[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5836051B2 - Processing method for electrical steel sheets - Google Patents

Processing method for electrical steel sheets

Info

Publication number
JPS5836051B2
JPS5836051B2 JP56035962A JP3596282A JPS5836051B2 JP S5836051 B2 JPS5836051 B2 JP S5836051B2 JP 56035962 A JP56035962 A JP 56035962A JP 3596282 A JP3596282 A JP 3596282A JP S5836051 B2 JPS5836051 B2 JP S5836051B2
Authority
JP
Japan
Prior art keywords
treatment
laser beam
tension
beam irradiation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56035962A
Other languages
Japanese (ja)
Other versions
JPS57152423A (en
Inventor
元治 中村
徹 井内
高英 島津
忠志 石元
喜久司 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56035962A priority Critical patent/JPS5836051B2/en
Publication of JPS57152423A publication Critical patent/JPS57152423A/en
Publication of JPS5836051B2 publication Critical patent/JPS5836051B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Nozzles (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明はすぐれた磁気特性、絶縁特性を有する?磁鋼板
を安定して製造する方法に関するものである。
[Detailed Description of the Invention] Does the present invention have excellent magnetic properties and insulation properties? The present invention relates to a method for stably manufacturing magnetic steel sheets.

電磁鋼板としては、モーター等の回転機に使用される無
方向性電磁鋼板あるいはトランス等に使用される方向性
電磁鋼板がある。
Examples of electromagnetic steel sheets include non-oriented electromagnetic steel sheets used in rotating machines such as motors, and grain-oriented electromagnetic steel sheets used in transformers and the like.

無方向性電磁鋼板は純鉄系1たは3.5係以下の珪素を
含有する珪素鋼板で、これはホットコイルを酸洗後、1
ないし2回の冷延と焼鈍をくり返して磁化容易軸を圧延
方向に対してランダムとし、その後絶縁皮膜処理を施し
て製造される。
Non-oriented electrical steel sheet is a pure iron-based silicon steel sheet containing silicon of 1 or 3.5 or less, and after pickling a hot coil,
It is manufactured by repeating cold rolling and annealing one or two times to make the axis of easy magnetization random with respect to the rolling direction, and then applying an insulation coating treatment.

一方、方向性電磁鋼板は一般に次の様にして製造される
On the other hand, grain-oriented electrical steel sheets are generally manufactured as follows.

すなわち、2,5〜4.0多の珪素を含有し、インヒビ
ターとしてA#N,MnS,BN,Se* CuSs
Sb等を形成する元素の1種又は2種以上を所定量含有
するホットコイルを酸洗し、1〜2回の冷間圧延、焼鈍
をくり返した後、2次再結晶により(11o)(001
)の方位を有する結晶を選択的に成長させるために、1
000〜1200℃で仕上げ焼鈍される。
That is, it contains 2.5 to 4.0 silicon, and A#N, MnS, BN, Se*CuSs as an inhibitor.
A hot coil containing a predetermined amount of one or more of the elements forming Sb etc. is pickled, cold rolled and annealed once or twice, and then (11o) (001
) In order to selectively grow crystals with an orientation of 1
Finish annealing is performed at 000-1200°C.

仕上げ焼鈍をコイルの状態で行なうバッチ式の場合には
焼付を防止するために焼鈍分離剤としてマグネシャ、シ
リカ、アルナ、酸化チタン、酸化カルシウム等の耐火性
酸化物が使用される。
In the case of a batch type finish annealing in which coils are subjected to final annealing, refractory oxides such as magnesha, silica, alumina, titanium oxide, and calcium oxide are used as annealing separators to prevent seizure.

この場合、マグネシャを主成分とする焼鈍分離剤を用い
ると、焼付が防止されると同時に鋼板表面のシリカとマ
グネシャが反応して、フォルステライト( 2MgO−
Si02 )を主或分とするグラス皮膜を形成する。
In this case, using an annealing separator containing magnesia as a main component will prevent seizure and at the same time cause the silica on the surface of the steel plate to react with magnesia, forming forsterite (2MgO-
A glass film containing Si02) as a main component is formed.

このグラス皮膜は絶縁皮膜として有効であるのみならず
、鋼板に比べて熱膨張係数が小さく、冷却時に鋼板に張
力を与えて鉄損、磁歪の減少に効果があり、一般にはこ
の様なグラス皮膜を有する方向性電磁鋼板の製造が主流
つ%。
This glass coating is not only effective as an insulating coating, but also has a smaller coefficient of thermal expansion than steel plates, and is effective in reducing iron loss and magnetostriction by applying tension to the steel plate during cooling. The mainstream is the production of grain-oriented electrical steel sheets.

