JPS5841390A - Nuclear fuel storage rack - Google Patents
Nuclear fuel storage rackInfo
- Publication number
- JPS5841390A JPS5841390A JP56138438A JP13843881A JPS5841390A JP S5841390 A JPS5841390 A JP S5841390A JP 56138438 A JP56138438 A JP 56138438A JP 13843881 A JP13843881 A JP 13843881A JP S5841390 A JPS5841390 A JP S5841390A
- Authority
- JP
- Japan
- Prior art keywords
- absorbing material
- storage rack
- fuel storage
- neutron absorbing
- amorphous alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は原子力発電所で用いられる核燃料集合体を貯蔵
する原子炉用燃料貯蔵ラックに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear reactor fuel storage rack for storing nuclear fuel assemblies used in nuclear power plants.
原子力発電所においては、原子炉炉心から取出された使
用済燃料は、再処理するために再処理工場へ搬出される
までの間、一時的に原子炉建屋内に設置されている使用
済燃料プール内水中に保管される。近年、使用済燃料再
処理の遅れから使用済燃料を多量に保管する必要があり
5、このため使用済燃料プール(以下プールと称す)内
のスペースを有効に利用して、貯蔵燃料間の間隔を短く
する改良がなされている。この改良に基づいた原子炉用
燃料貯蔵ラック(以下ラックと称す)を高密度ラックと
称している。ラックは貯蔵燃料が相互間の燃料の影響に
より臨界に達しない構造にする必要があるために燃料間
に中性子吸収材を入れている。ラックはその組立性を考
慮して、あらかじめ作られた強度部材と中性子吸収材か
らなる角筒同志を溶接あるいはボルト締めにより組立て
て製作される。At nuclear power plants, spent fuel taken out of the reactor core is stored in a spent fuel pool temporarily installed inside the reactor building until it is transported to a reprocessing plant for reprocessing. Stored in inland water. In recent years, it has become necessary to store large amounts of spent fuel due to delays in spent fuel reprocessing.5 Therefore, the space in the spent fuel pool (hereinafter referred to as the pool) can be used effectively to reduce the interval between stored fuels. Improvements have been made to shorten the . A nuclear reactor fuel storage rack (hereinafter referred to as a rack) based on this improvement is referred to as a high-density rack. The rack needs to have a structure in which the stored fuel does not reach criticality due to mutual influence, so a neutron absorbing material is inserted between the fuels. Considering the ease of assembly, racks are manufactured by assembling prefabricated square tubes made of strength members and neutron absorbing materials by welding or bolting.
従来のこのような中性子吸収材としては、中性子吸収性
のよいボロンを含むボロンカーバイトラアルミニウムに
拡散し、さらにアルεニウムを被覆したボラル(商標名
)がある。しかし、ポラルは耐食性の面で劣るため、使
用済燃料プールの水に接しないように密封する心安があ
る。As such a conventional neutron absorbing material, there is Boral (trade name), which is made by diffusing boron carbide aluminum containing boron, which has good neutron absorbing properties, and further coating it with aluminum. However, since Polar has poor corrosion resistance, it is safe to seal it tightly to prevent it from coming into contact with the water in the spent fuel pool.
第1図はこの種の高密度ラックの例を示し、角筒1を補
強材2,3,4、ベース5により一体のラックとしたも
のである。第2図はボラルを用いた角筒の断面図、第3
図は平面図であり、角筒は外筒6、内筒7、ボラル8、
スペーサー9,1oからなる。FIG. 1 shows an example of this type of high-density rack, in which a rectangular tube 1 is integrated with reinforcing members 2, 3, 4, and a base 5. Figure 2 is a cross-sectional view of a rectangular tube using Boral, Figure 3
The figure is a plan view, and the square tube has an outer tube 6, an inner tube 7, a boral 8,
It consists of spacers 9 and 1o.
