element
JPS6133167B2 (en)
JPH01147527A (en) Liquid crystal device for laser scan
JPS607766B2 (en) image conversion element
JPS5928895B2 (en) Optical image conversion element
JP2811468B2 (en) Optical writing type liquid crystal light valve and liquid crystal ride valve device
JPS6231326B2 (en)
JPS61212773A (en) Photosensor
JPH07104524B2 (en) Spatial light modulator
JPS63253919A (en) Optical image converter
JPH04296716A (en) Special optical modulator
JP2636037B2 (en) Optical image conversion device
Jelsma et al. Update on progress toward a crystal streak camera using new materials
SU397881A1 (en) KERRA MOSAIC CELL
JPS5868017A (en) Picture transducer
JPH035736A (en) Optical flip-flop array