この様に仕上げ焼鈍により2次再結晶を起させて、グラ
ス皮膜を形成した電磁鋼板は、次に余剰マグネシャを除
去した後、絶縁皮膜処理として、例えば特公昭27−1
268号公報に示されるようにリン酸マグネシウム系処
理液や特公昭53一?8375号公報に示される様にコ
ロイダルシリカーリン酸アルニウムークロム酸系処理液
が塗布され、700〜900℃で皮膜の焼付と同時に鋼
板の巻ぐせを取り除き、平坦にするためのフラットニン
グが実施されている。
The electromagnetic steel sheet that has been subjected to secondary recrystallization through finish annealing to form a glass film is then subjected to an insulating film treatment after removing excess magnesia, for example
As shown in Publication No. 268, magnesium phosphate treatment liquid and Special Publication No. 531? As shown in Publication No. 8375, a colloidal silica aluminum phosphate-chromic acid treatment solution is applied, and at the same time as the film is baked, flattening is carried out to remove curls and make the steel plate flat. ing.

この場合70000以上の高温で皮膜焼付けを行なうと
、皮膜がグラス化し、冷却時に鋼板に張力を与えること
により、鉄損の向上に効果が認められる(以下この様に
鋼板に張力を与えて鉄損を低下させる効果を有する皮膜
を張力皮膜と呼ぶ)。
In this case, if the film is baked at a high temperature of 70,000°C or higher, the film turns into glass and is effective in improving iron loss by applying tension to the steel plate during cooling. A film that has the effect of reducing the tension is called a tension film).

上記のようにグラス皮膜と7000C以上の焼付皮膜に
よる張力による鉄損向上に比べ更にすぐれた鉄損向上を
行なう方法を提供することが、この発明の目的である。
It is an object of the present invention to provide a method for improving iron loss that is more excellent than the improvement in iron loss due to tension caused by a glass film and a baked film of 7000C or higher as described above.

本発明ではかかる目的を達成するために基本的にはレー
ザービームを使用して、上記張力皮膜を有する電磁鋼板
の表面にレーザービームの照射を行なって鋼板表面に局
部的にレーザー痕を形成させること、その後に絶縁皮膜
処理を行なうにさいしては、鋼板に付与されたレーザー
ビーム照射効果が消失しない温度領域で行なうことの組
合せ技術を提供するものである。
In order to achieve this object, the present invention basically uses a laser beam to irradiate the surface of the electrical steel sheet having the above-mentioned tension coating to form laser marks locally on the surface of the steel sheet. The present invention provides a combination technology in which the subsequent insulation coating treatment is carried out in a temperature range in which the laser beam irradiation effect imparted to the steel sheet does not disappear.

レーザービーム照射処理による鉄損の向上効果は、鋼板
表面にレーザー痕が生じる程度に行なうことが最良の結
果をもたらすことができる。
The best result can be obtained by performing the laser beam irradiation treatment to the extent that laser marks are generated on the surface of the steel sheet.

このレーザー痕は絶縁性および耐電圧性の観点からない
ことが望1しいが、本発明者らの検討によれば、レーザ
ービーム照射処理を鋼板に施した張力被膜から行ない、
その後に所定の厚みの絶縁皮膜を施こせば、絶縁性、耐
電圧性を低下させることなく、鉄損を向上させ得るもの
である。
It is desirable that these laser marks be absent from the viewpoint of insulation and voltage resistance, but according to the studies of the present inventors, laser beam irradiation treatment is performed from a tension coating applied to a steel plate.
If an insulating film of a predetermined thickness is then applied, iron loss can be improved without reducing insulation properties and voltage resistance.

この場合レーザービーム照射後の絶縁皮膜の焼付をあ捷
り高温で行なうと、レーザービーム照射による鉄損向上
効果が次第に消失する。
In this case, if the insulating film is baked at a high temperature after laser beam irradiation, the iron loss improving effect of laser beam irradiation will gradually disappear.

このことから本発明ではレーザービーム照射処理後行な
う絶縁皮膜処理を、レーザービーム照射による鉄損向上
効果が消失しない温度領域で行なうものである。
For this reason, in the present invention, the insulation coating treatment performed after the laser beam irradiation treatment is performed in a temperature range where the iron loss improving effect of the laser beam irradiation does not disappear.

