[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5844218A - Internal-combustion engine - Google Patents

Internal-combustion engine

Info

Publication number
JPS5844218A
JPS5844218A JP56142961A JP14296181A JPS5844218A JP S5844218 A JPS5844218 A JP S5844218A JP 56142961 A JP56142961 A JP 56142961A JP 14296181 A JP14296181 A JP 14296181A JP S5844218 A JPS5844218 A JP S5844218A
Authority
JP
Japan
Prior art keywords
intake
valve
intake air
pump
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56142961A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56142961A priority Critical patent/JPS5844218A/en
Publication of JPS5844218A publication Critical patent/JPS5844218A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To improve fuel consumption of an engine, by providing an intake air shut off valve closing a sub-intake passage, forcibly feeding intake air with a pump, jetting the intake air for a certain period through said intake air shut off valve and scavenging residual gas in a working chamber. CONSTITUTION:A closing valve 23 is provided in a prescribed position of an intake passage 8, communicated to a working chamber 4 of an internal-combustion engine, and intake air is throttled to control an output. While an intake air shut off valve 18, closing a sub-intake passage 17, is provided. At about a conversion point transferred from an exhaust stroke to an intake stroke, intake air, forciby fed by a pump 14, is jetted through the intake air shut off valve 18 to scavenge residual gas in the working chamber 4. In this way, fuel consumption of the engine can be improved.

Description

【発明の詳細な説明】 本発明は、機関の低負荷域において吸気行程の中途で吸
気の吸入と中断し、吸気の絞りの度合を小さくして吸気
抵抗損失を低減させる様にした内燃機関において、機関
の燃費を向上させる事を目的としてものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal combustion engine in which intake air is interrupted in the middle of the intake stroke in a low engine load range, and the degree of intake throttling is reduced to reduce intake resistance loss. The purpose is to improve the fuel efficiency of the engine.

一般に機関の燃費を向上(改善)させる手段としては、
機関の作動室の残留ガスを掃気すると共に、機関に吸入
される吸気に適当な流動(渦流、旋回No5 流、乱れ等)を与える事、更には気化器等の燃料供給装
置によって供給された燃料の微粒化を促進する事が有効
であるとされている。
In general, as a means to improve (improve) the fuel efficiency of an engine,
In addition to scavenging the residual gas in the working chamber of the engine, it also provides appropriate flow (vortex, swirling flow, turbulence, etc.) to the intake air taken into the engine, and furthermore, it scavenges the fuel supplied by a fuel supply device such as a carburetor. It is said that it is effective to promote the atomization of the particles.

即ち、機関の低負荷域においては新気に対する残留ガス
の割合が大きい理由の為、燃焼が不安定となり、機関の
要求する混合比は理論混合比よりもかなり濃くしてやる
必要があり、為に燃費が悪化する。
In other words, in the low load range of the engine, the ratio of residual gas to fresh air is large, which makes combustion unstable, and the mixture ratio required by the engine needs to be much richer than the stoichiometric mixture ratio, which reduces fuel efficiency. becomes worse.

故に残留ガスを十分に掃気してやれば、燃費が向上(改
善)する事は明らかである。
Therefore, it is clear that if the residual gas is sufficiently scavenged, fuel efficiency will be improved.

又、機関に吸気される吸気に適当な流動が与えられると
、燃料の気化が促進されて良質な混合気が形成され、特
に機関の圧縮工程中にも残存する如く強い流動が与えら
れると、これにより点火栓の近傍が掃気されて着火性が
高まり、天下後の火炎伝播速度が増大して燃費が向上す
る。
Also, if an appropriate flow is given to the intake air taken into the engine, vaporization of the fuel will be promoted and a high-quality air-fuel mixture will be formed.In particular, if a strong flow is given so that it remains even during the compression process of the engine, This scavenges air near the ignition plug, improving ignitability, increasing the flame propagation speed after the engine goes out, and improving fuel efficiency.

気化器等の燃料供給装置から供給された燃料の微粒化を
促進する事は、燃費向上に有効であるのは言うまでもな
い。
It goes without saying that promoting atomization of fuel supplied from a fuel supply device such as a carburetor is effective in improving fuel efficiency.

本発明は以上の様な目的を達成しようとしたものNo6 で、以下図面に従って説明する。The present invention aims to achieve the above objects No. 6 This will be explained below with reference to the drawings.

第1図は本発明による内燃機関の一実施例で、機関に吸
入される吸気を絞って出力を制御する絞弁10を備える
と共に、機関の出力軸、カム軸、電動機(モーター)で
駆動されるポンプ14を備えてある。
FIG. 1 shows an embodiment of an internal combustion engine according to the present invention, which is equipped with a throttle valve 10 that controls the output by throttling intake air taken into the engine, and which is driven by the engine's output shaft, camshaft, and electric motor. A pump 14 is provided.

本発明の理解する為に先ず、機関の低負荷域において吸
気行程の中途で吸気の吸入を中断し、機関の吸気絞りの
度合を小さくする事によって吸気抵抗損失を低減させる
機構について説明する。
In order to understand the present invention, first, a mechanism for reducing intake resistance loss by interrupting intake air in the middle of the intake stroke in a low load range of the engine and reducing the degree of intake throttling of the engine will be explained.

吸気弁5はカムで駆動され通常のものと何ら変りはない
が(例えば、ピストン2の上死点前20°で開き下死点
後50°で閉じる等)、吸気遮断弁18(図では機関の
出力軸の回転1/4に減速して駆動されるロータリ弁を
使用している)は機関の吸気行程の中途で閉じる様にな
っている。
The intake valve 5 is driven by a cam and is no different from a normal one (for example, it opens at 20 degrees before the top dead center of the piston 2 and closes at 50 degrees after the bottom dead center), but the intake valve 18 (in the figure, the engine The rotary valve (which uses a rotary valve that is driven at a speed of 1/4 of the rotation of the output shaft) is designed to close in the middle of the engine's intake stroke.

即ち、吸気遮断弁18は分岐部16で吸気通路8から分
岐してきた副吸気通路17を、吸気行程の中途(例えば
出力軸角度で上死点後70°)で閉じる様になっている
That is, the intake cutoff valve 18 closes the auxiliary intake passage 17 branched from the intake passage 8 at the branch portion 16 in the middle of the intake stroke (for example, at an output shaft angle of 70° after top dead center).

