JPS5842751A - Amorphous iron alloy having small iron loss and undergoing very slight change in magnetic characteristic due to aging - Google Patents
Amorphous iron alloy having small iron loss and undergoing very slight change in magnetic characteristic due to agingInfo
- Publication number
- JPS5842751A JPS5842751A JP56140263A JP14026381A JPS5842751A JP S5842751 A JPS5842751 A JP S5842751A JP 56140263 A JP56140263 A JP 56140263A JP 14026381 A JP14026381 A JP 14026381A JP S5842751 A JPS5842751 A JP S5842751A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- iron loss
- amorphous
- thermal stability
- undergoing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は主として電力用トランス、カレントトランス、
高周波トランス、リアクトル壜どの電力変換器の鉄心と
して用いられる鉄損が極めて低く熱的安定性のよい非晶
質合金に関するものである。[Detailed Description of the Invention] The present invention mainly relates to power transformers, current transformers,
This invention relates to an amorphous alloy with extremely low core loss and good thermal stability, which is used as the core of power converters such as high-frequency transformers and reactor bottles.
鉄心用材料に要求される磁気特性としては、先ず鉄損の
低いこと、励磁特性の良いことが必要である。特に鉄損
は交流励磁される鉄心の中で熱と 。The magnetic properties required of iron core materials include low core loss and good excitation properties. In particular, iron loss is caused by heat in the core that is excited by alternating current.
して失われる電力で、全世界で日夜無駄に失われている
電力損失は莫大な額になると言われている。It is said that the amount of electricity wasted day and night around the world is enormous.
また高周波トランスでは鉄損による熱は磁心の温度を上
昇させるため材料の選択、動作磁束密度など設計上多く
の制約をもたらしている。而して現在電力変換機器の磁
心材料として、珪素鋼板、薄物珪素鋼帯、フェライト、
ノダーマロイ、鉄粉などが具体的用途に応じて使用され
ているが、広い応用分野にわたシ特性と鮭済性とを満足
させるような材料はなかった。In addition, in high-frequency transformers, heat due to iron loss increases the temperature of the magnetic core, resulting in many design constraints such as material selection and operating magnetic flux density. Currently, silicon steel sheets, thin silicon steel strips, ferrite,
Nodermalloy, iron powder, etc. have been used depending on the specific application, but there has been no material that satisfies the properties of glutinous properties and salmon-saving properties in a wide range of application fields.
ところが近年非晶質(アモルファス)金属と呼ばれる高
温の溶融状態から超急冷することによりて液体と同じよ
うなランダム(非同期)構造をもつ合金薄帯を作る方法
が開発された。この材料は原理的に異方性がなく、電気
抵抗が高く、薄いものが容易に得られるため広い周波数
帯斌で鉄損が低く、励磁特性も良いので注目されている
。しかしながら電カドランス用途には飽和磁束密度B。However, in recent years, a method has been developed to create alloy ribbons with a random (asynchronous) structure similar to that of liquids by ultra-rapidly cooling metals from a high-temperature molten state called amorphous metals. This material has attracted attention because it has no anisotropy in principle, has high electrical resistance, can be easily made thin, has low iron loss over a wide frequency band, and has good excitation characteristics. However, for electrocadrence applications, the saturation magnetic flux density is B.
が珪素鋼板に比較してかなり低いこと、熱的安定性が悪
い等の欠点があり、実用化の問題点とされていた。その
ため飽和磁束密度を高めるため成分組成の検討が種々な
され例えば特開昭54−61140号公報、同55−1
58251号公報、同54−148122号公報等の発
明が提案されている。It has disadvantages such as being considerably lower than that of silicon steel sheets and having poor thermal stability, which has been considered a problem for practical use. Therefore, various studies have been made on the component composition in order to increase the saturation magnetic flux density.
Inventions such as Japanese Patent No. 58251 and Japanese Patent No. 54-148122 have been proposed.