具体的な皮膜焼付け時の板温については、レーザービー
ム照射条件などにより若干異なるが、600’C以下で
行なうことが好1しい。
The specific temperature of the plate at the time of baking the film varies slightly depending on the laser beam irradiation conditions, etc., but it is preferably 600'C or less.

本出願人は、既に特願昭55−7000号によってグラ
ス皮膜なし電磁鋼板、グラス皮膜あり電磁鋼板に対して
レーザービーム照射後レーザービーム照射による鉄損向
上効果が消失しない温度で絶縁皮膜を焼付けて、レーザ
ービーム照射痕による絶縁性、耐電圧性の低下を改善す
る方法を提案した。
The present applicant has already disclosed in Japanese Patent Application No. 55-7000 that after irradiating an electrical steel sheet with a glass coating and an electrical steel sheet with a glass coating, an insulating coating is baked at a temperature that does not eliminate the iron loss improvement effect of the laser beam irradiation. proposed a method to improve insulation and voltage resistance deterioration caused by laser beam irradiation marks.

この提案によればレーザービーム照射による鉄損向上効
果が大きいために前記の張力皮膜を有しない場合でも有
効である。
According to this proposal, since the effect of improving iron loss by laser beam irradiation is large, it is effective even when the above-mentioned tension coating is not provided.

しかるに本発明者らは更に詳細に検討した結果、レーザ
ービーム照射処理を実施しても、張力皮膜処理が行える
のなら、より一層の鉄損向上効果が得られるとの構想に
もとづき、張力皮膜の適用の可能性につき鋭意検討した
結果、レーザービーム照射処理前であれば焼付温度は任
意に取り得ることに着目し、このレーザービーム照射処
理前に張力皮膜処理を行なうことにより、張力皮膜の適
用に成功したものである。
However, as a result of a more detailed study, the inventors of the present invention found that if a tension film treatment can be performed even after laser beam irradiation treatment, an even greater effect of improving iron loss can be obtained. As a result of careful consideration of the possibility of application, we focused on the fact that the baking temperature can be set arbitrarily before the laser beam irradiation treatment. It was a success.

而して実際に電磁鋼板の表面に張力皮膜を形或し、その
上にレーザービーム照射処理を行なえば張力皮膜上への
レーザービーム照射処理という相乗作用により鉄損が飛
躍的に向上するものである。
In fact, if a tension coating is actually formed on the surface of an electrical steel sheet and a laser beam irradiation treatment is performed on the surface, the iron loss will be dramatically improved due to the synergistic effect of the laser beam irradiation treatment on the tension coating. be.

これをレーザー照射に及ぼす電磁鋼板表面の張力皮膜の
影響を示す第1図により説明する。
This will be explained with reference to FIG. 1, which shows the influence of a tension film on the surface of an electrical steel sheet on laser irradiation.

図に釦いて曲線■はグラス皮膜のみ、■は張力皮膜付、
■はグラス皮膜+レーザービーム照射、■は張力皮膜+
レーザービーム照射(本発明方法)を示す。
Click the button on the diagram and the curve ■ indicates only glass coating, ■ indicates tension coating,
■: Glass film + laser beam irradiation, ■: Tension film +
Figure 3 shows laser beam irradiation (method of the present invention).

なおレーザービーム照射条件は(i)エネルギー密度1
7 J /ffl、(11)点状痕跡径0.2mm、
(1ii )痕跡距離0.3mm、(JV) L方向間
隔5mmである。
The laser beam irradiation conditions are (i) energy density 1
7 J/ffl, (11) point trace diameter 0.2 mm,
(1ii) Trace distance is 0.3 mm, (JV) L direction interval is 5 mm.

レーザービーム照射後の絶縁皮膜焼付は500゜C(板
温)で実施された。
The insulation film was baked at 500°C (plate temperature) after laser beam irradiation.

第1図から明らかな様にグラス皮膜上にフラットニング
と同時に張力皮膜を形威させる(曲線■参照)と、グラ
ス皮膜のみ(曲線■の参照)に比べて鉄損が向上し、更
に張力皮膜上にレーザービーム照射する(曲線■参照)
と、グラス皮膜上にレーザービーム照射した場合(曲線
■参照)に比べて0.05〜0.07も鉄損が向上し、
非常にすぐれた鉄損が得られることがわかった。
As is clear from Figure 1, when a tension film is formed on the glass film at the same time as flattening (see curve ■), the iron loss improves compared to when only the glass film is used (see curve ■). Irradiate the laser beam on the top (see curve ■)
Compared to the case where the glass film is irradiated with a laser beam (see curve ■), the iron loss is improved by 0.05 to 0.07,
It was found that very good iron loss could be obtained.