この構造ではボラル8を密封するために角筒をステンレ
ス製の内筒7と外筒6から構成し、その間に生じる隙間
にボラル8′f:挿入し、角筒の上端および下端をシー
ル溶接をする必要があり非常に手間がかかるという欠点
がある。特に、内筒7、外筒6の製作精度を厳しくする
必要があり、又、角筒の上下端のシール溶接も、中性子
吸収材であるボラルの健全を確保するだめの細心の注意
を払う必要がある。In this structure, in order to seal the Boral 8, the rectangular tube is made up of an inner tube 7 and an outer tube 6 made of stainless steel, the Boral 8'f: is inserted into the gap created between them, and the upper and lower ends of the rectangular tube are sealed and welded. The disadvantage is that it is very time-consuming. In particular, the manufacturing precision of the inner cylinder 7 and outer cylinder 6 must be made strict, and the seal welding at the upper and lower ends of the rectangular cylinder must be performed with great care to ensure the integrity of the neutron absorbing material Boral. There is.
また中性子吸収としてBk含有するステンレス鋼を用い
ることが提案されているが、この場合、Bを含有するス
テンレス鋼の強度が中性子照射によって低下し、溶接性
も悪いためラックの製造としては好適でない。Furthermore, it has been proposed to use stainless steel containing Bk for neutron absorption, but in this case, the strength of the stainless steel containing B decreases due to neutron irradiation and the weldability is poor, so it is not suitable for manufacturing racks.
本発明の目的は、上記した従来技術の欠点を解消し、製
造が容易であって簡単な構造の原子炉用燃料貯蔵ラック
を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a fuel storage rack for a nuclear reactor that is easy to manufacture and has a simple structure.
本発明は、非晶質合金がCrを含有することによって耐
食性が向上し、まだ非晶質合金は通常数十μmと薄く加
工性に優れている点に着目し、このような非晶質合金に
中性子吸収能が高い元素を添加したものを中性子吸収材
として用いることによって上に目的を達成せしめたもの
である。The present invention focuses on the fact that the corrosion resistance of amorphous alloys improves when they contain Cr, and that amorphous alloys are usually thin at several tens of μm and have excellent workability. The above objective was achieved by using a neutron absorbing material to which an element with high neutron absorption ability was added.
すなわち、本発明は中性子吸収材としてB。That is, the present invention uses B as a neutron absorbing material.
Sm、Gd、Eu、DY、Rh、Cd、In、Er。Sm, Gd, Eu, DY, Rh, Cd, In, Er.
)(fおよび■rから選ばれる1種以上の元素を含有す
るステンレス鋼成分の非晶質合金を用いるものである。)(f) An amorphous alloy of stainless steel containing one or more elements selected from f and r is used.
以下、添付図面に示す実施例に基づいて本発明を説明す
る。The present invention will be described below based on embodiments shown in the accompanying drawings.
第4図および第5図において、角筒状の強度部材11に
非晶質合金からなる中性子吸収材12が固着されている
。非晶質合金からなる中性子吸収材12は加熱によって
結晶化するおそれがあるので、強度部材11に対し溶接
等により固着することは避ける必要がある。In FIGS. 4 and 5, a neutron absorbing material 12 made of an amorphous alloy is fixed to a rectangular cylindrical strength member 11. As shown in FIG. Since the neutron absorbing material 12 made of an amorphous alloy may be crystallized by heating, it is necessary to avoid fixing it to the strength member 11 by welding or the like.
本実施例において、角筒状の強度部材11に予めリベッ
ト13を溶接し、この強度部材の外周面に非晶質合金か
らなる中性子吸収材12全巻装し、その後、リベット1
3をハンマー等により変形固定させる。なお、非晶質合
金からなる中性子吸収材12は数十μmと薄く変形能が
あるのでリベット13を挿通させる孔はパンチングによ
って容易に穿けることができる。本発明による燃料ラッ
クは得られた角筒を第1図に示すように集合させて構成
される。In this embodiment, a rivet 13 is welded in advance to a rectangular cylindrical strength member 11, a neutron absorbing material 12 made of an amorphous alloy is fully wrapped around the outer peripheral surface of this strength member, and then a rivet 13 is welded to a rectangular cylindrical strength member 11.