しかしながらなお室温におけるB、の値17KGをいく
らか越える程度であシ、珪素鋼の20 KGには及ばな
い、しかも公知のB、の高い組成をもつ合金はいずれも
トランス運転中の鉄心の温度(70〜150℃)におけ
る低下率が大きく、使用される ゛温度における磁束密
度は15〜16 KG程度に低下して珪素鋼との差は再
び開いてしまう。さらに前記のような現在公知の合金系
は熱的安定性が低い欠点がある。従って非晶質合金の特
徴を生かすためKは原理的に低い鉄損をさらに下げ、か
つ非晶質合金共通の欠点である熱的不安定性を改良した
合金系を見出すことが実用上鏝も有利である。However, the value of B at room temperature is still slightly higher than 17 KG, which is lower than the 20 KG of silicon steel.Furthermore, all known alloys with high B compositions have a B value of 17 KG at room temperature. The rate of decline is large at temperatures ranging from 150°C to 150°C, and the magnetic flux density at the temperature used drops to about 15-16 kg, and the difference with silicon steel widens again. Furthermore, currently known alloy systems such as those mentioned above have the disadvantage of low thermal stability. Therefore, in order to take advantage of the characteristics of amorphous alloys, it is practical to find an alloy system that further lowers the core loss, which is low in principle, and improves thermal instability, which is a common drawback of amorphous alloys. It is.
本発明者らは多くの合金組成について、その磁気特性お
よび熱的安定性を調べた結果、鉄損の低い組成と熱的安
定性のすぐれた組成には対応関係があることを見い出し
た。熱的安定性の高い組成は熱処理によって非晶質構造
を安定化することができ、同時に鉄損も改善される。熱
的に不安定な組成に比べて高い熱処理温度を採用できる
ため、鉄損改善の効果が大きいことを見出し、この具体
的組成を特願昭55−30253号および特願昭56−
32345号として出願した。これらはF・、81bB
、Cdなる化学式で表示される実質的に非晶質である合
金で、a、b、a、dはそれぞれ原子数−で次の範囲に
あった。The present inventors investigated the magnetic properties and thermal stability of many alloy compositions and found that there is a correspondence between compositions with low iron loss and compositions with excellent thermal stability. A composition with high thermal stability can stabilize the amorphous structure by heat treatment, and at the same time improve iron loss. It was discovered that a higher heat treatment temperature can be used than with thermally unstable compositions, which has a large effect on iron loss improvement.
The application was filed as No. 32345. These are F., 81bB
, Cd, in which a, b, a, and d are each in the following range in terms of the number of atoms.
11−74〜79
b;8〜19
C−σ〜13
dxQ〜3.5
ただしa + b + a + d = 100本発明
者はこれらの組成範囲にある非晶質合金の熱的安定性を
さらに詳しく調査し、数+年にわたり安定な磁気特性を
保証し得る合金組成を見出した。11-74~79 b; 8~19 C-σ~13 dxQ~3.5 However, a + b + a + d = 100 The present inventor has evaluated the thermal stability of amorphous alloys in these composition ranges. After further investigation, we discovered an alloy composition that can guarantee stable magnetic properties for several years.
すなわち本発明はF・、51bB1!cdなる化学式で
表示される実質的に非晶質である合金で、& @ b
# amdはそれぞれ原子数−で次の範囲にある。That is, the present invention is F., 51bB1! A substantially amorphous alloy represented by the chemical formula cd, &@b
# amd is in the following range with the number of atoms -.
a 工 77〜79
b−8〜12
e=9〜11
a−1〜3
ただしh + b + e + d −100特に好ま
しくはF・7!l”1゜B、。C2の組成である。a Engineering 77-79 b-8-12 e=9-11 a-1-3 However, h + b + e + d -100 Especially preferably F.7! The composition is l''1°B,.C2.
これらの成分的要求を満たす非晶質合金は第1表、第2
表に示すように通常のトランス使用温度よりもはるかに
高い200℃においても磁気特性の軽時変化が本発明の
組成範囲外のそれに比べて極めて小さい、す壜わち本発
明の範囲の組成を有する非晶質合金は、同時に高い非晶
質形成能(非晶質にな9やすさ)をもつため、厚いり一
ンを作ることが容易で、かつりがンの長手方向の特性変
動が小さいという実用上きわめて有利な特性を併せもっ
ている。Amorphous alloys that meet these chemical requirements are listed in Tables 1 and 2.