No7 この場合、吸気遮断弁18は吸気弁5と同時に開く様に
しても良いし、吸気弁5よりも早く開く様にしても良い
No. 7 In this case, the intake cutoff valve 18 may be opened at the same time as the intake valve 5, or may be opened earlier than the intake valve 5.

後者の場合(例えば上死点前90°で開く)を採用する
と、第2図に示す如く吸気遮断弁18の閉鎖部19を小
さくして、連通路20を大きくできる利点がある。
Adopting the latter case (for example, opening at 90 degrees before top dead center) has the advantage that the closing portion 19 of the intake cutoff valve 18 can be made smaller and the communication passage 20 can be made larger, as shown in FIG.

今、気化器9の絞弁10が十分に閉じた機関の低負荷域
を考えると、吸気弁5が開いて吸気遮断弁18も開き吸
気行程が始まると、副吸気通路17から吸気が作動室4
(シリンダーヘッド1、ピストン2、シリンダー3によ
って形成される空間)に吸入され、吸気行程の中途(例
えば出力軸角度で上死点後70°)で吸気遮断弁18が
閉鎖して(閉鎖部19が副吸気通路17を閉鎖して)、
吸気の吸入が遮断される(閉鎖弁23は低負荷域には閉
じているから、吸気弁5が開いてもそこから吸気は吸入
されない)。
Now, considering a low load region of the engine where the throttle valve 10 of the carburetor 9 is fully closed, when the intake valve 5 opens and the intake shutoff valve 18 also opens and the intake stroke begins, intake air flows from the auxiliary intake passage 17 into the working chamber. 4
(the space formed by the cylinder head 1, piston 2, and cylinder 3), and in the middle of the intake stroke (for example, at an output shaft angle of 70° after top dead center), the intake cutoff valve 18 closes (the closing part 19 closes the sub-intake passage 17),
Inhalation of intake air is blocked (since the closing valve 23 is closed in the low load range, even if the intake valve 5 opens, no intake air is drawn therefrom).

続いてピストン2が下降して下死点に到り、再び上昇し
て圧縮行程に移り、作動室4に閉じ込められた混合気が
点火栓7によって点火され燃焼する様になっている。
Subsequently, the piston 2 descends to reach the bottom dead center, rises again, and enters the compression stroke, and the air-fuel mixture confined in the working chamber 4 is ignited by the ignition plug 7 and combusted.

ここで、吸気行程において吸気遮断弁18が閉じた時点
(その時のピストン位置)からピストン2の下死点まで
の期間は、作動室4に吸気が吸入されないから(作動室
4内の吸気の膨張はあるが)、ピストン2が下死点から
上昇して前の吸気行程において吸気遮断弁18が閉じた
時点(その時のピストン位置)に再び戻る時に、ピスト
ン2は大気により(クランク室側から)逆にその分だけ
押し返される為、吸気抵抗損失とはならない(吸気遮断
弁18が閉じた時点におけるピストン2の位置からピス
トン2が下降する場合に要する仕事とそこまで上昇する
場合に与えられる仕事とが相等しい)。
Here, during the period from the time when the intake shutoff valve 18 closes (the piston position at that time) to the bottom dead center of the piston 2, no intake air is drawn into the working chamber 4 (the expansion of the intake air inside the working chamber 4). However, when the piston 2 rises from bottom dead center and returns to the point at which the intake shutoff valve 18 closed in the previous intake stroke (the piston position at that time), the piston 2 is moved by the atmosphere (from the crank chamber side). On the contrary, it is pushed back by that amount, so there is no intake resistance loss. are equal).

然るに、吸気行程において吸気遮断弁18が閉じるまで
の期間は吸気が絞弁10により絞られて作動室4に吸入
されるので、吸気抵抗損失は免れる事ができないが、吸
気行程の中途で吸気遮断弁18が閉じるから同一吸気重
量を吸入する場合、絞弁10による吸気の絞りの度合は
小さくて良い。
However, during the intake stroke until the intake cutoff valve 18 closes, the intake air is throttled by the throttle valve 10 and sucked into the working chamber 4, so intake resistance loss cannot be avoided, but the intake is cut off in the middle of the intake stroke. Since the valve 18 is closed, when the same intake air weight is taken in, the degree of throttling of the intake air by the throttle valve 10 may be small.

この様にして、期間の吸気行程は事実上短期間とNo9 なり(中途で打切られる)、絞弁による吸気絞りの度合
は小さいから、吸気抵抗損失を大幅に低減させる事がで
きる(これは燃費向上につながる)。
In this way, the intake stroke of the period is actually short (it is terminated midway through), and the degree of intake throttling by the throttle valve is small, so it is possible to significantly reduce intake resistance loss (this is due to fuel efficiency). (leading to improvement).

尚、分岐部16は絞弁10の直下に設定しても良いと共
に、副吸気通路17を専用の気化器に接続させる様にし
ても良い(もちろん、いずれの場合にも副吸気通路17
は閉鎖弁23をバイパスして作動室4へ通ずる様にする
)。
Note that the branch portion 16 may be set directly below the throttle valve 10, and the sub-intake passage 17 may be connected to a dedicated carburetor (of course, in either case, the sub-intake passage 17
(bypasses the closing valve 23 and communicates with the working chamber 4).

次に、絞弁10を更に開いて機関の負荷を増してゆくと
閉鎖弁23が開き始め、吸気は吸気通路8からも作動室
4に吸入され、吸気行程の全域にわたって吸気の吸入が
行なわれる様になる。
Next, when the throttle valve 10 is further opened to increase the load on the engine, the closing valve 23 begins to open, and intake air is also drawn into the working chamber 4 from the intake passage 8, and intake air is drawn throughout the entire intake stroke. It will be like that.

この時には絞弁10は十分に開いているから、吸気抵抗
損失は少ない。
At this time, the throttle valve 10 is sufficiently open, so the intake resistance loss is small.

即ち従来通りとなる。In other words, it remains the same as before.

この場合、閉鎖23は絞弁10によって機械的に開閉す
るか、又は絞弁10の下流側の負圧を感知して作動する
ダイアフラム装置(図示せず)によって開閉する様にす
る。
In this case, the closure 23 is opened and closed mechanically by the throttle valve 10, or by a diaphragm device (not shown) activated by sensing negative pressure downstream of the throttle valve 10.

前者の場合は、絞弁10が所定開度まで開いた後に、N
o10 閉鎖弁23がこれと共に開き始める様にするのが良い(
全開は同時に行なわれる)。
In the former case, after the throttle valve 10 opens to a predetermined opening degree, the N
o10 It is better to have the closing valve 23 start opening together with this (
full opening is done at the same time).