3 is deformed and fixed using a hammer or the like. Note that since the neutron absorbing material 12 made of an amorphous alloy is thin and deformable at several tens of micrometers, the hole into which the rivet 13 is inserted can be easily made by punching. The fuel rack according to the present invention is constructed by assembling the obtained rectangular tubes as shown in FIG.
本発明において、中性子吸収材はステンレス鋼の組成に
Bを添加して溶解し、この溶湯を高速回転するロールに
吹きつけることによって非晶質化することにより得られ
る。したがって非晶質合金中にはCr1又はC「および
NIを含有することを必須とし、さらに中性子吸収能が
高い元素を含有する。このような中性子吸収能が高い元
素は、B、Sm、Gd、Eu、Dy、Rh、Cd、In
。In the present invention, the neutron absorbing material is obtained by adding B to the composition of stainless steel, melting it, and making it amorphous by spraying the molten metal onto a roll rotating at high speed. Therefore, it is essential that the amorphous alloy contains Cr1 or C'' and NI, and also contains elements with high neutron absorption ability.These elements with high neutron absorption ability include B, Sm, Gd, Eu, Dy, Rh, Cd, In
.
Br、HfおよびJrから選ばれる。これらの元素は非
晶質合金中に1種又は2種以上含有される。Selected from Br, Hf and Jr. One or more of these elements are contained in the amorphous alloy.
非晶質合金中のCr含有量は12%以上であることが望
ましい。Cr含有量が12%よりも少ないと非晶質合金
の耐食性が低下する。一方、Cr含有量が多すぎると、
中性子吸収能が高い元素としてBを使用する場合、非晶
質化のためのBの添加量が少なくなり、非晶質合金を中
性子吸収材として用いることが困難となるので13%以
下とするのがよい。非晶質合金中の中性子吸収能が高い
元素の添加量として、Bを例にとると4〜8重量が望ま
しい。このBの含有量によって所望の中性子吸収効果が
発揮され、またこの含有量範囲外ではいずれも非晶質化
が困難となる。It is desirable that the Cr content in the amorphous alloy is 12% or more. When the Cr content is less than 12%, the corrosion resistance of the amorphous alloy decreases. On the other hand, if the Cr content is too high,
When B is used as an element with high neutron absorption ability, the amount of B added for making it amorphous becomes small, making it difficult to use an amorphous alloy as a neutron absorbing material, so it should be kept at 13% or less. Good. Taking B as an example, the amount of addition of an element having a high neutron absorption ability in the amorphous alloy is preferably 4 to 8 weight. The desired neutron absorption effect is exhibited depending on the content of B, and if the content is outside this range, it becomes difficult to make the material amorphous.
実施例
表1に示す組成からなるステンレス合金を非晶質化し、
これを第4図および第5図に示すように角筒を形成し、
使用済燃料プール内水中に接した状態に維持したところ
、表1中に示す通り耐食性は良好であった。Example A stainless steel alloy having the composition shown in Table 1 was made amorphous,
This is formed into a rectangular cylinder as shown in Figs. 4 and 5,
When maintained in contact with water in the spent fuel pool, the corrosion resistance was good as shown in Table 1.
以上のように本発明によれば、非晶質合金が耐食性に優
れ、使用済燃料プール内水中に接しだ状態でも健全であ
るので、この非晶質合金からなる中性子吸収材を支持す
る内筒および外筒を設けてその隙間を密封することなく
、一種類の角筒のみでよいので製造が容易であり、かつ
構造が簡単である。また一種の角筒のみで補強できるこ
とと非晶質合金からなる中性子吸収材が極めて薄いため
角筒体の貯蔵密度が向上する。As described above, according to the present invention, the amorphous alloy has excellent corrosion resistance and is sound even when in contact with water in the spent fuel pool. Moreover, since only one type of rectangular tube is required without providing an outer tube and sealing the gap therebetween, manufacturing is easy and the structure is simple. In addition, the storage density of the rectangular tube is improved because it can be reinforced with only one type of rectangular tube and the neutron absorbing material made of an amorphous alloy is extremely thin.
