[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5835406A - Configuration measuring method utilizing moire fringes - Google Patents

Configuration measuring method utilizing moire fringes

Info

Publication number
JPS5835406A
JPS5835406A JP13507981A JP13507981A JPS5835406A JP S5835406 A JPS5835406 A JP S5835406A JP 13507981 A JP13507981 A JP 13507981A JP 13507981 A JP13507981 A JP 13507981A JP S5835406 A JPS5835406 A JP S5835406A
Authority
JP
Japan
Prior art keywords
light
grating
lens
mesh
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13507981A
Other languages
Japanese (ja)
Inventor
Tetsuo Sueda
末田 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13507981A priority Critical patent/JPS5835406A/en
Publication of JPS5835406A publication Critical patent/JPS5835406A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make the measurement highly accurate, by moving a projecting grating, and detecting the variation in the amount of light at a point to be measured as the phase of the Moire fringes by using a specified expression. CONSTITUTION:The mesh shaped projecting grating 4 is moved in the surface direction at a constant speed, and light is irradiated from a light source 6 through a condenser lens 5. The transmitted light is projected on a body to be checked 1 through a projecting lens 2. The reflected light is focused on a secondary image pickup element 10 through a focusing lens 3 and a relay lens 9. Its output signal is supplied to an operating circuit 11. A triangular wave is taken out of each position of the mesh and approximated by a sine wave S. A phase standard sine wave S0 is generated through an input and output device 12. The difference phi between S and S0 is computed by using the specified expression. Said computation is executed for every address in the mesh, and the configuration of the object is determined. Therefore, the measurement of the configuration is performed highly accurately.

Description

【発明の詳細な説明】 本発−は、*rvH4による彫状欄j1方渋に調するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is adjusted to the engraving column j1 by *rvH4.

lli来のこの種の装置で紘、#l!膠伺及び受光側の
格子を回定してお番、生じた峰アシIIを!マカメツ等
により受光じ解wm還を行なう方法が多(鋒6れている
。このよう&装置に於いて紘物体の目西の情報が得られ
ないため、解析時にマ墨エアルでその情報を入力する必
lIがあ番などの欠点があった。又、■yj71IIれ
た幡アレ縞だけで情報J&11を行なうために、鵬と縞
の聞−隠れるよう&1mかい116絃多くの場舎検烏が
制御であるという欠点もあった、待に物体の反射率が場
所によって異なる場合には殉んど不11I能であった。
With this kind of device, Hiro, #l! Rotate the grating on the light receiving side and the light receiving side, and the resulting peak reed II! There are many ways to perform light reception and analysis wm return using makametsu etc. (6). Since the information on the west side of the Hiro object cannot be obtained with this type of device, we input that information with makumetsu at the time of analysis. In addition, in order to conduct information J & 11 with only the hatare stripes that were used for yj71 II, there were many 116 strings between Peng and stripes that were hidden and 1m long. Another drawback was that it was difficult to control, and it was impossible to control it if the reflectance of the object varied depending on the location.

本尭−の困的紘、上述の従来例の欠点会論資し、解析#
&履會令なう場合の計算プ冒グツムの簡略化及び一定精
度の高IIIIWIL化會可簡にす尋峰アレ親による膠
状測定方法を提供するととにある。
Hiroshi Motoya's discussion of the drawbacks of the above-mentioned conventional example and analysis #
The purpose of the present invention is to provide a glue measuring method that simplifies the calculation process and enables high III-WIL meetings with constant accuracy when there is no meeting order.

本発−を図示の実施例KIMづいて詳細に脱−する。The present invention will be explained in detail with reference to the illustrated embodiment KIM.

第**に於いて、1は被検物体であり、この被検物体に
対向して投影レンズ!、線像レンズ墨を配置する。投影
レンズ2の後11には、投*S子4、コンデンナレンズ
6、光源6を順次配列す纂、!l影格子4は駆動回路7
からの信4##cll!つて移動し得るようkし、;ン
デンナレンズ5により光源6が投影レンズ2の瞳位置を
照−するようにする。
In No. **, 1 is the object to be tested, and the projection lens is facing the object to be tested! , place line image lens ink. A projection lens 4, a condenser lens 6, and a light source 6 are arranged in sequence behind the projection lens 2. l shadow grating 4 is drive circuit 7
Faith from #4 ##cll! The light source 6 illuminates the pupil position of the projection lens 2 by means of the lens 5.