又、閉鎖弁23は二点鎖線示の如く上下に昇降できる板
状のもの24でも良い(更には円筒状のものも考えられ
る)。
Further, the closing valve 23 may be a plate-shaped valve 24 that can be raised and lowered as shown by the two-dot chain line (a cylindrical valve is also conceivable).

又、副吸気通路17は分岐部16で吸気通路8から図示
の如く垂直方向に分岐する場合と、第3図に示す如く水
平方向に分岐する場合とがある。
Further, the auxiliary intake passage 17 may branch from the intake passage 8 at the branching portion 16 in the vertical direction as shown in the figure, or in the horizontal direction as shown in FIG.

第3図において、26は閉鎖弁28が閉じている時、吸
気通路8を流れてくる燃料を全部副吸気通路17へ流入
させる副閉鎖弁で、閉鎖弁23と同時に開閉させる様に
する(副閉鎖弁26を設置した場合には、閉鎖弁23は
除去できるが、この時には副閉鎖弁26がその代用とな
る)。
In FIG. 3, reference numeral 26 denotes a sub-closing valve that allows all the fuel flowing through the intake passage 8 to flow into the sub-intake passage 17 when the closing valve 28 is closed, and is opened and closed at the same time as the closing valve 23 (sub-closing valve 26). If the stop valve 26 is installed, the stop valve 23 can be removed, but in this case the auxiliary stop valve 26 will be used in its place).

尚、閉鎖弁23は第4図に示す如く二段式気化器の2次
側絞弁28で代用する事も考えられる。
It is also conceivable that the closing valve 23 may be replaced by a secondary throttle valve 28 of a two-stage carburetor as shown in FIG.

即ち、吸気通路8は2次側絞弁28へ接続し、副吸気通
路17は1次側絞弁27へ接続しており、2次側絞弁2
8が機関の低負荷域では吸気通路8を閉鎖していると共
に、副吸気通路17は2次側絞弁28(即No11 ち閉鎖弁)をバイパスして作動室4へ通ずる様になって
いる。
That is, the intake passage 8 is connected to the secondary throttle valve 28, the auxiliary intake passage 17 is connected to the primary throttle valve 27, and the secondary throttle valve 2
No. 8 closes the intake passage 8 in the low load range of the engine, and the auxiliary intake passage 17 bypasses the secondary throttle valve 28 (that is, No. 11, ie, the closing valve) and communicates with the working chamber 4. .

本発明の特徴は以上の様に吸気抵抗損失を低減させた内
燃機関において、ポンプ14から圧送されてくる吸気の
高速気流によって作動室4の残留ガスを掃気するところ
にある(再び第1図で説明する)。
The feature of the present invention is that, in an internal combustion engine in which intake resistance loss is reduced as described above, residual gas in the working chamber 4 is scavenged by a high-speed airflow of intake air pumped from the pump 14 (again, as shown in FIG. 1). explain).

即ち、機関の排気行程において燃焼ガスの殆どを排気弁
6から排出して排気行程から吸気行程へ移り変る変換点
(ピストン2の上死点位置)の近傍になると、今迄吸気
遮断弁18によって閉鎖されていたポンプ吐出側通路1
5が開かれ(吸気遮断弁18に形成された連通路22が
ポンプ吐出側通路15に連通して)、ポンプ14から圧
送されてくる吸気(この場合は空気)は吸気遮断弁18
を介して(連通路22を介して)噴口21から一定期間
作動室4へ激しく噴出する様になっている。
That is, in the exhaust stroke of the engine, when most of the combustion gas is discharged from the exhaust valve 6 and the transition point (top dead center position of the piston 2) where the exhaust stroke changes to the intake stroke is near, the intake cutoff valve 18 Pump discharge side passage 1 that was closed
5 is opened (the communication passage 22 formed in the intake cutoff valve 18 communicates with the pump discharge side passage 15), and the intake air (air in this case) that is pressure-fed from the pump 14 passes through the intake cutoff valve 18.
(via the communication path 22), the liquid is violently ejected from the nozzle 21 into the working chamber 4 for a certain period of time.

これにより作動室4の残留ガスを十分に掃気する事がで
きるから(同時に残留ガスの吸気通路8への逆流も防止
される)、薄い混合気でも安定燃焼させる事ができ、燃
費は向上する。
As a result, the residual gas in the working chamber 4 can be sufficiently scavenged (at the same time, the backflow of the residual gas to the intake passage 8 is also prevented), so even a thin air-fuel mixture can be stably combusted, improving fuel efficiency.

この場合、噴口21は複数個に形成し、作動室4をまん
べんなく掃気する様にしても良いと共に、噴口21から
の吸気の噴出開始は吸気弁5の開く時期よりも若干早く
しても良い。
In this case, a plurality of nozzles 21 may be formed to evenly scavenge the working chamber 4, and the jetting of intake air from the nozzle 21 may start slightly earlier than when the intake valve 5 opens.

又、噴口21からの吸気の噴出は排気弁6が閉じた後は
あまり意味を成さないから、排気弁6が閉じる時期の近
傍までとする。
Furthermore, since the injection of intake air from the nozzle port 21 does not make much sense after the exhaust valve 6 is closed, it is assumed that the intake air is ejected until close to the time when the exhaust valve 6 closes.

尚、機関の(中)高負荷域においては新気に対する残留
ガスの割合が小さくなるから、噴口21からの吸気の噴
出は停止させても良い。
Note that in the (medium) high load region of the engine, the ratio of residual gas to fresh air is small, so the injection of intake air from the nozzle 21 may be stopped.

次に、ポンプ14に吸入される吸気の流量(噴口21か
ら噴出するポンプ14の吐出流量)は、機関の吸入吸気
流量に応じて細かく制御する様にした方が良い事が多い
Next, it is often better to finely control the flow rate of the intake air sucked into the pump 14 (the discharge flow rate of the pump 14 ejected from the nozzle 21) in accordance with the intake air flow rate of the engine.

ポンプ14の吐出流量を制御する方法としては、空気通
路11に絞弁10と機械的に連動する小絞弁12を設置
したり、二点鎖線示の如く空気ジェット13を設置する
事が考えられる。
Possible methods for controlling the discharge flow rate of the pump 14 include installing a small throttle valve 12 mechanically interlocked with the throttle valve 10 in the air passage 11, or installing an air jet 13 as shown by the two-dot chain line. .