第1図は従来の原子炉用燃料貯蔵ランクの正面図、第2
図は従来の角筒の縦断面図、第3図は従来の角筒の横断
面図、第4図は本発明における角筒の一例を示す横断面
図、第5図は本発明における角筒の一例を示す縦断面図
である。Figure 1 is a front view of a conventional nuclear reactor fuel storage rank;
The figure is a longitudinal cross-sectional view of a conventional rectangular tube, FIG. 3 is a cross-sectional view of a conventional rectangular tube, FIG. 4 is a cross-sectional view showing an example of a rectangular tube in the present invention, and FIG. 5 is a cross-sectional view of a rectangular tube in the present invention. It is a longitudinal cross-sectional view showing an example.
Claims (1)
で整列保持するための保持部材にして中性子吸収材とこ
れを保持する強度部材とによって形成される角筒を用い
る原子炉用燃料貯蔵ラックにおイテ、前記中性子吸収材
が、B、Bm、Gd、Eu。 Dy、Rh、Cd、In、 Er、Hfお!びI rか
ら選ばれる1種以上の元素を含有するステンレス鋼成分
の非晶質合金であることを特徴とする原子炉用燃料貯蔵
ラック。[Claims] 1. A rectangular tube formed by a neutron absorbing material and a strength member for holding the same as a holding member for holding a plurality of fuel assemblies in an upright alignment at predetermined intervals. The neutron absorbing material used in the nuclear reactor fuel storage rack is B, Bm, Gd, or Eu. Dy, Rh, Cd, In, Er, Hf! 1. A fuel storage rack for a nuclear reactor, characterized in that it is an amorphous alloy of stainless steel containing one or more elements selected from Ir and Ir.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56138438A JPS5841390A (en) | 1981-09-04 | 1981-09-04 | Nuclear fuel storage rack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56138438A JPS5841390A (en) | 1981-09-04 | 1981-09-04 | Nuclear fuel storage rack |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5841390A true JPS5841390A (en) | 1983-03-10 |
JPS6318157B2 JPS6318157B2 (en) | 1988-04-16 |
Family
ID=15221981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56138438A Granted JPS5841390A (en) | 1981-09-04 | 1981-09-04 | Nuclear fuel storage rack |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5841390A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297787A (en) * | 1986-06-17 | 1987-12-24 | 富士電機株式会社 | Storage rack for spent fuel |
JPH02187643A (en) * | 1989-01-17 | 1990-07-23 | Shimizu Corp | Low activation material |
JPH10268082A (en) * | 1997-03-21 | 1998-10-09 | Mitsubishi Heavy Ind Ltd | Spent nuclear fuel storing facility |
JP2002372597A (en) * | 2001-06-13 | 2002-12-26 | Toshiba Corp | Manufacturing method for neutron absorber and neutron absorber manufactured thereby |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4743532B2 (en) * | 2006-08-07 | 2011-08-10 | 財団法人電力中央研究所 | Neutron absorber and manufacturing method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5356497A (en) * | 1976-10-29 | 1978-05-22 | Hitachi Ltd | Fuel storage rack for nuclear reactor |
US4096392A (en) * | 1975-07-11 | 1978-06-20 | Nuclear Services Corporation | Rack for storing spent nuclear fuel elements |
JPS5457094A (en) * | 1977-09-22 | 1979-05-08 | Kraftwerk Union Ag | Fuel assembly storage rack |
JPS5486098A (en) * | 1977-11-30 | 1979-07-09 | Kraftwerk Union Ag | Storage rack for long fuel aggregate |
JPS54121396A (en) * | 1978-03-13 | 1979-09-20 | Gen Electric | Storage module for nuclear fuel assembly |
JPS57110649A (en) * | 1980-12-27 | 1982-07-09 | Toshiba Corp | Neutron absorber |