すなわち、本発明者等は第1図の結果に基づき走査型電
子顕微鏡SEMを用いて磁区構造を観察したところ第2
図に示すような知見を得た。
That is, the inventors observed the magnetic domain structure using a scanning electron microscope (SEM) based on the results shown in FIG.
We obtained the findings shown in the figure.

第2図aは張力皮膜のない状態(グラス皮膜)の180
0磁区構造を示す。
Figure 2a shows 180 without tension film (glass film).
0 magnetic domain structure is shown.

これに張力皮膜を付与すると磁区構造は第2図bに示す
ようになる。
When a tension film is applied to this, the magnetic domain structure becomes as shown in FIG. 2b.

この結果から明らかなように第2図bは同aより磁区の
細分化を生じてトリ、第1図に示した張力効果による鉄
損値減少に対応している。
As is clear from this result, FIG. 2b corresponds to the fact that the magnetic domains are more segmented than in FIG. 2a, and the iron loss value decreases due to the tension effect shown in FIG.

一方第2図aに示す試料にレーザー照射を行ったときの
磁区構造は第2図Cに示すようになる。
On the other hand, when the sample shown in FIG. 2a is irradiated with a laser, the magnetic domain structure becomes as shown in FIG. 2C.

この図から明らかなように第2図Cの磁区幅は第2図b
より細分化していることがわかる。
As is clear from this figure, the magnetic domain width in Figure 2C is the same as Figure 2B.
It can be seen that it is more segmented.

そこで本発明のように張力皮膜を付与した電磁鋼板にレ
ーザー照射を行った場合の磁区構造は第2図dに示すよ
うに磁区の細分化がなお一層進んでむり、それに伴って
第1図に示すように鉄損減少の効果が飛躍的に増大して
いることがわかる。
Therefore, when laser irradiation is applied to an electrical steel sheet provided with a tension coating as in the present invention, the magnetic domain structure becomes even more fragmented as shown in Figure 2d, and as a result, as shown in Figure 1. As shown, it can be seen that the effect of reducing iron loss has increased dramatically.

又、第3図で張力皮膜を有する電磁鋼板の鉄損はwl7
/50で1. 0 5 w /lvであったものがレー
ザービーム照射処理を施こすことにより0.921で低
下した。
Also, in Figure 3, the iron loss of the electrical steel sheet with a tension coating is wl7.
/50 is 1. The value of 0 5 w/lv was reduced to 0.921 by performing the laser beam irradiation treatment.

しかしながら、その後に実施する絶縁皮膜処理時の温度
(板温によって絶縁皮膜処理後の鉄損が大きく変化し、
本例では板温か600℃を越えるとその効果が極端に悪
化することが判った。
However, the iron loss after insulation coating treatment changes greatly depending on the temperature (plate temperature) during the subsequent insulation coating treatment.
In this example, it was found that when the plate temperature exceeds 600°C, the effect deteriorates extremely.

その中で特に良好なのは板温か550℃以下で焼付け処
理を行なうことであり、これにより絶縁皮膜処理後の最
終戒品の鉄損を、レーザービーム照射処理後と同等又は
それ以下とすることが可能となる。
Among these, the best method is to perform the baking process at a board temperature of 550°C or less, which allows the iron loss of the final product after the insulation coating to be equal to or lower than that after the laser beam irradiation process. becomes.

本発明の実施において用いるレーザービーム照射につい
ては何ら限定されるものでなく、例えば連続線状照射、
点状照射、破線状照射等いづれでもよい。
The laser beam irradiation used in carrying out the present invention is not limited in any way; for example, continuous linear irradiation,
Either point irradiation, broken line irradiation, etc. may be used.

又、電磁鋼板に対する照射方向は圧延方向Lの磁気特性
を向上するには直角方向Cより20゜以内の傾きで照射
すると鉄損向上代が大きい。
Further, in order to improve the magnetic properties in the rolling direction L, the irradiation direction on the electrical steel sheet should be irradiated at an angle of 20° or less from the perpendicular direction C, which will increase the iron loss.

逆に圧延方向と直角方向の鉄損を向上するには圧延方向
が好捷しい。
On the other hand, in order to improve iron loss in the direction perpendicular to the rolling direction, the rolling direction is preferable.