又二点鎖線示の如く、絞弁10が最小開度の時は第1吸
気孔aからのみ吸気をポンプ14に吸入させ、No13 絞弁10が開くに従って第2吸気孔bからも吸気を吸入
させる様にする事が考えられる。
Also, as shown by the two-dot chain line, when the throttle valve 10 is at its minimum opening, the pump 14 draws in air only from the first intake hole a, and as the throttle valve No. 13 opens, air is also drawn from the second intake hole b. It is possible to do so.

尚、2サイクル機関と同様にクランク室を密閉構造とし
、ここから吸気を適当な逆止弁を介して吸気遮断弁18
(連通路22)へ導びく様にすれば、このクランク室を
ポンプ14の代用とする事ができる。
The crank chamber has a sealed structure similar to a two-stroke engine, and the intake air is passed through an appropriate check valve to the intake cutoff valve 18.
(Communication path 22), this crank chamber can be used as a substitute for the pump 14.

第5図はポンプから圧送されてくる吸気の高速気流によ
って、強力な吸気の流動(渦流、旋回流、乱れ等)を形
成しようとしたものである。
FIG. 5 shows an attempt to create a strong flow of intake air (vortex, swirling flow, turbulence, etc.) using a high-speed airflow of intake air that is force-fed from a pump.

即ち第5図において、排気行程によって機関の作動室の
燃焼ガスが排出され、更に排気弁(図示せず)が閉じる
時期の近傍になると(この時、吸気弁5、吸気遮断弁1
8は既に開いている)、今迄吸気遮断弁18によって閉
鎖されていたポンプ吐出側通路15が開かれ(連通路2
9が連通し)、ポンプ(図示せず)から圧送されてくる
吸気が吸気遮断弁18を介して(連通路29を介して)
噴口21から作動室へ激しく噴出する。
That is, in FIG. 5, combustion gas in the working chamber of the engine is exhausted during the exhaust stroke, and when the exhaust valve (not shown) is about to close (at this time, the intake valve 5 and the intake cutoff valve 1 are closed).
8 is already open), and the pump discharge side passage 15, which had been closed until now by the intake cutoff valve 18, is opened (the communication passage 2
9 communicates with each other), and intake air pressure-fed from a pump (not shown) passes through the intake cutoff valve 18 (via the communication path 29).
It is violently ejected from the nozzle 21 into the working chamber.

この時、噴口21の方向はシリンダーの中心軸に対して
偏心させる如く設定してあるから、これによNo14 り作動室には強力な吸気の流動(例えば渦流)が形成さ
れる(副吸気通路17の方向しその如く設定して、吸気
の流動の形成を助ける様にする)。
At this time, since the direction of the nozzle 21 is set to be eccentric with respect to the central axis of the cylinder, a strong flow of intake air (for example, a vortex) is formed in the working chamber by No. 14 (sub-intake passage). 17 and set accordingly to help create a flow of intake air).

又、噴口21の方向を作動室に直接向けず、吸気通路8
(吸気弁5の近傍の)中心軸に対して偏心させる如く設
定しても、ここに吸気の強力な流動(例えば渦流)が形
成されるから、これが作動室へ流入して新たな吸気の流
動を発生させる。
In addition, the direction of the nozzle 21 is not directed directly toward the working chamber, and the direction of the intake passage 8 is
Even if it is set eccentric to the central axis (near the intake valve 5), a strong flow of intake air (for example, a vortex) is formed here, which flows into the working chamber and creates a new flow of intake air. to occur.

この様にして形成された吸気の流動は圧縮工程中にも残
存し、点火栓(図示せず)の近傍を掃気して着火性を高
め、点火後の火炎伝播速度を増大させるから、機関の燃
費は向上する。
The flow of intake air formed in this way remains during the compression process, scavenging the vicinity of the ignition plug (not shown), improving ignitability, and increasing the flame propagation speed after ignition. Fuel efficiency will improve.

閉鎖弁23が閉じた低負荷域においては、吸気遮断弁1
8が閉じた後に作動室へ新たに吸気が吸入されると吸気
抵抗損失が低減しないから、噴口21からの吸気の噴出
は吸気遮断弁18が(副吸気通路17を)閉じる時期ま
でには終了するものとする。
In the low load range when the shutoff valve 23 is closed, the intake cutoff valve 1
If intake air is newly drawn into the working chamber after 8 is closed, the intake resistance loss will not be reduced, so the injection of intake air from the nozzle 21 will end by the time the intake cutoff valve 18 closes (the auxiliary intake passage 17). It shall be.

尚、閉鎖弁23が開く(中)高負荷域において更に強力
な吸気の流動が要求される場合は、二点鎖線示の如くポ
ンプ吐出側通路30を新設して、ポンプかNo15 ら圧送されてくる吸気を吸気遮断弁18を介して(もう
1つの連通路31を介して)噴口21から噴出させる様
にすると良い(例えば、吸気行程から圧縮行程へ移り変
る変換点に近傍で連通路31が開く様にする等)。
In addition, if a stronger flow of intake air is required in the high load range (medium) where the shutoff valve 23 is open, a new pump discharge side passage 30 is installed as shown by the two-dot chain line, and the air is fed under pressure from the pump No. 15. It is preferable to eject the intake air from the nozzle 21 through the intake cutoff valve 18 (via another communication path 31) (for example, if the communication path 31 is etc.).

閉鎖弁23が閉じて(全閉して)いる時には、電磁弁3
2等によりポンプ吐出側通路30を閉鎖しておく事は言
うまでもない。
When the closing valve 23 is closed (fully closed), the solenoid valve 3
Needless to say, the pump discharge side passage 30 should be closed by the second valve or the like.

第6図に示す本発明は作動室の残留ガスを掃気すると共
に、強力な吸気の流動を形成する様にしたものである。
The present invention shown in FIG. 6 scavenges the residual gas in the working chamber and creates a strong flow of intake air.