JPS57207896A (en) * | 1981-06-17 | 1982-12-20 | Hitachi Ltd | Neutron absorbing material |
-
1981
- 1981-09-04 JP JP56138438A patent/JPS5841390A/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4096392A (en) * | 1975-07-11 | 1978-06-20 | Nuclear Services Corporation | Rack for storing spent nuclear fuel elements |
JPS5356497A (en) * | 1976-10-29 | 1978-05-22 | Hitachi Ltd | Fuel storage rack for nuclear reactor |
JPS5457094A (en) * | 1977-09-22 | 1979-05-08 | Kraftwerk Union Ag | Fuel assembly storage rack |
JPS5486098A (en) * | 1977-11-30 | 1979-07-09 | Kraftwerk Union Ag | Storage rack for long fuel aggregate |
JPS54121396A (en) * | 1978-03-13 | 1979-09-20 | Gen Electric | Storage module for nuclear fuel assembly |
JPS57110649A (en) * | 1980-12-27 | 1982-07-09 | Toshiba Corp | Neutron absorber |
JPS57207896A (en) * | 1981-06-17 | 1982-12-20 | Hitachi Ltd | Neutron absorbing material |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297787A (en) * | 1986-06-17 | 1987-12-24 | 富士電機株式会社 | Storage rack for spent fuel |
JPH02187643A (en) * | 1989-01-17 | 1990-07-23 | Shimizu Corp | Low activation material |
JPH10268082A (en) * | 1997-03-21 | 1998-10-09 | Mitsubishi Heavy Ind Ltd | Spent nuclear fuel storing facility |
JP2002372597A (en) * | 2001-06-13 | 2002-12-26 | Toshiba Corp | Manufacturing method for neutron absorber and neutron absorber manufactured thereby |
Also Published As
Publication number | Publication date |
---|---|
JPS6318157B2 (en) | 1988-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI80806C (en) | Nuclear reactor fuel rod | |
JP2763740B2 (en) | Fuel element and method for improving heat transfer therein | |
JPH0365690A (en) | Corrosion resisting coating for fuel rod | |
JPS63285497A (en) | Cask for spent nuclear fuel transport | |
JP2763739B2 (en) | Fuel element and method of installing a partition in the element | |
JPH0364427A (en) | Corrosion resistant zirconium alloy containing copper, nickel and iron | |
KR910007460B1 (en) | Nuclear fuel assembly containing burnable poison | |
Cheng et al. | Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance | |
JPH0375591A (en) | Fuel element and method of manufacturing the same | |
US6327321B1 (en) | Borated aluminum rodlets for use in spent nuclear fuel assemblies | |
JPS5841390A (en) | Nuclear fuel storage rack | |
JPS58195185A (en) | Zirconium alloy membrane having improved corrosion resistance | |
CA1209726A (en) | Zirconium alloy barrier having improved corrosion resistance | |
EP0533073B1 (en) | Structural elements for a nuclear reactor fuel assembly | |
US3004906A (en) | Uranium foil nuclear fuel element | |
JPS58144789A (en) | Fuel storage rack for reactor | |
CA1168769A (en) | Fuel rod for a nuclear reactor | |
JPS6039594A (en) | Storage rack for used fuel | |
JPS5937499A (en) | Composit material for neutron absorbing | |
Angerman et al. | Durability of containers for storing solidified radioactive wastes | |
JP2000155196A (en) | Canister for disposal of radioactive waste | |
JPH04248499A (en) | Neutron absorber for spent fuel storage rack | |
JPS6212899A (en) | Basket for spent fuel transport and storage vessel | |
JPS59220684A (en) | Nuclear fuel storage rack | |
JPS61153595A (en) | Spent fuel storage rack |