JPS5843608A - Amplitude equalizer - Google Patents
Amplitude equalizerInfo
- Publication number
- JPS5843608A JPS5843608A JP14188781A JP14188781A JPS5843608A JP S5843608 A JPS5843608 A JP S5843608A JP 14188781 A JP14188781 A JP 14188781A JP 14188781 A JP14188781 A JP 14188781A JP S5843608 A JPS5843608 A JP S5843608A
- Authority
- JP
- Japan
- Prior art keywords
- loss
- resistance
- temperature
- thermistor
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/54—Modifications of networks to reduce influence of variations of temperature
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Filters And Equalizers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は急峻な特性を有するP波器の温度変化による損
失変動を補償するための鎖中等化器に関す為。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chain equalizer for compensating loss fluctuations due to temperature changes in a P-wave device having steep characteristics.
111図は放送信号用の帯域r波器(以下BPFと称す
)の損失特性、第2図は第1図011PPの搬送波近辺
の温度変化による損失賓動特性を示す@間中f11、f
・社!lFF0過過帯域0IIl端を示す周波数で本例
の鳩舎唸・5.4 JSKHs、II ls、5KHg
、f・は搬送波層tIIL数で本例では95.5KHs
であるO
例へば5G11−〜10幻すの周波数帯域を有する放送
信号を搬送回線で伝送する場合祉第1図に示す如く搬送
波周波数f@=iljs、5KHmよ〉高い周波数でl
i60 dbの減衰量を要求され通過帯域内(f ks
=95.45KHm〜f * −85,5KHs)の損
失は2.ah以下で備差は温度による損失変動も含めて
0.24b以下の損失を要求される。従って特に搬送周
波数feの近辺では50H窓離なれて60dbの減衰量
が必要で立上)が特別に急峻なりPFとなる。このより
なりPFの初期設定は高精度で可能でありても、コイル
及びコンデンサの温度係数による相殺の僅かな誤差の影
響及び温度係数のばらつきによ)第2図イ、胃に示す如
く周波数fkのとζろで社減衰量が温度によ〕変化する
。この減衰量の変動を補償する為に従来は主として次に
説明する2つの方法がとられている。第1は;ンデンサ
の温度係数を調整する方法である。Figure 111 shows the loss characteristics of a band r-wave filter (hereinafter referred to as BPF) for broadcast signals, and Figure 2 shows the loss characteristics due to temperature changes near the carrier wave of Figure 1 011PP.
・Sha! This example's pigeon house roars at the frequency indicating the lFF0 overband 0IIl end. 5.4 JSKHs, II ls, 5KHg
, f is the carrier layer tIIL number, which is 95.5 KHs in this example.
For example, when transmitting a broadcasting signal having a frequency band of 5G11-10 through a carrier line, as shown in Figure 1, the carrier wave frequency f@=iljs, 5KHm> is used at a high frequency l.
i60 db attenuation is required and within the passband (f ks
=95.45KHm~f*-85.5KHs) loss is 2. Below ah, a loss of 0.24b or less is required, including loss fluctuations due to temperature. Therefore, especially in the vicinity of the carrier frequency fe, an attenuation amount of 60 db is required with a 50H window separation, and the rise (rise) becomes particularly steep, resulting in PF. Even if the initial setting of PF is possible with high accuracy, due to the influence of a slight error in cancellation due to the temperature coefficient of the coil and capacitor and the variation of the temperature coefficient), the frequency fk The amount of attenuation changes depending on the temperature. In order to compensate for this variation in the amount of attenuation, the following two methods have conventionally been used. The first method is to adjust the temperature coefficient of the capacitor.
第3図は放送信号用のBPFの1部を示す回路図である
。FIG. 3 is a circuit diagram showing a portion of the BPF for broadcast signals.
図中り、SLaはコイル、C1〜C0はコンデytを示
す。In the figure, SLa represents a coil, and C1 to C0 represent a conductor.