一方、結像レンズ墨の後部に紘、結像格子・、デレーレ
ンズ9、二次ytass子10會履次配列する。撮像素
子10からの信量紘演算−1111に入力し、演算囲路
11からの出力線前記移動格子40駆動−路7に入力す
る。買に諷算閣1111に練入出力装置12を接続する
。演、算回路11は投影格子4の移動方向及び察動量を
制御し、$動量と撮像素子10からの入力データにより
物体形状を解析する演算機能を有し、入出力装置12は
キーボード等の入力、激び演算結果を表示する機能を持
たせる。
On the other hand, behind the imaging lens ink, there are arranged a grid, an imaging grating, a Delley lens 9, and a secondary ytass lens 10. The signal from the image sensor 10 is input to the confidence calculation circuit 1111, and the output line from the calculation circuit 11 is input to the moving grating 40 drive circuit 7. The training input/output device 12 is then connected to the yakuzakaku 1111. The arithmetic and arithmetic circuit 11 has arithmetic functions that control the movement direction and estimated motion amount of the projection grid 4, and analyzes the shape of the object based on the $motion amount and input data from the image sensor 10. , to have the function of displaying the intense calculation results.

先ず投影格子4が静止している状態を説明する。First, a state in which the projection grating 4 is stationary will be explained.

第imlの被検物体1上に点ムを考え、ムが投影レンズ
2と結像レンズ8に対して共役な点をそれぞれλ′、X
とする。結像格子8を第211に示すように#j!のメ
ツ$/!に区切って考え、メツシュの中で!を會む脣′
地をm8rllK示すようにa(a、m)とする。斜線
部で示すこのaK入射する光量は、にの像がどのような
状態で1に入射す4かkよって異なる。第4a3ピ)は
投影格子4の光を透過しない黒い部分と結像格子8の同
様の黒い部分とが重合した状態を示し、aの光量紘最大
となる。又、第411Th)では格子4の黒い部分と格
子8の光を透過する白い部分とが重合し息の光量紘最低
となり、第41!!(ハ)では格子4の黒い部分と格子
8の白い部分とが半分ずつ重なり会った状態を示し、楓
の崗力巾紘前記2つの場合の中間値となる。
Considering a point M on the iml-th test object 1, the points where M is conjugate to the projection lens 2 and the imaging lens 8 are λ' and X, respectively.
shall be. As shown in the 211th image forming grating 8, #j! Metsu$/! Think about it separately and in the mesh! to meet
Let the ground be a (a, m) as shown by m8rllK. The amount of light incident on this aK shown by the shaded area differs depending on the state in which the image of 4 is incident on 1. 4a3) shows a state in which the black portion of the projection grating 4 that does not transmit light and the similar black portion of the imaging grating 8 are superimposed, and the light amount of a is at its maximum. Also, in the 411th Th), the black part of the grid 4 and the white part of the grid 8 that transmit light overlap, resulting in the lowest amount of light, and the 41st! ! (C) shows a state in which the black part of the grid 4 and the white part of the grid 8 overlap in half, and the value of the maple grid is an intermediate value between the above two cases.