今、パルス状のレーザービームを用いる場合の一つの適
用例を示せば、圧延方向の鉄損を向上するにはエネルギ
ー密度Pが0.01〜1000J /(一であるレーザ
ーピーム直径dが0.01〜1閣の痕跡を圧延方向と直
角方向に痕跡の中心距離が0.01〜2mmとなる様に
し、更に圧延方向に対して1〜30mmの痕跡列を形成
する様に照射する。
Now, to show one application example when using a pulsed laser beam, in order to improve the iron loss in the rolling direction, the energy density P is 0.01 to 1000 J/(1), and the laser beam diameter d is 0. The traces of 01 to 1 are irradiated so that the center distance of the traces is 0.01 to 2 mm in the direction perpendicular to the rolling direction, and further, a trace row of 1 to 30 mm is formed in the rolling direction.

圧延方向に対して1〜30mmの痕跡列を形成するには
使用する光学系により圧延方向にほぼ直角、又はノコギ
リ歯状、あるいは正弦波状に照射してもよい。
In order to form a trace array of 1 to 30 mm in the rolling direction, the irradiation may be performed approximately perpendicular to the rolling direction, in a sawtooth shape, or in a sine wave shape, depending on the optical system used.

レーザーパルスの時間巾は1 ns〜100msとする
The time width of the laser pulse is 1 ns to 100 ms.

一方、レーザービームを連続的に出力させて照射する場
合にも全く同様にレーザービーム直径を0.01〜1m
mの痕跡でエネルギー密度Pが0.01〜1000J/
dとなるように、レー?ービームを走査すればよい。
On the other hand, when irradiating with a continuous laser beam, the laser beam diameter is 0.01 to 1 m.
The trace of m has an energy density P of 0.01 to 1000 J/
Leh so that it becomes d? - just scan the beam.

パルス照射と連続照射の場合のちがいは、前者が痕跡点
列を構成するのに対し、後者は痕跡が連続となる点であ
って、その他の諸元は同じである。
The difference between pulsed irradiation and continuous irradiation is that the former forms a series of trace points, whereas the latter forms continuous traces; other specifications are the same.

更に照射処理する面も片面、両面のいずれでもよいが片
面照射の方が工業的に有利である。
Further, the surface to be irradiated may be either one or both sides, but single-sided irradiation is industrially more advantageous.

本発明方法に釦ける一つの実施工程は、マグネシャを主
成分とする焼鈍分離剤を塗布した電磁鋼板を1100〜
12000Gで仕上高温焼鈍し、フオルステライト(2
Mgo−SiO2 )を主成分とするグラス皮膜を形威
させる。
One of the implementation steps of the method of the present invention is to coat an electrical steel sheet with an annealing separator containing magnesia as a main component.
Finished at 12,000G and annealed at high temperature to form forsterite (2
A glass film whose main component is Mgo-SiO2) is formed.

このコイルを700〜900℃の温度で巻ぐせを除くた
めにフラットニングを行ない、同時に張力皮膜を塗布焼
付し、鋼板に張力を与えその後、レーザービーム照射処
理を施こし、次に板温600℃以下、好1しくは550
℃以下で絶縁皮膜処理を行なう方法である。
This coil is flattened at a temperature of 700 to 900°C to remove curls, and at the same time a tension film is applied and baked to apply tension to the steel plate. After that, it is subjected to laser beam irradiation treatment, and then the plate temperature is 600°C. Below, preferably 550
This method performs insulation coating treatment at temperatures below ℃.

本発明でのフラットニングと同時に実施する張力皮膜処
理は700℃以上の焼付けに耐え、冷却時に鋼板に張力
を与える例えば前記の特公昭53−28375号公報記
載のコロイダルシリカ、リン酸アルミニウム、クロム酸
系処理液、特開昭52−25296号公報記載のコロイ
ダルシリカ、リン酸塩、クロム酸塩系処理液、米国特許
第580449号明細書記載のマグネシウムイオン、リ
ン酸、シリカ、クロムイオンを含む処理液等の処理液を
用いるものであるが、鋼板への張力を与えられる処理液
であれば、何ら上記処理液に限定されるものでない。
The tension film treatment carried out simultaneously with flattening in the present invention can withstand baking at temperatures above 700°C and impart tension to the steel plate upon cooling. processing solution containing colloidal silica, phosphate, and chromate based processing solution described in JP-A No. 52-25296, and processing containing magnesium ion, phosphoric acid, silica, and chromium ion described in U.S. Pat. No. 580449. Although a treatment liquid such as liquid is used, the treatment liquid is not limited to the above-mentioned treatment liquid as long as it can apply tension to the steel plate.