As shown in the table, even at 200°C, which is much higher than the normal operating temperature of a transformer, the change in magnetic properties over time is extremely small compared to those outside the composition range of the present invention. At the same time, the amorphous alloy has a high ability to form an amorphous state (ease of becoming amorphous), so it is easy to make a thick line, and there is no change in properties in the longitudinal direction of the gun. It also has the characteristic of being small, which is extremely advantageous in practice.
本発明の非晶質合金を製造する方法社先にも触れたよう
に溶融状態の合金を回転するロールやドラムの外壁ある
いは内壁に噴射、衝突させ片面が 。Method for manufacturing the amorphous alloy of the present invention As mentioned earlier, a molten alloy is injected and collided with the outer or inner wall of a rotating roll or drum, so that one side is formed.
ら冷却する方法(片ロール法および遠心急冷法)あるい
は1対の四−ルの間で両面から冷却する方法(双ロール
法)などによって連続的に製造する公知の方法いずれに
よりてもよい。Any of the known methods of continuous production may be used, such as a method of cooling from a single roller (single roll method and a centrifugal quenching method) or a method of cooling from both sides between a pair of four rolls (a twin roll method).
急冷された薄帯は一般にそのまま(as Ca5t )
の状態では充分な特性を示さないので、通常磁性向上の
ために結晶化開始温度以下で熱処理される。The rapidly cooled ribbon is generally left as is (as Ca5t)
Since it does not exhibit sufficient properties in this state, it is usually heat treated at a temperature below the crystallization initiation temperature to improve magnetism.
熱処理をよシ効果的にする丸めに、磁界中あるいは張力
下で行なうのがよい0本発明の合金の特徴は熱処理の効
果にも表われる。すなわち、結晶化開始温度が従来の高
磁束密度合金に比べてきわめて高いため、高い熱処理温
度を採用できる。高い熱処理温度は、冷却後に残留する
ひずみを充分に除去することを可能とし、その結果鉄損
の低減率が大きい利点を有する。たとえば従来材では特
開昭!55−158251号公報に開示される如く38
5℃以下の温度で熱処理する必要があったのに対して、
本発明の合金では430’Cまでの高温での熱処理を可
能にした。To make the heat treatment more effective, rounding is preferably carried out in a magnetic field or under tension.The characteristics of the alloy of the present invention also appear in the effect of heat treatment. That is, since the crystallization initiation temperature is much higher than that of conventional high magnetic flux density alloys, high heat treatment temperatures can be used. A high heat treatment temperature makes it possible to sufficiently remove the strain remaining after cooling, and as a result has the advantage of a large reduction rate in iron loss. For example, for conventional materials, Tokukai Sho! 38 as disclosed in Publication No. 55-158251
Whereas it was necessary to heat treat at a temperature below 5℃,
The alloy of the present invention allows heat treatment at high temperatures up to 430'C.
次に本発明の実施例を示す。Next, examples of the present invention will be shown.
実施例1
化学式F・yas’、。B、。C2で表示される合金を
、この合金の液相温度よ)約100℃高い1100℃に
加熱し、冷却用の鋼製単ロールの表面で急冷した。得ら
れた薄帯は!チャージ2C)is巾で約3001であっ
た。得られた薄帯の磁場中焼鈍後の磁気特性および20
0℃で2000時間経過後の磁気特性を第1表に示した
。但し焼鈍条件は磁界300Φ、390℃X30分水素
中であった。tt磁気特性は試料の大きさ20簡巾X1
20mとし、単板測定器によプ測定した。第21M!に
示し九比較例に比べて磁気特性の変化が極めて小さいこ
とが判る。Example 1 Chemical formula F.yas'. B. An alloy designated by C2 was heated to 1100°C, which is approximately 100°C higher than the liquidus temperature of this alloy, and rapidly cooled on the surface of a single steel roll for cooling. The obtained thin strip is! Charge 2C)is width was about 3001. Magnetic properties of the obtained ribbon after annealing in a magnetic field and 20
Table 1 shows the magnetic properties after 2000 hours at 0°C. However, the annealing conditions were a magnetic field of 300Φ, 390°C for 30 minutes in hydrogen. tt magnetic properties are sample size 20 width x 1
The distance was 20 m, and measurements were taken using a single plate measuring device. 21st M! It can be seen that the change in magnetic properties is extremely small compared to the 9th comparative example.