即ち、排気行程から吸気行程へ移り変る変換点(ピスト
ンの上死点位置)の近傍で連通路22がポンプ吐出側通
路15に連通し、ポンプから圧送されてくる吸気を吸気
遮断弁18を介して噴口21から一定期間噴出させて作
動室の残留ガスを掃気すると共に、吸気遮断弁18に形
成されたもう1つの連通路34(連通路22との連通は
ない)がポンプ吐出側通路33に連通すると、ポンプか
ら圧送されてくる吸気は吸気遮断弁18を介して再び噴
口21から作動室へ噴出して、吸気の強力な流動を形成
するのである。
That is, the communication passage 22 communicates with the pump discharge side passage 15 near the conversion point (top dead center position of the piston) where the exhaust stroke changes to the intake stroke, and the intake air that is pressure-fed from the pump is passed through the intake cutoff valve 18. is ejected from the nozzle 21 for a certain period of time to scavenge residual gas in the working chamber, and another communication passage 34 (not communicating with the communication passage 22) formed in the intake cutoff valve 18 is connected to the pump discharge side passage 33. When communicated, the intake air forced from the pump is ejected from the nozzle 21 into the working chamber via the intake cutoff valve 18, forming a strong flow of intake air.

これにより、機関の燃費は更に向上する。This further improves the fuel efficiency of the engine.

噴口21からの吸気の噴出開始は吸気弁5が開く時期よ
りも若干早くしても良いと共に、噴口21からの吸気の
噴出は吸気遮断弁18が(副吸気通路17を)閉じる時
期までには終了するものとする。
The intake air may start blowing out from the nozzle 21 a little earlier than when the intake valve 5 opens, and the intake air may start blowing out from the nozzle 21 by the time when the intake cutoff valve 18 (sub-intake passage 17) closes. shall be terminated.

尚、ポンプ吐出側通路33を通過した吸気は噴口21か
ら噴出する様になっているが、独立した噴口を新設し、
そこから噴出させる様にしても良い。
Note that the intake air that has passed through the pump discharge side passage 33 is blown out from the nozzle 21, but an independent nozzle is newly installed.
It may be made to eject from there.

連通路22のみによって(連通路34を除去して)第6
図と同様の作用を行う様にした実施例を第7図に示す。
Only by the communication path 22 (by removing the communication path 34), the sixth
FIG. 7 shows an embodiment that performs the same function as that shown in the figure.

即ち第7図において、排気行程から吸気行程へ移り変る
変換点の近傍で連通路22がポンプ吐出側通路35に連
通すると、吸気が吸気遮断弁18を介して噴口21から
噴出し作動室の残留ガスを掃気すると共に、連通路22
がポンプ吐出側通路36に連通する様になると、噴口2
1から再び吸気が噴出して強力な吸気の流動を形成する
のである。
That is, in FIG. 7, when the communication passage 22 communicates with the pump discharge side passage 35 near the transition point where the exhaust stroke changes to the intake stroke, intake air is ejected from the nozzle 21 via the intake cutoff valve 18 and the remaining air in the working chamber is In addition to scavenging gas, the communication passage 22
When the nozzle 2 comes to communicate with the pump discharge side passage 36,
The intake air blows out again from 1, forming a strong flow of intake air.

No17 尚、第6図において吸気遮断弁18に形成された連通路
22が閉じ終る直前に連通路34が開く様にすると(第
7図においては隔壁37を除去すると)、噴口21から
吸気が連続的に噴出する事になり(途中で吸気の噴出が
停止する若干の期間がなくなり)、この高速気流によっ
て作動室の残留ガスが掃気されると共に、強力な吸気の
流動が形成される様になる。
No. 17 In addition, if the communication path 34 is opened just before the communication path 22 formed in the intake cutoff valve 18 finishes closing in FIG. 6 (if the partition wall 37 is removed in FIG. (There is no longer a short period during which intake air stops blowing out.) This high-speed airflow scavenges the residual gas in the working chamber and creates a strong flow of intake air. .

第8図に示す本発明は、ポンプから圧送されてくる吸気
の高速気流によって燃料の微粒化をも促進する様にした
ものである。
In the present invention shown in FIG. 8, the atomization of the fuel is also promoted by the high-speed airflow of the intake air that is force-fed from the pump.

即ち第1、8図において、38はポンプ14から圧送さ
れてくる吸気が噴出するノズルで、気化器9から作動室
4へ到る吸気通路8の内壁に付着する液状燃料を燃料ノ
ズル39により吸上げ、これに高速気流を衝突させて微
粒化するものである(気化器9から噴出した燃料は燃料
粒子のもつ自重・慣性等の理由の為、特に吸気通路の屈
曲部の底部8´に付着して液状燃料となる事が多い)。
That is, in FIGS. 1 and 8, 38 is a nozzle from which the intake air fed under pressure from the pump 14 is ejected, and the liquid fuel adhering to the inner wall of the intake passage 8 leading from the carburetor 9 to the working chamber 4 is sucked by the fuel nozzle 39. (Due to the weight and inertia of the fuel particles, the fuel ejected from the carburetor 9 adheres particularly to the bottom 8' of the bend in the intake passage.) (often converted into liquid fuel).

ポンプ14から圧送されてきた吸気の圧力が正圧でNo
18 あっても、ノズル38から吸気が高速度で噴出すると先
ず周囲の圧力まで減圧され、続いてそれ自身のもつ速度
エネルギーによって周囲の圧力よりも低くなって、吸気
通路の内壁に付着した液状燃料を燃料ノズル39から吸
上げ、これを微粒化する事ができるのである。
The pressure of the intake air fed from the pump 14 is positive and No.
18 However, when the intake air is ejected from the nozzle 38 at high speed, it is first reduced to the ambient pressure, and then due to its own velocity energy, the pressure becomes lower than the ambient pressure, and the liquid fuel adhering to the inner wall of the intake passage. can be sucked up from the fuel nozzle 39 and atomized.

燃料の微粒化を更に促進する為には、燃料ノズル39又
はノズル38にらせん溝を形成し、燃料又は吸気がらせ
ん運動を描きながら噴出する様にすれば良い。
In order to further promote atomization of the fuel, a spiral groove may be formed in the fuel nozzle 39 or the nozzle 38 so that the fuel or intake air is ejected in a spiral motion.

燃料供給装置が燃料噴射装置である場合は、ポンプ14
から圧送されてくる吸気の高速気流を燃料噴射弁(図示
せず)により噴射された燃料に衝突させて微粒化する様
にする。
If the fuel supply device is a fuel injection device, the pump 14
The high-speed airflow of intake air that is force-fed from the fuel injection valve (not shown) collides with the fuel injected by the fuel injection valve (not shown) to atomize the fuel.

この様に第1、8図に示す本発明によれば、燃料が極め
て良く微粒化されるので、気化が促進されて完全燃焼が
可能となり、燃費を大幅に向上(改善)させる事ができ
る。
As described above, according to the present invention shown in FIGS. 1 and 8, the fuel is atomized extremely well, so that vaporization is promoted and complete combustion is possible, thereby significantly improving (improving) fuel efficiency.