次にレーザービーム照射処理後、限定的に言って板温6
00℃以下で絶縁皮膜処理を行なう処理液としては、リ
ン酸、クロム酸塩の1種又は2種以上を含有する処理液
を主戒分とし、これにコロイダルシリカ、コロイダルア
ルナ、酸化メタン、硼酸化合物の1種又は2種以上を添
加したものがある。
Next, after laser beam irradiation treatment, the plate temperature is 6
The main treatment liquid used to perform insulation coating treatment at temperatures below 00°C is a treatment liquid containing one or more of phosphoric acid and chromate, as well as colloidal silica, colloidal alumina, methane oxide, and boric acid. Some contain one or more compounds added.

その他にクロム酸の還元剤として、多価アルコール、グ
リセリン等の有機化合物、加工性向上のための水溶性、
又はエマルジョン樹脂、高抵抗、加工性向上のため1μ
以上の粒径を有する有機樹脂粉末の如き有機化合物の1
種又は2種以上を含有させることができる。
In addition, as reducing agents for chromic acid, organic compounds such as polyhydric alcohols and glycerin, water-soluble,
Or emulsion resin, high resistance, 1μ for improved workability
1 of an organic compound such as an organic resin powder having a particle size of
A species or two or more species can be included.

この外、案外線照射等による絶縁皮膜形或法も可能であ
る。
In addition to this, it is also possible to form an insulating film by irradiating with unexpected radiation or the like.

以上は主として方向性電磁鋼板の場合について説明した
が、その他無方向性電磁鋼板についても適用できる。
Although the above description has mainly been given to the case of grain-oriented electrical steel sheets, the present invention can also be applied to other non-oriented electrical steel sheets.

次に実施例により説明する。Next, an example will be explained.

実施例 I Si3.O%、C0.003%、Mn 0.0 7 5
%、AlO.03%を含有する一方向性電磁鋼板(
0.3 0m板厚)を次の工程により製造した。
Example I Si3. O%, C0.003%, Mn 0.0 7 5
%, AlO. Unidirectional electrical steel sheet containing 03% (
0.30m plate thickness) was manufactured by the following process.

ホットコイルを1回の冷延一焼鈍後、マグネシャを塗布
乾燥し、コイルに巻取り、1150℃で2次再結晶のた
めの仕上げ高温焼鈍を行ない、その後余剰のマグネシャ
を除去し、グラス皮膜を有する電磁鋼板を得た。
After the hot coil is cold-rolled and annealed once, magnesia is applied and dried, wound into a coil, and final high-temperature annealing is performed at 1150°C for secondary recrystallization, after which excess magnesia is removed and a glass film is formed. A magnetic steel sheet having the following properties was obtained.

このコイルを2分割し、1コイルは850℃X 7 0
secでフラットニングと同時に処理液Aを塗布し焼
付けた。
Divide this coil into two, one coil is 850℃×70
At the same time as flattening, treatment liquid A was applied and baked.

塗布量は4.!11/m”であった(本発明材)。The amount of application is 4. ! 11/m'' (material of the present invention).

他方のコイルは850℃×7 0 secでフラットニ
ングのみを行ない比較材とした。
The other coil was subjected to only flattening at 850° C. for 70 seconds to serve as a comparative material.

この様にして得られた一方向性電磁鋼板から試料を採取
して本発明材については次のB,C処理を行ない、比較
剤についてはD,E,F処理を行なって諸特性の試験を
行なった。
Samples were taken from the unidirectional electrical steel sheet obtained in this way, and the following B and C treatments were applied to the inventive material, and D, E, and F treatments were applied to the comparative material, and various properties were tested. I did it.