ジイルLl、L、は温度係数は概略+150X10/度
であるので、主として、コンダン? C1、Cm及びC
8、C1を温度係数−150X10−ン変の物を使用す
るとか、;イルLt%L1の温度係数によつては温度係
数O又は−800X10/度の調整用ブラダyすを、例
へば=ンデンナcm、c、lc用い、コンデンサC1と
コンデンサCmの容量比v:IンデンサC−と;ンデン
サC4の容量比叡温度特性の実際を見ながら調整してい
る。又ヒのBPFは゛防湿の為調整後は密封する。しか
しこの方法は密封後のエージング効果等によりて特性変
動かありて、も調整が出来ない欠点がある。Since the temperature coefficient of Jiil Ll, L is approximately +150X10/degree, it is mainly conduit? C1, Cm and C
8. For C1, use a temperature coefficient of -150 x 10 - depending on the temperature coefficient of L1. , c, and lc are used, and the capacitance ratio v:I of capacitor C1 and capacitor Cm is adjusted while observing the actual capacitance-temperature characteristics of capacitor C- and capacitor C4. Also, the BPF is sealed after adjustment to prevent moisture. However, this method has the disadvantage that characteristics may vary due to aging effects after sealing and cannot be adjusted.
第2杜が−デ形可変等化・を利用する方法である。第4
図は可変等化II(振巾等化器)を用いる場合のブロッ
ク図、第6図は従来例のボーデ形可変等化器の回路図、
第一図は第5図の場合の減衰量の変動を示す損失特性図
である〇
図中1はポーデ形−声′特化器、(振巾等化器)2は変
調器、3祉放送信号用BPF、4は復調器、f・は搬送
波周波数、R1−R6は抵抗、Lnはコイル、C1紘コ
ンデンサを示す〇
放送信号用BPF3の振巾整形を行う場合は、搬送波周
波数f・にて変調された後で行うよ)も変調器2の前及
復調器4の後でおこなう方が比帯域が格段に広く得策で
ある0このためポーデ形可変等化器1は前記の位置にお
く。The second method uses variable equalization. Fourth
The figure is a block diagram when using variable equalization II (width equalizer), and Figure 6 is a circuit diagram of a conventional Bode type variable equalizer.
Figure 1 is a loss characteristic diagram showing the variation in attenuation in the case of Figure 5. In the figure, 1 is a Paude type voice specializer, (amplitude equalizer) 2 is a modulator, and 3 is a welfare broadcaster. Signal BPF, 4 is the demodulator, f is the carrier frequency, R1-R6 are the resistors, Ln is the coil, and C1 Hiro capacitor. When performing amplitude shaping of the broadcast signal BPF 3, use the carrier wave frequency f. It is better to perform the processing before the modulator 2 and after the demodulator 4, since the fractional band will be much wider. Therefore, the Paude type variable equalizer 1 is placed in the above-mentioned position.
ポーデ形可変等化器IF!、第5図の抵抗R,を可変す
ると第6図に示す如(、BPF3で損失変化が問題にな
る50Hmの所で、抵抗R8が中心値ではホに示す如く
定損失jで損失特性は平坦で、抵抗R富が小さいとハに
示す如く損失は増加し、抵抗Rsが大きいと二に示す如
く損失は減少する。Paude type variable equalizer IF! , when the resistance R in Fig. 5 is varied, as shown in Fig. 6 (at 50 Hm, where loss change becomes a problem with BPF3, when the resistance R8 is at the center value, the loss characteristic is flat with a constant loss j as shown in E). If the resistance R is small, the loss increases as shown in (c), and if the resistance Rs is large, the loss decreases as shown in (2).
このため抵抗R1を温度によシ抵抗のかわるサーミスタ
に置換えBPF3の温度変化による損失変動を補償する
とと祉可能である。しかしこの場°“°”モに二“゛“
′″”°゛。For this reason, it is possible to replace the resistor R1 with a thermistor instead of a temperature-dependent resistor to compensate for loss fluctuations due to temperature changes in the BPF3. However, in this case, there are two “゛“
′″”°゛.
本発明の目的 記の欠点をなくするために定損失も殆
んどな 形で、急峻な特性を有するr波器の通過帯
域端近辺の温度変化による損失変動を補償出来る振巾等
化器の提供にある。OBJECT OF THE INVENTION In order to eliminate the above-mentioned drawbacks, an amplitude equalizer is provided which can compensate for loss fluctuations due to temperature changes near the passband edge of an R-wave filter having steep characteristics, with almost no constant loss. It's on offer.
本発明は上記の目的を達成するために橋絡T形定抵抗振
巾等化−K)いて、時定数回路部分の抵抗を負又は正の
温度係数を有するサーミスタに置換し、温度補償に必要
な整形特性をもたせ、急峻謙善性を有するF*l1lO
通過帯域端近辺の温Ii!炭化による損失変動を補償す
ることを特徴とする。In order to achieve the above object, the present invention uses a bridge T-type constant resistance amplitude equalization (K), which replaces the resistance in the time constant circuit part with a thermistor having a negative or positive temperature coefficient, which is necessary for temperature compensation. F*l1lO with sharp shaping characteristics and steep modesty
Temperature Ii near the edge of the passband! It is characterized by compensating for loss fluctuations due to carbonization.