尚第1、8図において、機関の始動時には燃料の微粒化
をより促進する為、ポンプ14から圧送されNo19 てくる吸気をノズル38からのみ噴出させる様にしても
良いし、又機関の暖機後の絞弁10が十分に閉じた低負
荷域では、燃料流量も少なく気化も活発に行なわれてい
るから、ポンプ14からの吸気を噴口21からのみ噴出
させる様にしても良い。
In Figs. 1 and 8, in order to further promote atomization of the fuel when starting the engine, the intake air fed under pressure from the pump 14 may be ejected only from the nozzle 38, or when the engine is warmed up. In a low load range where the rear throttle valve 10 is fully closed, the fuel flow rate is small and vaporization is active, so the intake air from the pump 14 may be ejected only from the injection port 21.

第5〜7図においても、同様に燃料供給装置から供給さ
れた燃料を微粒化する事ができる。
Also in FIGS. 5 to 7, the fuel supplied from the fuel supply device can be atomized in the same way.

第8図においては、燃料ノズル39から吸上げられ高速
気流によって微粒化された燃料は、そのまま吸気通路の
内壁に衝突して付着し、再び液化する事もあるから、第
9図に示す如く燃料ノズル39、ノズル38の組を2組
備え、各々を互いに対向する如く設置する手段も有効で
ある。
In Fig. 8, the fuel sucked up from the fuel nozzle 39 and atomized by the high-speed airflow collides with the inner wall of the intake passage and adheres thereto, and may liquefy again. It is also effective to provide two sets of the nozzle 39 and nozzle 38 and install them so as to face each other.

即ち、燃料ノズル39から噴出して微粒化された燃料粒
子は互いに衝突・混合し気流に乗る様になる。
That is, the atomized fuel particles ejected from the fuel nozzle 39 collide and mix with each other, and become carried by the air current.

これにより均質な混合気が形成され、燃費は一段と向上
する。
This creates a homogeneous air-fuel mixture, further improving fuel efficiency.

尚、第1図においてシリンダーヘッド1に吸気遮断弁1
8、閉鎖弁23等を形成・組込みする事が困難な場合に
は、二点鎖線示の如く切断面25でシリンダーヘッド1
を切断し、この分割された部分を第10図に示す如く吸
気遮断弁18、閉鎖弁23等が予め一体的に形成・組込
みされたブロック40となし、このブロック40をシリ
ンダーヘッド1にボルト等で組付ける様にすれば良い。
In addition, in Fig. 1, an intake cutoff valve 1 is installed in the cylinder head 1.
8. If it is difficult to form or incorporate the shutoff valve 23, etc., cut the cylinder head 1 at the cut surface 25 as shown by the two-dot chain line.
As shown in FIG. 10, this divided part is made into a block 40 in which the intake cutoff valve 18, the closing valve 23, etc. are integrally formed and assembled in advance, and this block 40 is attached to the cylinder head 1 with bolts etc. It is best to assemble it with

本発明は以上の如く、吸入吸気を絞って出力を制御する
内燃機関の作動室へ通ずる吸気通路の所定位置に閉鎖弁
を備え、機関の低負荷域にはこの閉鎖弁を閉鎖しておく
様にし、更に前記閉鎖弁をバイパスして吸気弁よりも上
流側の吸気通路の所定位置へ開口する副吸気通路に、吸
気行程の中途でこの副吸気通路を閉鎖する吸気遮断弁を
備える様にした内燃機関において、 (1)排気行程から吸気行程へ移り変る変換点の近傍か
ら排気弁が閉じる時期の近傍までに一定期間ポンプによ
って圧送されてくる吸気を吸気遮断弁を介して噴出させ
て、作動室の残留ガスを掃気する様にしたり、 (2)排気弁が閉じる時期の近傍から一定期間ポンプに
よって圧送されてくる吸気を吸気遮断弁を介しNo21 て噴出させ、これにより吸気の流動を形成する様にし、
かつ前記閉鎖弁が閉じている時には吸気遮断弁の閉鎖後
はポンプによって圧送されてくる吸気を新たに作動室へ
吸入させない様にしたり、(3)又、排気行程から吸気
行程へ移り変る変換点の近傍でポンプによって圧送され
てくる吸気を吸気遮断弁を介して噴出させて作動室の残
留ガスを掃気すると共に、排気弁の閉鎖後もポンプから
圧送されてくる吸気を一定期間吸気遮断弁を介して噴出
させる事によって吸気の流動を形成する様にし、かつ前
記閉鎖弁が閉じている時には吸気遮断弁の閉鎖後はポン
プによって圧送されてくる吸気を新たに作動室へ吸入さ
せない様にしたりし、(4)更には(1)から(3)の
各々に、ポンプから圧送されてくる吸気の高速気流を燃
料供給装置によって供給された燃料に衝突させて微粒化
する作用を付加する様にしたので、 機関の燃費を大幅に向上させる事ができる。
As described above, the present invention includes a closing valve at a predetermined position in the intake passage leading to the working chamber of an internal combustion engine that throttles the intake air to control the output, and this closing valve is kept closed in the low load range of the engine. Further, the auxiliary intake passage that bypasses the closing valve and opens to a predetermined position of the intake passage upstream of the intake valve is provided with an intake cutoff valve that closes the auxiliary intake passage in the middle of the intake stroke. In an internal combustion engine, (1) the engine operates by blowing out the intake air, which is pumped under pressure by the pump, through an intake cutoff valve for a certain period of time from the vicinity of the transition point where the exhaust stroke changes to the intake stroke until the time when the exhaust valve closes; Scavenge the residual gas in the chamber, or (2) blow out the intake air that is pumped for a certain period of time from around the time when the exhaust valve closes through the intake cutoff valve, thereby creating a flow of intake air. as well as
In addition, when the shutoff valve is closed, the intake air pumped by the pump is not newly sucked into the working chamber after the intake shutoff valve is closed, and (3) the conversion point at which the exhaust stroke changes to the intake stroke is prevented. The intake air that is force-fed by the pump in the vicinity of the pump is ejected through the intake cut-off valve to scavenge residual gas in the working chamber, and even after the exhaust valve is closed, the intake air that is force-fed from the pump is passed through the intake cut-off valve for a certain period of time. A flow of the intake air is formed by blowing it out through the pump, and when the closing valve is closed, the intake air pressured by the pump is not newly sucked into the working chamber after the intake shutoff valve is closed. , (4) Furthermore, to each of (1) to (3), an action is added to atomize the fuel supplied by the fuel supply device by causing the high-speed airflow of the intake air pumped from the pump to collide with the fuel supplied by the fuel supply device. Therefore, the fuel efficiency of the engine can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1・2・5・6〜10図は本発明による内燃機No2
2 関又はそれに属する装置の断面図、第3・4図は本発明
による内燃機関の図である。 1はシリンダーヘッド、2はピストン、3はシリンダー
、4は作動室、5は吸気弁、6は排気弁、7は点火栓、
8は吸気通路、9は気化器、10は絞弁、11は空気通
路、12は小絞弁、13は空気ジェット、14はポンプ
、15・30・33・35・36はポンプ吐出側通路、
16は分岐部、17は副吸気通路、18は吸気遮断弁、
19は閉鎖部、20・22・29・31・34は連通路
、21は噴口、23・24は閉鎖弁、25は切断面、2
6は副閉鎖弁、27は1次側絞弁、28は2次側絞弁、
32は電磁弁、37は隔壁、38はノズル、39は燃料
ノズル、40はブロック、aは第1吸気孔、bは第2吸
気孔、8´は吸気通路の屈曲部の底部である。 特許出願人 北村修一
Figures 1, 2, 5, 6 to 10 are internal combustion engine No. 2 according to the present invention.
2. Cross-sectional views of the engine or its related devices, FIGS. 3 and 4 are diagrams of an internal combustion engine according to the present invention. 1 is a cylinder head, 2 is a piston, 3 is a cylinder, 4 is a working chamber, 5 is an intake valve, 6 is an exhaust valve, 7 is a spark plug,
8 is an intake passage, 9 is a carburetor, 10 is a throttle valve, 11 is an air passage, 12 is a small throttle valve, 13 is an air jet, 14 is a pump, 15, 30, 33, 35, 36 are pump discharge side passages,
16 is a branch part, 17 is a sub-intake passage, 18 is an intake cutoff valve,
19 is a closing part, 20, 22, 29, 31, and 34 are communicating passages, 21 is a spout, 23 and 24 are closing valves, 25 is a cutting surface, 2
6 is a sub-closing valve, 27 is a primary throttle valve, 28 is a secondary throttle valve,
32 is a solenoid valve, 37 is a partition, 38 is a nozzle, 39 is a fuel nozzle, 40 is a block, a is a first intake hole, b is a second intake hole, and 8' is the bottom of the bent part of the intake passage. Patent applicant Shuichi Kitamura