本発明材 A処理:フラットニングと同時に張力皮膜を焼?処理:
A処理後にパルス状レーザービーム照射処理 (1) レーザー照射条件 (I) エネルギー密度 =17J/dω 点状痕跡
径 :0.2un (II)点状痕跡C方向中心間距離:0.3mmtV)
痕跡列L方向間隔:5mm C処理二B処理後に絶縁皮膜処理 (1)絶縁皮膜処理 α)処理液 20係コロイダルシリカ 1 0 0 cc50%リ
ン酸アルニウム 6 0 cc無水クロム酸
6g 硼 酸 2g ω 焼付温度(板温) 500,600,700,8
00’C (I[I)塗布量 1 .!li’ /m”比較材 D処理:フラットニングの11 E処理:D処理後にレーザービーム照射処理レーザー照
射条件はB処理に同じ F処理:E処理後に絶縁皮膜処理 絶縁皮膜処理液、焼付温度はC処理と 同じ、塗布量は3 g /m” 上記の如く実施した結果を第1表に示す。
Invention material A treatment: Burning the tension film at the same time as flattening? process:
Pulsed laser beam irradiation treatment after A treatment (1) Laser irradiation conditions (I) Energy density = 17 J/dω Point-like trace diameter: 0.2 un (II) Center-to-center distance of dot-like marks in C direction: 0.3 mmtV)
Interval in trace row L direction: 5 mm Insulating coating treatment after C treatment 2 B treatment (1) Insulating coating treatment α) Treatment liquid 20 colloidal silica 1 00 cc 50% aluminum phosphate 6 0 cc chromic anhydride
6g Boric acid 2g ω Baking temperature (board temperature) 500,600,700,8
00'C (I[I) Application amount 1. ! li'/m" Comparative material D treatment: 11 flattening E treatment: Laser beam irradiation treatment after D treatment Laser irradiation conditions are the same as B treatment F treatment: Insulation coating treatment after E treatment Insulation coating treatment solution, baking temperature is C Same as treatment, coating amount was 3 g/m''. Table 1 shows the results carried out as described above.

実施例 2 実施例1と同じ試料を用いて、次の処理を行なって諸特
性の試験を行なった。
Example 2 Using the same sample as in Example 1, the following treatments were performed and various characteristics were tested.

本発明材 A処理:実施例1のA処理(フラットニングと同時に張
力皮膜ヲ暁付けたもの) G処理二A処理後に連続レーザービーム照射(1)レー
ザー照射条件 α) パワー :2.OW ω 照射痕巾 :0.2mm ■)痕跡列L方向間隔: 5mm ■)照射スピード :200mm/秒 H処理二〇処理後に絶縁皮膜処理 α)処理液はC処理と同じ 卸 焼付温度500’C(板温) ([I)塗布量 0. 8 g/m” 比較材 D処理:実施例1のD処理(フラットニングの渣ま) ■処理:D処理後に連続レーザービーム照射(I)
レーザー照射条件 C処理に同じ K処理:■処理後に絶縁皮膜処理 処理液、焼付温度はH処理と同じ 塗布量 3 .9 /m” 上記の如〈実施した結果を第2表に示す。
Invention material A treatment: A treatment of Example 1 (flattening and applying a tension film at the same time) G treatment 2 Continuous laser beam irradiation after A treatment (1) Laser irradiation conditions α) Power: 2. OW ω Irradiation trace width: 0.2mm ■) Interval between trace rows in the L direction: 5mm ■) Irradiation speed: 200mm/sec H treatment 20 Insulation film treatment after treatment α) Treatment liquid is the same as C treatment Baking temperature 500'C (Plate temperature) ([I) Application amount 0. 8 g/m” Comparative material D treatment: D treatment of Example 1 (residue of flattening) ■Treatment: Continuous laser beam irradiation (I) after D treatment
Laser irradiation conditions Same K treatment as C treatment: ■ After treatment, insulating coating treatment solution, baking temperature, same coating amount as H treatment 3. 9/m'' The results of the above tests are shown in Table 2.

第1表及び第2表から明らかな如く、フラットニングと
同様に張力皮膜を焼付けたものはフラットニングのみの
場合に比べて鉄損の良好なものが得られ、更にこれりの
両材料にレーザービーム照射すると本発明の張力皮膜を
有する電磁鋼板の方がより大きな鉄損の向上が得られ、
更に600℃以下で絶縁皮膜を焼付けることにより、レ
ーザービーム照射効果を保持した渣1充分な絶縁性が得
られるものである。
As is clear from Tables 1 and 2, materials with a tensile coating baked in the same way as flattening can have better iron loss than flattening alone, and furthermore, both materials When irradiated with a beam, the electrical steel sheet with the tension coating of the present invention has a greater improvement in core loss.
Furthermore, by baking the insulating film at a temperature of 600° C. or lower, sufficient insulation properties can be obtained in the residue 1 while maintaining the laser beam irradiation effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鉄損向上に及ぼす張力皮膜とレーザービーム照
射の影響を示す図、第2図a”−dは鋼板の磁区構造を
示す走査型電子顕微鏡写真図、第3図は絶縁皮膜焼付け
温度と鉄損との関係を示す図である。
Figure 1 is a diagram showing the effects of tension coating and laser beam irradiation on iron loss improvement, Figure 2 a''-d are scanning electron micrographs showing the magnetic domain structure of the steel sheet, and Figure 3 is the insulation coating baking temperature. FIG. 3 is a diagram showing the relationship between iron loss and iron loss.