次に#l膠襲子4が**レンズ!に対する角度、即ち空
気開隔を変えることなく格子4の画方崗に一定S駅で移
動する場合を考える。このとIIk格子40一度分布が
、例えば白い部分と黒いlI分になっている所m迩形チ
ャートの場合に練−a m 65&量は第S図に示すよ
うな!角液状Φ周鋼麹な出方となる。第111に於いて
被検物体重上に点ムと同様に点1を定め、結像格子重上
の慮mとの共役点B′を會むb (*’%I)を考え、
このb (m’、d )紘第4図、第6図に示した暑(
麿、1)と同様の伸性な有しているものとする。この状
態でl1jI1111I子4を移動S*ると、点ムと点
1と一閏一平画上にある場會練、得られるa、b(1)
j!量紘@4■に示すように食(岡位棚の光量となる0
点ムと点1とが同−千両内にない場合に紘、a%b@光
量には第7−に示すように健棚11が生ずる。ムム、B
がモアレ縞の1次数間の聞にあるよう&@を僅かな凹凸
差であれば、a%btD出力の値mmm減口■に示すよ
うに4アレ鵬の次数!IK対する点ム、B閏の凹凸の量
を表わすことになる。l!つて畠、bの出力の位相差を
一定することkより点ム、B関の凹凸の量を検出するこ
とが可能である。
Next, #l glue child 4 is ** lens! Let us consider the case of moving to the grid 4 at a constant S station without changing the angle to, that is, the air gap. In this case, the IIk lattice 40 distribution is, for example, a white part and a black lI part, and in the case of a rectangular chart, the quantity is as shown in Figure S! It comes out like a square liquid Φ surrounding steel koji. In the 111th step, set point 1 on the weight of the object to be examined in the same way as point M, and consider b (*'%I) that meets the conjugate point B' with consideration m on the imaging grid weight,
This b (m', d) is shown in Figures 4 and 6.
It is assumed that the material has the same elasticity as 1). In this state, if you move l1jI1111I child 4 S*, you can obtain a, b (1) where the point M and point 1 are located on the plane of the plane.
j! As shown in Ryohiro @ 4■, the eclipse (the amount of light on the
When point 1 and point 1 are not within the same range, a balance 11 occurs at a%b@light quantity as shown in the 7th column. Mmm, B
If &@ is a slight unevenness difference between the first orders of moiré fringes, the value of a%btD output mmm decreases ■ As shown in ■, the order of 4 are! It represents the amount of unevenness of the points and B steps with respect to IK. l! Therefore, by keeping the phase difference between the outputs of Hatake and b constant, it is possible to detect the amount of unevenness of points and B from k.

以上の説明で紘艙像格子6上のa%bの2つの番地の上
での説明であるが、メツV工金IIKついて同様のこと
が云える。jIgtlに対する他の番地について同様な
ことを行ない、連m性を加味して解析すれば物体の形状
を知ることができる。実際に上述の解析を行なうkは、
多大なデーターを鵡還するととになり、解析のための演
算回路11を必畳とする。投影格子4の位置に対する各
メツシュの光量をTVカメラ等の二次元締像素子10で
出力11−譬、格子4の動きに対する各メツシュの光量
変化を検出し、決められた番地に対す番位輯羞を検出し
三次元物体の形状を算出すれkよい、宵、この方接では
jI9■に示すように物体の反射率が異なって44アレ
縞閑の形状が求められ4111点がある。即ち*を置だ
けの鵡運で紘検崗不可簡な橢電を比較的簡単な識算鵡履
で求めることができる。
The above explanation is based on the two addresses a%b on the Kofu image grid 6, but the same can be said about Metsu V Kokin IIK. The shape of the object can be determined by doing the same thing for other addresses for jIgtl and analyzing it taking into account connectivity. k for actually performing the above analysis is
Returning a large amount of data requires an arithmetic circuit 11 for analysis. The light intensity of each mesh with respect to the position of the projection grating 4 is output 11-by a two-dimensional imaging element 10 such as a TV camera, the change in the light intensity of each mesh with respect to the movement of the grating 4 is detected, and the number is adjusted to a predetermined address. The shape of the three-dimensional object can be calculated by detecting the photoresistance.In this direction, the reflectance of the object is different as shown in jI9■, and a shape with 44 stripes is obtained, resulting in 4111 points. In other words, by simply placing *, you can find the power that is difficult to test using relatively simple calculations.

この演算は演算−路11Kmいて次のよう#C行なう、
先ずメツシュの成る場所での幡アレ編の三角波状の出力
wLll!を職り出し、これをIwL液1に近似する。
This operation is carried out as follows with an operation path of 11 km.
First of all, the triangular wave-like output of the Hataare edition at the place where the mesh is formed lol! This is approximated to IwL liquid 1.

ここで1隼となる液長が閏じf:髄液−を演算■路1−
2内に尭IILさ着て、この1歓波りと各メツシュの峰
アレ編から幽力害れJIIIL強液−との位s11φを
検出する。゛基準となるI歓りn&の1周期をN分割(
Nは2IllIDII数で鳳〉1とする)し、その−一
軸を同期S曹て儒号液畠の出力音N分割する。モの分割
審れた各区間の平均的なl11度をro。
Here, the fluid length that is 1 falcon is the leap f: Calculate the cerebrospinal fluid -■Route 1-
2, the s11φ of the JIIIL strong fluid is detected from this one wave and the peaks of each mesh.゛Divide one period of I joy n & which is the standard into N (
N is a number of 2IllIDII (Otori>1), and the -1 axis is divided into N output sounds of the synchronized S and Yugo liquid fields. The average l11 degree of each section of the mo was divided into ro.