Claims (6)

【特許請求の範囲】[Claims] (1)機関に吸入される吸気を絞って出力を制御する内
燃機関の作動室へ通ずる吸気通路の所定位置に閉鎖弁を
備え、機関の低負荷域にはこの閉鎖弁を閉鎖しておく様
にし、更に前記閉鎖弁をバイパスして吸気弁よりも上流
側の吸気通路の所定位置へ開口する副吸気通路に、吸気
行程の中途でこの副吸気通路を閉鎖する吸気遮断弁を備
える様にした内燃機関において、排気行程から吸気行程
へ移り変る変換点の近傍から排気弁が閉じる時期の近傍
までに一定期間ポンプによって圧送されてくる吸気を前
記吸気遮断弁を解して噴出させて、作動室の残留ガスを
排気する様にした事を特徴とする内燃機関。
(1) A closing valve is provided at a predetermined position in the intake passage leading to the working chamber of the internal combustion engine, which controls the output by throttling the intake air taken into the engine, and this closing valve is kept closed during low load areas of the engine. Further, the auxiliary intake passage that bypasses the closing valve and opens to a predetermined position of the intake passage upstream of the intake valve is provided with an intake cutoff valve that closes the auxiliary intake passage in the middle of the intake stroke. In an internal combustion engine, the intake air that is pressure-fed by the pump for a certain period of time from the vicinity of the transition point where the exhaust stroke changes to the intake stroke until the time when the exhaust valve closes is blown out through the intake cutoff valve, and is then blown out into the working chamber. An internal combustion engine characterized by exhausting residual gas.
(2)機関に吸入される吸気を絞って出力を制御する内
燃機関の作動室へ通ずる吸気通路の所定位置に閉鎖弁を
備え、機関の低負荷域にはこの閉鎖弁を閉鎖しておく様
にし、更に前記閉鎖弁をバイパスNo2 して吸気弁よりも上流側の吸気通路の所定位置へ開口す
る副吸気通路に、吸気行程の中途でこの副吸気通路を閉
鎖する吸気遮断弁を備える様にした内燃機関において、
排気弁が閉じる時期の近傍から一定期間ポンプによって
圧送されてくる吸気を前記吸気遮断弁を介して噴出させ
、これにより吸気の流動を形成する様にし、かつ前記閉
鎖弁が閉じている時には吸気遮断弁の閉鎖後はポンプに
よって圧送されてくる吸気を新たに作動室へ吸入させな
い様にした事を特徴とする内燃機関。
(2) A closing valve is provided at a predetermined position in the intake passage leading to the working chamber of the internal combustion engine, which controls the output by throttling the intake air taken into the engine, and this closing valve is kept closed during low load areas of the engine. Further, an intake cutoff valve is provided in the sub-intake passage which bypasses the closing valve No. 2 and opens to a predetermined position of the intake passage upstream of the intake valve, which closes the sub-intake passage in the middle of the intake stroke. In an internal combustion engine,
The intake air that is force-fed by the pump for a certain period of time near the time when the exhaust valve closes is blown out through the intake cutoff valve, thereby forming a flow of intake air, and when the closing valve is closed, the intake air is cut off. An internal combustion engine characterized by a structure in which, after the valve is closed, the intake air pumped by the pump is not newly drawn into the working chamber.
(3)機関に吸入される吸気を絞って出力を制御する内
燃機関の作動室へ通ずる吸気通路の所定位置に閉鎖弁を
備え、機関の低負荷域にはこの閉鎖弁を閉鎖しておく様
にし、更に前記閉鎖弁をバイパスして吸気弁よりも上流
側の吸気通路の所定位置へ開口する副吸気通路に、吸気
行程の中途でこの副吸気通路を閉鎖する吸気遮断弁を備
える様にした内燃機関において、排気行程から吸気行程
へ移り変る変換点の近傍でポンプから圧送されてくる吸
気を前記吸気遮断弁を介して噴出させて作動室のNo3 残留ガスを掃気すると共に、排気弁の閉鎖後もポンプか
ら圧送されてくる吸気を一定期間前記吸気遮断弁を介し
て噴出させる事によって吸気の流動を形成する様にし、
かつ前記閉鎖弁が閉じている時には吸気遮断弁の閉鎖後
はポンプによって圧送されてくる吸気を新たに作動室へ
吸入させない様にした事を特徴とする内燃機関。
(3) A closing valve is provided at a predetermined position in the intake passage leading to the working chamber of the internal combustion engine, which controls the output by throttling the intake air drawn into the engine, and this closing valve is kept closed during low load areas of the engine. Further, the auxiliary intake passage that bypasses the closing valve and opens to a predetermined position of the intake passage upstream of the intake valve is provided with an intake cutoff valve that closes the auxiliary intake passage in the middle of the intake stroke. In an internal combustion engine, in the vicinity of the conversion point where the exhaust stroke changes to the intake stroke, the intake air that is force-fed from the pump is jetted out through the intake cutoff valve to scavenge the No. 3 residual gas in the working chamber, and the exhaust valve is closed. After that, a flow of intake air is formed by blowing out the intake air that is force-fed from the pump through the intake air cutoff valve for a certain period of time,
An internal combustion engine characterized in that, when the shutoff valve is closed, intake air that is force-fed by the pump is not newly sucked into the working chamber after the intake shutoff valve is closed.
(4)排気行程から吸気行程へ移り変る変換点の近傍か
ら排気弁の閉鎖後の一定期間まで、ポンプによって圧送
されてくる吸気を連続的に噴出させる様にした特許請求
の範囲第3項記載の内燃機関。
(4) Claim 3 states that the intake air pumped by the pump is continuously blown out from the vicinity of the transition point where the exhaust stroke changes to the intake stroke until a certain period of time after the exhaust valve is closed. internal combustion engine.
(5)排気行程から吸気行程へ移り変る変換点の近傍か
ら排気弁の閉鎖後の一定期間までの間に、ポンプによて
圧送されてくる吸気の噴出を一時停止させる様にした特
許請求の範囲第3項記載の内燃機関。
(5) A patent claim in which the jetting of intake air pumped by the pump is temporarily stopped from the vicinity of the transition point where the exhaust stroke changes to the intake stroke until a certain period of time after the exhaust valve is closed. Internal combustion engine according to range 3.
(6)機関に吸入される吸気を絞って出力を制御する内
燃機関の作動室へ通ずる吸気通路の所定位置に閉鎖弁を
備え、機関の低負荷域にはこの閉鎖弁を閉鎖しておく様
にし、更に前記閉鎖弁もバイパスして吸気弁よりも上流
側の吸気通路の所定位置へ開口する副吸気通路に、吸気
行程の中途でこの副吸気通路を閉鎖する吸気遮断弁を備
える様にした内燃機関において、排気行程から吸気行程
へ移り変る変換点の近傍から排気弁が閉じる時期の近傍
までに一定期間ポンプによって圧送されてくる吸気を前
記吸気遮断弁を介して噴出させて作動室の残留ガスを排
気する様にし、更に前記ポンプから圧送されてくる吸気
の高速気流を燃料供給装置によって供給された燃料に衝
突させて微硫化する様にした事を特徴とする内燃機関。
(6) A closing valve is provided at a predetermined position in the intake passage leading to the working chamber of the internal combustion engine, which controls the output by throttling the intake air taken into the engine, and this closing valve is kept closed during the low load range of the engine. Further, the sub-intake passage, which bypasses the closing valve and opens to a predetermined position in the intake passage upstream of the intake valve, is provided with an intake cutoff valve that closes the sub-intake passage in the middle of the intake stroke. In an internal combustion engine, the intake air that is pressure-fed by the pump for a certain period of time from the vicinity of the transition point where the exhaust stroke changes to the intake stroke until the time when the exhaust valve closes is blown out through the intake cutoff valve to reduce the amount of air remaining in the working chamber. An internal combustion engine characterized in that gas is exhausted, and furthermore, a high-speed airflow of intake air pressure-fed from the pump collides with fuel supplied by a fuel supply device to slightly sulfurize the fuel.
JP56142961A 1981-09-10 1981-09-10 Internal-combustion engine Pending JPS5844218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142961A JPS5844218A (en) 1981-09-10 1981-09-10 Internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142961A JPS5844218A (en) 1981-09-10 1981-09-10 Internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5844218A true JPS5844218A (en) 1983-03-15

Family

ID=15327680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142961A Pending JPS5844218A (en) 1981-09-10 1981-09-10 Internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5844218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892616B2 (en) 2002-02-20 2011-02-22 Saint-Gobain Glass France Glazing with a rigid element optionally incorporated into an overmolded plastic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892616B2 (en) 2002-02-20 2011-02-22 Saint-Gobain Glass France Glazing with a rigid element optionally incorporated into an overmolded plastic

Similar Documents

Publication Publication Date Title
US4308837A (en) Intake system of an internal combustion engine
JPS6041206B2 (en) Combustion chamber of internal combustion engine
EP0249286A1 (en) Combustion engine
JPS60259756A (en) Fuel feeder for internal-combustion engine
JPH04101018A (en) Diesel engine with direct injection
US4286561A (en) Internal combustion engine intake system having jet-producing nozzle in intake port
EP1302658A1 (en) Intake pipe injection type engine
JPH10252477A (en) Direct cylinder fuel injection type spark ignition engine
JPS5844218A (en) Internal-combustion engine
JPH07139358A (en) Two cycle engine
KR20040041308A (en) Combustion chamber apparatus for GDI engine
JPS58152123A (en) Suction valve for internal-combustion engine
JPS5818516A (en) Internal-combustion engine
JPS5844224A (en) Rotary piston engine
JP2001254623A (en) Stratified scavenging two-stroke engine
JPS58195018A (en) Internal-combustion engine
JPS5818515A (en) Internal-combustion engine
JP2702666B2 (en) 2 cycle engine
JPS585425A (en) Intake device of internal combustion engine equipped with supercharger
JPH0634615Y2 (en) 2-cycle internal combustion engine
JPS5818517A (en) Intake device for internal-combustion engine
JPS58152122A (en) Suction device for internal-combustion engine
JPS5853633A (en) Internal-combustion engine
JP3318355B2 (en) Intake system for direct injection diesel engine
JPS5987259A (en) Carburettor of internal-combustion engine