実施例2
第2表の各組成を有するように配合した原料を溶解後、
液相温度より50〜150℃高い温度から実施例1と同
じ方法により急冷し、非晶質合金薄帯を得た。得られた
薄帯の磁気特性および200℃で2000時間経過後の
磁気特性を比較例とともに示す。この結果から明らかな
ように本発明の範囲の組成を有する非晶質合金の鉄損お
よび安定性は比較例に比べて極めてすぐれている。%に
鉄損の劣化が小さい。Example 2 After melting the raw materials blended to have each composition in Table 2,
It was rapidly cooled from a temperature 50 to 150° C. higher than the liquidus temperature in the same manner as in Example 1 to obtain an amorphous alloy ribbon. The magnetic properties of the obtained ribbon and the magnetic properties after 2000 hours at 200°C are shown together with comparative examples. As is clear from these results, the core loss and stability of the amorphous alloys having compositions within the range of the present invention are extremely superior to those of the comparative examples. % deterioration of iron loss is small.
以上説明したように本発明は磁気特性の鮭時変化が極め
て小さく永年にわ九シ安定した特性を得ることができる
。As explained above, according to the present invention, the change in magnetic properties over time is extremely small and stable properties can be obtained over a long period of time.
手続補正書(自発)
昭和56年11月26日
特許庁長官 島 1)春 樹膜
・ 1. 事件の表示
昭和56年特許願第140263号
2、 発明の名称
磁気特性の経時変化の極めて小さい低鉄損鉄系非晶質合
金
3、 補正をする者
事件との関係 特許出願人
東京都千代田区大手町二丁目6番3号
(665)新日本製鐵株式會社
代表者 武 1) 豊
4、代理人刊O
東京都千代田区丸の内二丁目4番1号Procedural amendment (voluntary) November 26, 1980 Commissioner of the Japan Patent Office Shima 1) Spring Tree Membrane 1. Display of the case 1982 Patent Application No. 140263 2 Title of the invention Low core loss iron-based amorphous alloy with extremely small change in magnetic properties over time 3 Person making the amendment Relationship to the case Patent applicant Chiyoda-ku, Tokyo 2-6-3 Otemachi (665) Nippon Steel Corporation Representative Takeshi 1) Toyo 4, Agent Published by O 2-4-1 Marunouchi, Chiyoda-ku, Tokyo
Claims (2)
性の経時変化の葎めて小さい低鉄損鉄系非晶質合金。 ただし”*b*6*dは原子数−で a−77〜79 b−s〜12 6 w 9〜11 d冨1〜3 a + b + e + d = 100である。(1) A low core loss iron-based amorphous alloy with a composition of F@, 81bB, and Cd, which exhibits minimal changes in magnetic properties over time. However, "*b*6*d" is the number of atoms - a-77 to 79 b-s to 12 6 w 9 to 11 d depth 1 to 3 a + b + e + d = 100.