以下本発明の1実施例につき図に従って説明するO
′
第1図は本発明の実施例O橋絡T形定抵抗振巾等化器の
回路図、第8図は温度係数を調整するサーミスタ回路図
、第9図紘放送信号用BPFの温度変化による搬送波近
辺の損失彎動補債用の橋絡T形定抵抗振巾等化器の集際
例を示す回路図、第10図は第9図の回路の場合の損失
特性を示す。One embodiment of the present invention will be explained below according to the drawings.
' Figure 1 is a circuit diagram of a bridge T-type constant resistance amplitude equalizer according to an embodiment of the present invention, Figure 8 is a thermistor circuit diagram for adjusting the temperature coefficient, and Figure 9 is a temperature change in BPF for Hiro Broadcasting signals. FIG. 10 is a circuit diagram showing an example of clustering of bridging T-type constant resistance amplitude equalizers for loss shifting compensation near a carrier wave, and FIG. 10 shows loss characteristics in the case of the circuit of FIG. 9.
図中R0は4$4&インピーダンスに等しい抵抗、L
〜Rn a抵抗、Coはコンデンサ、t4a=zイル、
Ra%Rbは抵抗、′rhはサーミスタを示す・橋絡T
形定抵抗振巾勢化器としては、同じ理由で第4図に示す
ボーデ形可変等化器1と同じ場所に設け、第7図に示す
ような高域通過形の4のとし、例へば放送信号用BPP
の特性としてはsOHm@MkC)周波数では損失が減
少し上記の振巾等化器の損失特性と逆特性にしておく。In the diagram, R0 is a resistance equal to 4$4 & impedance, L
~Rna resistance, Co is capacitor, t4a=zil,
Ra%Rb indicates resistance, 'rh indicates thermistor/Bridging T
For the same reason, the constant resistance amplitude equalizer is installed in the same place as the Bode type variable equalizer 1 shown in Fig. 4, and the high-pass type 4 shown in Fig. 7 is used. BPP for signals
As for the characteristic, the loss decreases at the sOHm@MkC) frequency, and the loss characteristic is set to be opposite to the loss characteristic of the amplitude equalizer described above.
そこで第7図に示す時定数回路の抵抗R11又はRlm
を第8図に示す如きサーミスタThを有する回路に置換
し、抵抗Ra5Rbの配分な適ak選定して温度によゐ
損失の変化量を制御する。Therefore, the resistor R11 or Rlm of the time constant circuit shown in FIG.
is replaced with a circuit having a thermistor Th as shown in FIG. 8, and the amount of change in loss due to temperature is controlled by appropriately selecting the distribution of resistors Ra5Rb.
抵抗R,とR4のどちらにサーミスタThを有する回路
を入れるかは、放送信号用BPFの50甘謳相幽の周波
数の近辺め損失の温度による変動を見で選択する。この
場合抵抗R1の値が小となれば50Haの損失は小とな
シ又抵抗R1の抵抗が小となれば50Hsめ損失は大と
なる。従ってこの点に着目し又放送信号用BPFの50
Hs相当周波数の近辺の温度によ為変動が第2図のイの
方向□か口の方向かも見てサーミスタThを正又は負の
温度係数のものかも選択し最も適合するものとする0こ
のヒとによシ全体としての温度特性□も★めて振巾特性
を平坦にするヒとが出来又固定損失の増加も少くてすむ
。 □尚この振巾等化器は簡単
な回路で構成出来損失特性として急峻でもないので開放
形でよく適宜変更も可能である。Which of the resistors R and R4 should be fitted with a circuit having the thermistor Th is selected based on the temperature-related fluctuations in the loss near the 50-degree frequency of the BPF for broadcasting signals. In this case, if the value of the resistor R1 is small, the loss of 50 Ha is small, and if the resistance of the resistor R1 is small, the loss of 50 Ha is large. Therefore, we focused on this point and also
Select the thermistor Th with a positive or negative temperature coefficient, considering whether the fluctuation due to the temperature near the frequency corresponding to Hs is in the direction of A in Figure 2 or the direction of the mouth, and select the most suitable one. It is possible to flatten the amplitude characteristics by improving the temperature characteristics as a whole, and the increase in fixed loss can also be reduced. □This amplitude equalizer can be constructed with a simple circuit and does not have steep loss characteristics, so it may be an open type and can be modified as appropriate.