Claims (1)

【特許請求の範囲】 1 電磁鋼板の表面に張力皮膜を形成し、その上からレ
ーザービーム照射処理してレーザー照射痕を生じさせ、
しかるのち絶縁皮膜処理をレーザービーム照射効果が消
失しない温蜜領域でおこなうことを特徴とする電磁鋼板
の処理方法。 2 絶縁皮膜処理を、板温が600℃を越えない温度領
域でおこなう特許請求の範囲第1項記載の方法。
[Claims] 1. Forming a tension film on the surface of an electromagnetic steel sheet and irradiating it with a laser beam to create laser irradiation marks,
A method for treating an electrical steel sheet, characterized in that the insulation coating treatment is then performed in a warm region where the laser beam irradiation effect does not disappear. 2. The method according to claim 1, wherein the insulation coating treatment is performed in a temperature range where the board temperature does not exceed 600°C.
JP56035962A 1982-03-09 1982-03-09 Processing method for electrical steel sheets Expired JPS5836051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56035962A JPS5836051B2 (en) 1982-03-09 1982-03-09 Processing method for electrical steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56035962A JPS5836051B2 (en) 1982-03-09 1982-03-09 Processing method for electrical steel sheets

Publications (2)

Publication Number Publication Date
JPS57152423A JPS57152423A (en) 1982-09-20
JPS5836051B2 true JPS5836051B2 (en) 1983-08-06

Family

ID=53433326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56035962A Expired JPS5836051B2 (en) 1982-03-09 1982-03-09 Processing method for electrical steel sheets

Country Status (1)

Country Link
JP (1) JPS5836051B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013099272A1 (en) * 2011-12-28 2015-04-30 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535218A (en) * 1982-10-20 1985-08-13 Westinghouse Electric Corp. Laser scribing apparatus and process for using
JPH0740527B2 (en) * 1984-09-21 1995-05-01 新日本製鐵株式会社 Directional electrical steel sheet subjected to magnetic domain control treatment and method of manufacturing the same
JPS61117285A (en) * 1984-11-13 1986-06-04 Kawasaki Steel Corp Production of low-iron loss grain-oriented silicon steel sheet
JP2694941B2 (en) * 1985-05-02 1997-12-24 新日本製鐵株式会社 Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH0768580B2 (en) * 1988-02-16 1995-07-26 新日本製鐵株式会社 High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JP4598321B2 (en) * 2001-07-26 2010-12-15 新日本製鐵株式会社 Oriented electrical steel sheet with excellent magnetic properties
KR101570018B1 (en) * 2011-12-28 2015-11-17 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
RU2661696C1 (en) * 2014-10-23 2018-07-19 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electric steel plates and method of its manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013099272A1 (en) * 2011-12-28 2015-04-30 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPS57152423A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
JP7245285B2 (en) Grain-oriented electrical steel sheet and its magnetic domain refinement method
US4363677A (en) Method for treating an electromagnetic steel sheet and an electromagnetic steel sheet having marks of laser-beam irradiation on its surface
WO2017111555A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
KR102133909B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JPS6342332A (en) Production of low iron loss grain oriented electrical steel sheet
JPS5836051B2 (en) Processing method for electrical steel sheets
CN114829639B (en) Oriented electrical steel sheet and method for refining magnetic domains thereof
JPS59197525A (en) Preparation of directional electromagnetic steel plate
JPS5850298B2 (en) Processing method for electrical steel sheets
JPS5836053B2 (en) Processing method for electrical steel sheets
WO2023195470A9 (en) Oriented electromagnetic steel sheet and method for producing same
JPS6046325A (en) Treatment of electromagnetic steel plate
JP7365416B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPS61139679A (en) Production of grain oriented electrical steel sheet having low iron loss
JPS5850297B2 (en) Electrical steel sheet with excellent magnetic properties
US12051529B2 (en) Oriented electrical steel sheet and method for producing same
JPS5836052B2 (en) Processing method for electrical steel sheets
WO2024063163A1 (en) Grain-oriented electrical steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH03260022A (en) Method for radiating linear eb
KR20240158289A (en) Directional electrical steel sheet and method for manufacturing the same
KR20240158292A (en) Directional electrical steel sheet and method for manufacturing the same
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
JPH04214819A (en) Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet