JPS5836909A - Continuous manufacture of si3n4 type substance - Google Patents
Continuous manufacture of si3n4 type substanceInfo
- Publication number
- JPS5836909A JPS5836909A JP56133397A JP13339781A JPS5836909A JP S5836909 A JPS5836909 A JP S5836909A JP 56133397 A JP56133397 A JP 56133397A JP 13339781 A JP13339781 A JP 13339781A JP S5836909 A JPS5836909 A JP S5836909A
- Authority
- JP
- Japan
- Prior art keywords
- pellets
- sio
- carbon
- si3n4
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/068—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
- C01B21/0685—Preparation by carboreductive nitridation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は5in2含有原料、例えばケイ石、ケイ砂、ジ
ルコン石、ムライト等よ#)SIの窒化物或はこれを含
む複合物質(Si3N、系物質)を連続的に製造する方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention continuously processes 5in2 containing raw materials such as silica stone, silica sand, zirconite, mullite, etc. It relates to a manufacturing method.
5102含有原料、例えばケイ石粉末に炭嶽粉末を混合
し、ペレットにして、窒素ガスを吹込みながら加熱して
Si3・N4を製造することは公知である。この場合、
その生産性を上げるためには連続法が用いられる。連続
法で使用される反応炉は一般に竪型で黒鉛等の円筒容器
を用い、その外側に発熱体を備え、原料は円筒の上部よ
り供給し、中央部で加熱反応させ、下部よシ生成物を取
り出す方式である。N2ガスは円筒の上部或は下部より
吹込まれ、円筒内を流れ、反応に供される。通常、装入
物は自重によシ自然落下するので反応時間等の制御は生
成物の取シ出し速度によって行なわれる。It is known to produce Si3.N4 by mixing 5102-containing raw materials, such as silica powder, with coal powder, making pellets, and heating the pellets while blowing nitrogen gas. in this case,
A continuous method is used to increase productivity. The reactor used in the continuous method is generally vertical and uses a cylindrical container made of graphite or the like, and is equipped with a heating element on the outside.The raw materials are supplied from the top of the cylinder, heated and reacted in the center, and the product is removed from the bottom. This is a method to extract the . N2 gas is blown into the cylinder from the top or bottom, flows inside the cylinder, and is subjected to a reaction. Since the charge normally falls down due to its own weight, the reaction time etc. are controlled by the rate at which the product is taken out.
本発明者はこの連続法について研究した結果、最も問題
となる点として、ペレットよシ気体のシリコン酸化物(
以下SiOガスという)が副次的に逸出し、これが炉内
の低温部で5i3N、、 5io2等種々の化合物の形
でペレットの表面、或−はペレット間に凝縮し、ペレッ
ト同志を固着させたり、またベレット間の目詰シを起し
、ガスの通過を妨げ、また炉内の原料の円滑な流れを妨
げることを発見した。このSiOガスの発生は避けると
とができず、これが連続製゛造における最大の障害であ
ることがわかった。このことは8i0*含有原料とCの
反応に共通の問題であり、SiO□にZrO,、、M、
、03等が共存している原料についても同様である。As a result of research on this continuous method, the present inventor found that the most problematic point was that the pellets and gaseous silicon oxide (
SiO gas (hereinafter referred to as SiO gas) escapes as a side, and this condenses in the form of various compounds such as 5i3N, 5io2, etc. on the surface of the pellets or between the pellets, causing the pellets to stick together. It was also discovered that clogging occurred between the pellets, preventing the passage of gas and preventing the smooth flow of raw materials within the furnace. The generation of this SiO gas cannot be avoided, and it has been found that this is the biggest obstacle in continuous manufacturing. This is a common problem in the reaction between 8i0*-containing raw materials and C, and SiO□ has ZrO,..., M,
The same applies to raw materials in which , 03, etc. coexist.
本発明はこのような事情のもとに開発した方法で、その
特徴は上記副次的にペレット外に発生したSiOガスを
ペレット間に配置した粒状炭材で吸収反応させることに
より固定し、低温部のペレットの周囲で析出するのを防
止したことにある。The present invention is a method developed under these circumstances, and its characteristics are that the SiO gas generated outside the pellets is fixed by absorption and reaction with the granular carbon material placed between the pellets, and the SiO gas is fixed at a low temperature. This is because it prevents precipitation around the pellets.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
原料は5in2を含有するものであれば、特に制限なく
使用できる。この原料は粉末にして炭素粉末(以下内装
炭という)と混合、ペレットに造粒して用いられる。S
iO2含有原料及び内装炭は反応性をよくするため、及
びペレットの強度を上げるため、44μ以下程度に粉砕
する。内装炭は石炭、コークス、石油コークス、カーボ
ンブラックなど各種のものが使用できる。内装炭の配合
量はS10.含有原料の組成及び反応生成物の組成を考
慮して定める。8i、N、生成反応は次の式による。The raw material can be used without particular restriction as long as it contains 5in2. This raw material is powdered, mixed with carbon powder (hereinafter referred to as internal coal), and granulated into pellets for use. S
The iO2-containing raw material and inner coal are crushed to about 44 microns or less in order to improve the reactivity and increase the strength of the pellets. Various types of internal coal can be used, including coal, coke, petroleum coke, and carbon black. The amount of internal charcoal is S10. It is determined by considering the composition of the raw materials contained and the composition of the reaction product. 8i, N, production reaction is based on the following equation.