の範囲第1項記載の磁気特性の経時変化の極めて小さい
低鉄損鉄系非晶質合金。(2) A low core loss iron-based amorphous alloy with extremely small changes in magnetic properties over time as claimed in claim 1, which has a composition of F.78"1°"1Oc2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56140263A JPS5842751A (en) | 1981-09-08 | 1981-09-08 | Amorphous iron alloy having small iron loss and undergoing very slight change in magnetic characteristic due to aging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56140263A JPS5842751A (en) | 1981-09-08 | 1981-09-08 | Amorphous iron alloy having small iron loss and undergoing very slight change in magnetic characteristic due to aging |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5842751A true JPS5842751A (en) | 1983-03-12 |
JPH0137467B2 JPH0137467B2 (en) | 1989-08-07 |
Family
ID=15264705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56140263A Granted JPS5842751A (en) | 1981-09-08 | 1981-09-08 | Amorphous iron alloy having small iron loss and undergoing very slight change in magnetic characteristic due to aging |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5842751A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593518A (en) * | 1992-12-23 | 1997-01-14 | Alliedsignal Inc. | Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications |
US5593513A (en) * | 1992-12-23 | 1997-01-14 | Alliedsignal Inc. | Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications |
EP0787814A1 (en) | 1996-01-31 | 1997-08-06 | Kawasaki Steel Corporation | Low boron amorphous alloy and process for producing same |
US5871593A (en) * | 1992-12-23 | 1999-02-16 | Alliedsignal Inc. | Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications |
JP2007234714A (en) * | 2006-02-28 | 2007-09-13 | Hitachi Industrial Equipment Systems Co Ltd | Amorphous transformer for power distribution |
-
1981
- 1981-09-08 JP JP56140263A patent/JPS5842751A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593518A (en) * | 1992-12-23 | 1997-01-14 | Alliedsignal Inc. | Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications |
US5593513A (en) * | 1992-12-23 | 1997-01-14 | Alliedsignal Inc. | Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications |
US5871593A (en) * | 1992-12-23 | 1999-02-16 | Alliedsignal Inc. | Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications |
EP0787814A1 (en) | 1996-01-31 | 1997-08-06 | Kawasaki Steel Corporation | Low boron amorphous alloy and process for producing same |
JP2007234714A (en) * | 2006-02-28 | 2007-09-13 | Hitachi Industrial Equipment Systems Co Ltd | Amorphous transformer for power distribution |
JP4558664B2 (en) * | 2006-02-28 | 2010-10-06 | 株式会社日立産機システム | Amorphous transformer for power distribution |
US9177706B2 (en) | 2006-02-28 | 2015-11-03 | Hitachi Industrial Equipment Systems Co., Ltd. | Method of producing an amorphous transformer for electric power supply |
Also Published As
Publication number | Publication date |
---|---|
JPH0137467B2 (en) | 1989-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6034620B2 (en) | Amorphous alloy with extremely low iron loss and good thermal stability | |
US4298409A (en) | Method for making iron-metalloid amorphous alloys for electromagnetic devices | |
US4219355A (en) | Iron-metalloid amorphous alloys for electromagnetic devices | |
US4249969A (en) | Method of enhancing the magnetic properties of an Fea Bb Sic d amorphous alloy | |
JPH0368108B2 (en) | ||
CA1215253A (en) | Amorphous metal alloys having enhanced ac magnetic properties | |
JP2778719B2 (en) | Iron-based amorphous magnetic alloy containing cobalt | |
JPS6362579B2 (en) | ||
JPS5842751A (en) | Amorphous iron alloy having small iron loss and undergoing very slight change in magnetic characteristic due to aging | |
May et al. | Magnetic and corrosion properties comparison of FeSi-based, FeZr-based and FeCo-based alloys | |
JP3434844B2 (en) | Low iron loss, high magnetic flux density amorphous alloy | |
JPH04329846A (en) | Manufacture of fe base amorphous alloy | |
JP2812574B2 (en) | Low frequency transformer | |
RU2121520C1 (en) | High-induction amorphous alloy with low electromagnetic losses and product made from this alloy | |
JPS5916947A (en) | Manufacture of thin amorphous alloy strip useful as iron core | |
JP2812569B2 (en) | Low frequency transformer | |
JPH05222494A (en) | Amorphous alloy sheet steel for transformer iron core having high magnetic flux density | |
JPS5942069B2 (en) | Method for manufacturing amorphous alloy with high effective magnetic permeability | |
US3761253A (en) | Steel for electrical applications and novel article | |
JPS6293339A (en) | Amorphous alloy excellent in embrittlement-resisting property | |
JPH04272159A (en) | Ferrous magnetic alloy | |
KR900001100B1 (en) | Amorphous alloy for high frequency | |
JPS6274049A (en) | High permeability amorphous alloy | |
JPS6274050A (en) | Corrosion-resistant iron-base amorphous magnetic alloy | |
JPH0526861B2 (en) |