第9図第10EKII際に使用した橋絡T形定抵抗振巾
等花器のデータを示す。Figure 9 shows the data of the bridge T-type constant resistance swinging width vase used in 10EKII.
第9図は特性インピーダンス60−OΩの4ので第7図
の抵抗R0冨600Ω、Re−5,56Ω、R1,=6
4.748にΩ、R,、−15!14Ω、Ct+ xi
2.134 pF。In Figure 9, the characteristic impedance is 4, 60-OΩ, so the resistance R0 in Figure 7 is 600Ω, Re-5, 56Ω, R1, = 6.
4.748Ω, R,, -15!14Ω, Ct+ xi
2.134 pF.
Ll−4,368Hで抵抗Ruを94.50の抵抗と負
の温度係数を持つサーミスタThの直列回路としたもの
である。測定の結果はサーミスタThの抵抗値は0度C
では140Ω、25度Cでは60Ω、45度Cでは30
Ωでありた。In Ll-4, 368H, the resistor Ru is a series circuit of a resistance of 94.50 and a thermistor Th having a negative temperature coefficient. The result of the measurement is that the resistance value of thermistor Th is 0 degrees C.
140 Ω at 25 degrees C, 60 Ω at 25 degrees C, 30 Ω at 45 degrees C.
It was Ω.
第10図へに示す損失特性は28度Cの場合で、トに示
す損失特性はO度Cの場合で、チに示す損失特性状抵抗
R□を600とし九鳩舎の参考特性1
である。50Haの所で見幕と0度Cの場合は26度C
の場合に比してO,’15db11度損失が増加する。The loss characteristics shown in FIG. 10 are for the case of 28 degrees Celsius, and the loss characteristics shown in FIG. If it is 0 degrees C with a curtain at 50 Ha, it is 26 degrees C.
O,'15db11 degree loss increases compared to the case of .
元々放送用BPFの50 Mm m!fiの所の温度に
よる損失の変動はこの程度であるので充分温度変動を補
償することμ出来る0又定損失も0.1db11度で問
題のない値である0又データに示す如く簡単な回路で損
失特性も急峻でないので開放形である。Originally a broadcast BPF of 50 mm! Since the variation in loss due to temperature at fi is about this level, it is possible to sufficiently compensate for temperature variation.Also, the constant loss is 0.1 db 11 degrees, which is a value without any problem. It is an open type because its loss characteristics are not steep.
以上詳細に説明した如く本発明によれば開放形で、搬魁
回線に用いる放送信号用のBPFの如く急峻な特性の通
過帯域端の温度による損失の変動を、ばらつきも含めて
定損失も殆んど増加することなく平坦化することが出来
る効果がある。As explained in detail above, according to the present invention, the present invention is an open-type filter, and is capable of suppressing loss fluctuations due to temperature at the end of a pass band with steep characteristics, such as a BPF for broadcast signals used in a carrier line, and can reduce constant loss, including variations. This has the effect of flattening the surface area without increasing it.
第1I放送信号用のBPFの損失特性、第一り図は第1
図のBPFの搬送波近辺の温度変化による損失変動特性
、第3図は放送信号用のBPFの1部を示す回路図、第
4図は可変等花器を用いる絡T形定抵抗振巾等化−の回
路図、第8図は温度係数を調整するサーz″′1□ニー
、夕回略図、第9図は放送信号用BPFの温度変化によ
る搬送波近辺の損失変動補償用の橋絡T形定抵抗振巾等
化器の!J!際例を示す回路図、第10図は第9図の回
路の場合の損失特性を示す。
図中fk%f・はIIPFの通過帯域の両端を示す周諌
数、f@紘搬送故周披数、Ll”wL4紘;イル、CI
〜G、は37デンサ、R1〜Ru 、Ra、 nb、
Roは抵抗、’rhH+−々スタ、lはボーデ形可変等
化器、2紘変関−13は放送信号用BPF、4は復調器
を示す。
一周綽
周波、数−
晃3図
L+
第4肥
懇5図
晃7図
見8図
手続補正書(方式)
昭和 年 月 日
57゜2,4
1、事件の表示
昭和(乙年持許願第t4711?7号
3、補正をする者
事件との関係 特許出願人
住所 神奈川県用崎市中原区上小田中1015番地(5
22)名称富士通株式会1社
8、補正の内容ロア11114@事g(仄V事9貫りR
at内)l−室丈一’t(1)0.1 db程度で問題
のない値である。又データに示す如く簡単な回路で損失
特性も急峻でないので開放形である。
以上詳細に説明した如く装置vIKよれば開放形で、搬
送回線に用いる放送信号用のBPFの如く急峻な特性の
通過帝城端の温度による損失の変動を、ばらつきも含め
て定損失も殆んど増癲することなく平坦化することが出
来る効果がある。
4、図面の簡単な説明
第1図は放送信号用のBPFの損失特性、第2図は第1
図のBPPの搬送波近辺の温度変隼による損失変動特性
、第3図は放送信号用のBPFの1部を示す回路図、第
4図は可変等化器を用いる場合のブロック図、第5図は
従来例のボーデ形可変等化器の回路図、第6図は第5図
の場合の減衰量の変動を示す損失特性図、第7図は本発
明の実施例の橋絡T形定抵抗振巾等化器の回路図、第8
図は温度係数を調整するサーミスタ回路図、第9図は放
送信号用BPFの温度変化による搬送波近辺の損失変動
補償用の橋絡T形定抵抗振中等花器0jlIj11例を
示す回路図、第10図は第e1glの回路O場合の損失
eat示す0
図中fh、 f・はBPFO通過帯域の両端を示す周波
数、 faは搬送波周波数−LI−IJ!コイル、0
1〜C11はコンデンす、R1〜Rt** Rat R
b* R・は抵抗。
〒hはサーミスタ、1はボーデ形可変等化器、2は変調
器、3は放送信号用BPF、4は復調器を示す〇
41Loss characteristics of BPF for 1I broadcast signal, first diagram is 1st
Figure 3 shows a circuit diagram of a part of the BPF for broadcasting signals, and Figure 4 shows the T-type constant resistance amplitude equalization using a variable variable vase. Figure 8 is a schematic diagram of the circuit for adjusting the temperature coefficient, and Figure 9 is a bridge T shape for compensating for loss fluctuations near the carrier wave due to temperature changes in the BPF for broadcast signals. A circuit diagram showing an example of the !J! resistance amplitude equalizer, and Fig. 10 shows the loss characteristics in the case of the circuit of Fig. 9. In the figure, fk%f is the frequency indicating both ends of the pass band of the IIPF. Isakazu, f @ Hiro transportation deceased Zhouyoukazu, Ll”wL4 Hiro; IL, CI
~G, is 37 capacitors, R1~Ru, Ra, nb,
Ro is a resistor, 'rhH+--star, l is a Bode type variable equalizer, 13 is a broadcast signal BPF, and 4 is a demodulator. One cycle frequency, number - Akira 3 Figure L + 4 Hikan 5 Akira 7 Figure 8 Procedural amendment (method) Showa year Month Day 57゜2,4 1. Indication of the incident Showa (Otsu year Permanent Application No. T4711) ?7 No. 3, Relationship with the case of the person making the amendment Patent applicant address 1015 Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture (5
22) Name Fujitsu Limited 1 company 8, content of amendment Roa 11114 @ thing g (廄V thing 9 through R
at) l - room height 1't (1) This is a value of about 0.1 db, which is not a problem. Also, as shown in the data, it is a simple circuit and the loss characteristics are not steep, so it is an open type. As explained in detail above, the device vIK is an open type and has a steep characteristic like a BPF for broadcasting signals used in a carrier line. It has the effect of flattening the skin without increasing it. 4. Brief explanation of the drawings Figure 1 shows the loss characteristics of the BPF for broadcasting signals, and Figure 2 shows the loss characteristics of the BPF for broadcasting signals.
Figure 3 shows a circuit diagram showing a part of the BPF for broadcasting signals. Figure 4 is a block diagram when using a variable equalizer. Figure 5 6 is a circuit diagram of a conventional Bode type variable equalizer, FIG. 6 is a loss characteristic diagram showing variations in attenuation in the case of FIG. 5, and FIG. 7 is a bridge T-type constant resistor of an embodiment of the present invention. Circuit diagram of amplitude equalizer, No. 8
The figure shows a thermistor circuit diagram for adjusting the temperature coefficient, Figure 9 is a circuit diagram showing an example of a bridge T-type constant resistance oscillating flower vase 0jlIj11 for compensating for loss fluctuations near the carrier wave due to temperature changes in BPF for broadcast signals, and Figure 10. indicates the loss eat in the case of the circuit O of the e1gl. In the figure, fh, f・ are the frequencies indicating both ends of the BPFO passband, and fa is the carrier frequency -LI-IJ! coil, 0
1 to C11 are condensers, R1 to Rt** Rat R
b* R is resistance. 〒h indicates the thermistor, 1 indicates the Bode type variable equalizer, 2 indicates the modulator, 3 indicates the broadcast signal BPF, and 4 indicates the demodulator〇41
Claims (1)
部分の抵抗をナー々スタに置換し1w1度依存性の特性
を持九せることを特徴とする鎖中等化器。Bridge 111 A chain equalizer characterized in that in the T-type constant resistance amplitude equalization 11, the resistance of the time constant circuit portion is replaced with a nerstar, and the characteristic of 1w1 degree dependence is maintained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14188781A JPS5843608A (en) | 1981-09-09 | 1981-09-09 | Amplitude equalizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14188781A JPS5843608A (en) | 1981-09-09 | 1981-09-09 | Amplitude equalizer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5843608A true JPS5843608A (en) | 1983-03-14 |
Family
ID=15302468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14188781A Pending JPS5843608A (en) | 1981-09-09 | 1981-09-09 | Amplitude equalizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5843608A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62232221A (en) * | 1986-04-02 | 1987-10-12 | Oki Electric Ind Co Ltd | Pll synthesizer circuit |
US5144267A (en) * | 1989-12-06 | 1992-09-01 | Scientific-Atlanta, Inc. | Variable slope network for off-premises CATV system |
US5231660A (en) * | 1988-03-10 | 1993-07-27 | Scientific-Atlanta, Inc. | Compensation control for off-premises CATV system |
US5345504A (en) * | 1988-03-10 | 1994-09-06 | Scientific-Atlanta, Inc. | Differential compensation control for off-premises CATV system |
US7462973B2 (en) | 2003-10-01 | 2008-12-09 | Fujitsu Media Devices Limited | Surface acoustic wave device |
-
1981
- 1981-09-09 JP JP14188781A patent/JPS5843608A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62232221A (en) * | 1986-04-02 | 1987-10-12 | Oki Electric Ind Co Ltd | Pll synthesizer circuit |
US5231660A (en) * | 1988-03-10 | 1993-07-27 | Scientific-Atlanta, Inc. | Compensation control for off-premises CATV system |
US5345504A (en) * | 1988-03-10 | 1994-09-06 | Scientific-Atlanta, Inc. | Differential compensation control for off-premises CATV system |
US5144267A (en) * | 1989-12-06 | 1992-09-01 | Scientific-Atlanta, Inc. | Variable slope network for off-premises CATV system |
US7462973B2 (en) | 2003-10-01 | 2008-12-09 | Fujitsu Media Devices Limited | Surface acoustic wave device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB469067A (en) | Attenuation equalizers for electric transmission and like systems | |
JPS5843608A (en) | Amplitude equalizer | |
US2606969A (en) | Method and system for reducing noise in the transmission of electric signals | |
US1606817A (en) | Electrical network | |
JPH08501671A (en) | Method and apparatus for bridge tap equalizer | |
Englund et al. | Ultra-short-wave transmission and atmospheric irregularities | |
US2095035A (en) | Superheterodyne receiver | |
US4430527A (en) | Loudspeaker crossover delay equalization | |
US2106785A (en) | Electric filter | |
JPH0230908Y2 (en) | ||
US2019624A (en) | Attenuation equalizer | |
DK144047B (en) | COMPOSED FILTER CIRCUIT | |
US1701552A (en) | Distortion compensator | |
GB451527A (en) | Electric wave filters | |
US2060042A (en) | Regulation of transmission lines | |
US1752461A (en) | Transmission network | |
US2258047A (en) | Wave transmission system | |
JPS5829902B2 (en) | Wideband cable transmission system | |
Fang et al. | Equalization of Sound Reproduction System Based on the Human Perception Characteristics | |
Hopper | Electrical Networks for Sound Recording | |
US1804127A (en) | Speech transmission system | |
US1816663A (en) | Diaphonometric means | |
Conrad | The interdiurnal variability of temperature on Mount Washington | |
JPS5915556B2 (en) | TV signal audio carrier level adjustment device | |
JPS6016102Y2 (en) | amplifier |