従って、ケイ石を原料とする場合はその5I021モル
に対し、2モルのCを配合する。またジルコンサンド(
主としてZr3i04)から5isN、とZrO2の組
成を得たい場合にもジルコンサンド1モルに対し、02
モルを配合する。このC量は化学量論量であるが、これ
を基準に多少のCの増減は必要により行なう。Cを多く
すればペレット外に放出される8i0ガスは少なくなる
が、しかし絶無とすることは出来ない。Therefore, when silica stone is used as a raw material, 2 moles of C are blended for 1 mole of 5I02. Also, zircon sand (
If you want to obtain a composition of 5isN and ZrO2 mainly from Zr3i04), 02
Blend the moles. Although this amount of C is a stoichiometric amount, the amount of C may be increased or decreased to some extent based on this amount as necessary. If the amount of C is increased, the amount of 8i0 gas released outside the pellet will be reduced, but it cannot be completely eliminated.
ペレットの大きさはガスの通気性、反応性等より2fl
〜10m程度が適する。造粒には澱粉、デキストリン、
CMC等の水溶液を1次バインダーとして添加してもよ
い。The pellet size is 2fl due to gas permeability, reactivity, etc.
~10m is suitable. For granulation, starch, dextrin,
An aqueous solution of CMC or the like may be added as a primary binder.
ペレット間に配置される粒状炭材(以下性装炭という)
は本発明の基本をなすもので、これは出来るだけSiO
ガスを吸収し、かつ反応性が大きいものが望ましく、表
面積で表せば100m’/g以上のものである。具体的
には活性炭、木炭、カーボンブラック等が望ましい。粉
末のものけ造粒して用いる。外装炭の大きさはSiOガ
スを効率よく吸収し、かつ操業上支障なくするため、6
〜15s+m程度が適当である。この場合、その大きさ
は原料ペレットとの関連で選択することが望ましい。即
ち、原料ペレット及び外装炭とも反応後、通常そのまま
の形を保持しているので、両者の粒径を異ならしめてお
けば、生成物の分離が容易であるからである。Granular carbon material placed between pellets (hereinafter referred to as carbonization)
is the basis of the present invention, and it is necessary to use as much SiO as possible.
It is desirable to have a material that absorbs gas and has high reactivity, and in terms of surface area, it is 100 m'/g or more. Specifically, activated carbon, charcoal, carbon black, etc. are desirable. It is used by granulating the powder. The size of the outer charcoal is set to 6 to efficiently absorb SiO gas and to avoid any operational problems.
~15s+m is appropriate. In this case, it is desirable to select the size in relation to the raw material pellets. That is, since both the raw material pellets and the outer charcoal usually maintain the same shape after the reaction, if the particle sizes of the two are made different, the products can be easily separated.
外装炭の量は少な過ぎると効果が充分でなく、また多過
ぎることは目的物の生産性が下がることになるので、望
ましい範囲としては原料中のSiO,,1モルに対しC
(固定炭素)として0.1〜15モルである。外装炭と
原料ペレットとはできるだけ一様に分散させるのがよい
。If the amount of outer charcoal is too small, the effect will not be sufficient, and if it is too large, the productivity of the target product will decrease. Therefore, the desirable range is carbon per mole of SiO in the raw material.
(fixed carbon) is 0.1 to 15 mol. It is preferable to disperse the outer charcoal and raw material pellets as uniformly as possible.
これらの原料の加熱反応を連続的に行なうため前記した
ような竪型炉が用いられる。In order to carry out the heating reaction of these raw materials continuously, a vertical furnace as described above is used.
ペレット及び外装炭は反応容器の上部から供給し、容器
内で加熱反応させ、所定の滞留時間を経て、容器の下部
よシ生成物を取シ出すみペレットは乾燥後、容器に供給
することが望ましく、また結晶水を含む原料を使用する
場合はさら、に加熱して結晶水を除去して使用する1の
がよい0
加熱温度は目的とす乙生成物によって適する範囲を選択
するが、例えばSi、N、単味を得るには1350〜1
450℃の範囲が適する。Pellets and outer charcoal are supplied from the top of the reaction vessel, heated and reacted in the vessel, and after a predetermined residence time, the product is taken out from the bottom of the vessel.After drying, the pellets can be supplied to the vessel. Desirably, when using a raw material containing water of crystallization, it is preferable to heat it to remove the water of crystallization before use.The heating temperature should be selected within an appropriate range depending on the desired product, but for example, 1350 to 1 to obtain Si, N, and single components
A range of 450°C is suitable.
反応帯の滞留、時間は上記温度範囲で60〜300分間
が適する。The residence time in the reaction zone is suitably 60 to 300 minutes within the above temperature range.
本発明における反応ではペレットは8i02とCが存在
しているので、加熱によシ中間的ないしは副反応的にS
iOガスが発生する。この大部分はペレット内のC及び
外部より浸透するN2ガスにより窒化物となるが、1部
はペレット外に逸出する。従来法ではこの逸出したSi
Oガスは容器内原料の低温部9ベレット表面あるいはペ
レット間に5i02.5ilN4等となって析出し、ペ
レット同志を固着したり、ペレット層の目詰りを起毛て
ガスの流れを妨げ、それによって操業上のトラブルの原
因となっていた。本発明ではこのSiOガスをペレット
周囲の外装炭に吸収させてそこで反応等により析出固蛍
する。析出物はSiOと01COガス、N2ガス等の反
応生成物で、その組成はこれらの成分の分圧等によって
異なるが、SiC、Si、N4等が主成分と考えられる
。In the reaction of the present invention, since 8i02 and C are present in the pellet, heating causes an intermediate or side reaction of S.
iO gas is generated. Most of this becomes nitride due to C in the pellet and N2 gas permeating from the outside, but a portion escapes to the outside of the pellet. In the conventional method, this escaped Si
O gas precipitates as 5i02.5ilN4 on the pellet surface or between the pellets in the low-temperature part 9 of the raw material in the container, and causes the pellets to stick to each other or clogs the pellet layer and obstructs the gas flow, thereby impeding the operation. This was the cause of the above problem. In the present invention, this SiO gas is absorbed into the outer charcoal surrounding the pellets, where it is precipitated and solidified by a reaction or the like. The precipitate is a reaction product of SiO, CO gas, N2 gas, etc., and its composition varies depending on the partial pressure of these components, but it is thought that SiC, Si, N4, etc. are the main components.
SiOガスは外装炭に吸収されるようにして反応が進む
ので、反応後のSiO被膜を有する外装炭の大きさは被
膜部分も含めて初めの外装炭の大きさとほぼ同一である
。Since the reaction proceeds as the SiO gas is absorbed into the outer charcoal, the size of the outer charcoal having the SiO coating after the reaction is approximately the same as the initial size of the outer charcoal, including the coated portion.
反応は外装炭の表層部から起り、次第に内部まで進行す
るが、通常は外装炭の中心部は炭素の!!ま残るので、
反応後の外装炭は中心部が炭素、その周囲がSiCとな
る。The reaction starts from the surface layer of the outer charcoal and gradually progresses to the inside, but normally the center of the outer charcoal is made of carbon! ! I will remain, so
After the reaction, the outer charcoal has carbon in the center and SiC around it.
このようにペレット外に発生してくるSiOガスを固定
することにより、反応容器内の原料の流れは極めて円滑
となり、連続操業上大きな効果をもたらした。By fixing the SiO gas generated outside the pellets in this way, the flow of raw materials within the reaction vessel became extremely smooth, which had a great effect on continuous operation.
実施例1
ケイ石粉末(5i02> 99チ、44μ下)と石炭コ
ークス粉末(固定炭素99%、 44μ下)とを5in
2とCのモル比を1:2に配合し、少量の澱粉水溶液を
加えて直径4uのペレットに造粒した。これを乾燥後、
約6〜10mg+の活性炭(固定炭素95チ)をSin
、 1モルに対し、Cとして0.5モルの割合で均一に
混合した。これらの配合原料を竪型炉に装入し、炉の下
部よりN2ガスを吹込みながら加熱し、Si3N4を連
続的に製造した。Example 1 Silica stone powder (5i02>99cm, below 44μ) and coal coke powder (fixed carbon 99%, below 44μ) were mixed into 5 inches.
The molar ratio of 2 and C was 1:2, and a small amount of starch aqueous solution was added to form pellets with a diameter of 4u. After drying this,
Approximately 6 to 10 mg of activated carbon (fixed carbon 95%) is added to Sin
, were uniformly mixed at a ratio of 0.5 mol as C per 1 mol. These blended raw materials were charged into a vertical furnace and heated while blowing N2 gas from the bottom of the furnace to continuously produce Si3N4.
竪型炉は黒鉛円筒で内径12crn、反応帯部分の長さ
30cvtで、上部にはシール付原料供給口を設け、下
部には先端に向かって細くなるテーパー状の円筒を取付
けた。その先端はロータリーフィーダーを取付け、ガス
シールしながら生成物が抜き出せるようにした。またテ
ーパー状円筒には周囲に4個のN2ガス吹込みノズルを
取付けた0
反応容器の加熱は容器外に縦に設けた8本の棒状発熱体
に通電することにより行なった。The vertical furnace was a graphite cylinder with an inner diameter of 12 crn and a reaction zone length of 30 cvt, with a raw material supply port with a seal at the top and a tapered cylinder tapered toward the tip at the bottom. A rotary feeder was attached to the tip so that the product could be extracted while being sealed with gas. The tapered cylinder was equipped with four N2 gas injection nozzles around its periphery.Heating of the reaction vessel was carried out by energizing eight rod-shaped heating elements vertically installed outside the vessel.
反応帯の温度は1400〜1450℃、この反応帯での
滞留時間は240分とした。N2ガスの吹込み量は0.
12Nmy分(理論量の5倍量)とした。The temperature of the reaction zone was 1400 to 1450°C, and the residence time in this reaction zone was 240 minutes. The amount of N2 gas blown was 0.
The amount was 12 Nmy (5 times the theoretical amount).
生成物は粒径により容易に分離でき、ペレットの部分は
殆んどがβ−8i、N4であった。また粒状炭材はその
表面に主としてSiOが生成していた。The products could be easily separated by particle size, and the pellets were mostly β-8i and N4. Moreover, SiO was mainly generated on the surface of the granular carbonaceous material.
これらの反応において、全く支障なく連続運転が可能で
あった。Continuous operation was possible in these reactions without any problems.
特許出願人 昭和電工株式会社 代理人菊地精−Patent applicant: Showa Denko Co., Ltd. Agent Sei Kikuchi
Claims (1)
成形し、このペレットに粒状炭材を配合して竪型反応炉
の上部よシ供給し、該反応炉にN2ガスを送入しながら
加熱して8isN4を生成させ、生成物を竪型反応炉の
下部より取り出すことを特徴とするSi3N4系物質の
連続製造法。Carbon powder is mixed with 5in2-containing raw material powder and formed into pellets, granular carbonaceous material is blended with the pellets, and the pellets are fed to the top of a vertical reactor, and heated while feeding N2 gas into the reactor. 1. A method for continuous production of Si3N4-based materials, characterized in that 8isN4 is produced in a vertical reactor, and the product is taken out from the lower part of a vertical reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56133397A JPS5836909A (en) | 1981-08-27 | 1981-08-27 | Continuous manufacture of si3n4 type substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56133397A JPS5836909A (en) | 1981-08-27 | 1981-08-27 | Continuous manufacture of si3n4 type substance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5836909A true JPS5836909A (en) | 1983-03-04 |
Family
ID=15103789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56133397A Pending JPS5836909A (en) | 1981-08-27 | 1981-08-27 | Continuous manufacture of si3n4 type substance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5836909A (en) |
-
1981
- 1981-08-27 JP JP56133397A patent/JPS5836909A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2217674T3 (en) | MANUFACTURING PROCEDURE OF CARBON IRON OXIDE BALLS FOR PRE-REDUCED IRON PRODUCTION. | |
US4529575A (en) | Process for producing ultrafine silicon carbide powder | |
US20090200512A1 (en) | Manufacture and Use of Engineered Carbide and Nitride Composites | |
US5070049A (en) | Starting composition for the production of silicon carbide and method of producing the same | |
CA1310171C (en) | Process for the continuous production of high purity, ultra-fine,aluminum nitride powder by the carbo-nitridization of alumina | |
US2843458A (en) | Process for producing silicon tetrachloride | |
JPS5836909A (en) | Continuous manufacture of si3n4 type substance | |
JPH0535083B2 (en) | ||
JPS5836915A (en) | Continuous manufacture of sic type substance | |
JPS60112610A (en) | Preparation of silicon tetrachloride | |
JPS60235706A (en) | Continuous production of silicon ceramics powder | |
JPS6362449B2 (en) | ||
JPH0138042B2 (en) | ||
JPS5864267A (en) | Sialon continuous manufacture | |
JPH0118005B2 (en) | ||
JP2634451B2 (en) | Method and apparatus for producing fine β-type silicon carbide powder | |
JPH0411485B2 (en) | ||
JPH0135773B2 (en) | ||
JPH0118014B2 (en) | ||
PT97051A (en) | PROCESS FOR THE MANUFACTURE OF A LIGHT CONSTRUCTION MATERIAL | |
JPS5815021A (en) | Simultaneous manufacture of beta-sic and zro2 | |
JPS5860609A (en) | Preparation of high purity sic | |
JPH0483706A (en) | Production of boron nitride | |
JPS6327286B2 (en) | ||
JPS59141411A (en) | Production of ultrafine powder of silicon carbide |