Pl、 Pxs ・・・PH−1とする。薦1011m
以上の方法を説−したものであり、N−4の場合を示し
ている。このときの位相ill線法のように一般的に示
すことができる。
Pl, Pxs...PH-1. Recommended 1011m
The above method is explained, and the case of N-4 is shown. In this case, it can be generally expressed as the phase ill-ray method.

即ち、N諺4の場合に猿、 φwaa m−’ ((Pg−Pl) / (Po−I
’s ) ) となる。
That is, in the case of N proverb 4, the monkey, φwaa m-' ((Pg-Pl) / (Po-I
's)) becomes.

この計算を各メツシュの誉亀についてlII腫し発生s
4にたjE値掖液からの各書地の位楕羞を算出する。そ
して峰アレ縞による物体形状線法のように表わすことが
できる。
This calculation is performed for each metshu's honor turtle, and the occurrence is
4. Calculate the positional deviation of each writing place from the jE value calculation. Then, it can be expressed like an object shape line method using peak-area fringes.

4=d(d−f)−11−(1/ (f−I、−(1−
f)−N−p )ここで第11閣に示すようKへは基準
位置からの篭アレ縞の各次数mlLでの長さ、4減投影
レンズ!及び結像レンズiから基準位置までの長審、L
は投影レンズ2と結像レンズとの間隔、fm*影レンズ
2.結像レンズ墨の焦点距離、tは格子ピッチをそれぞ
れ表わすものとす養、又、基準位置の位相なφとし、各
メツシュの位榴曹を前記令γν騎のll#IWI#ij
C七の違纏性を考慮し、物体形状を演算するととも可能
である。このときは幡アレ鱗の鵬聞の位相Il紘墨40
’とする。
4=d(d-f)-11-(1/(f-I,-(1-
f)-N-p) Here, as shown in the 11th cabinet, to K is the length of each order mlL of the basket array fringes from the reference position, 4 subtraction projection lens! and the chief judge from the imaging lens i to the reference position, L
is the distance between the projection lens 2 and the imaging lens, fm*shadow lens 2. Let the focal length of the imaging lens ink, t, represent the grating pitch, and φ, the phase of the reference position.
It is possible to calculate the shape of the object by considering the irregularity of C7. At this time, the phase of the scale of Hataare Il Hiroboku 40
'.

結像格子6のメツシュの大き1Fは撮像素子10或いは
演算回路11により決められ、その鳴子直角方向につい
ては、格子の1周期の長Sを1単欽としてその葺歇倍で
あればよく、格子方向についての長専の#I41II紘
ない、上述のIII麹例に警いて紘、移動$−する格子
を投*S子4としたが、all襲子4を固定し、結像格
子8を参勤害せて4食(同機の効果を得る。投影格子4
と結像格子・とを岡暗に逆方向に移動しても同じ効果が
あり、この鳴舎各格子4,8の移動alleを異なるも
のkすると。
The size 1F of the mesh of the imaging grating 6 is determined by the image sensor 10 or the arithmetic circuit 11, and regarding the direction perpendicular to the naruko, it is sufficient that the length S of one period of the grating is 1 yen, and the mesh size 1F of the lattice 6 is determined by the size 1F of the mesh. Regarding the direction, #I41II Hiro of the Chosen, being careful of the above-mentioned III Koji example, Hiro set the moving grid to *S 4, but fixed all the lattices 4 and fixed the imaging grid 8. A total of 4 meals (obtains the same effect. Projection grid 4
The same effect can be obtained even if the and imaging gratings are moved in the opposite direction, and if the movements of the respective gratings 4 and 8 are different.

メツV3−の大きさに制限はなくなり、小宴くしてもよ
いととKなる。結像格子6を移動する場舎に光学的な格
子を用いず諷算崎K111表して格子を電気信置で発生
しても同じ効果をlIることがで参る。
There are no restrictions on the size of Metsu V3-, and K says it's okay to have a small feast. The same effect can be obtained even if an optical grating is not used for moving the imaging grating 6, and the grating is generated by an electric transmitter.

以上説−したように本員−に係る噌アvlaKよる形状
調定方法は、4アレ編を移動専昔、番場所の位相を求め
るととkよる制電を行なうので、従来の方法で紘検出不
η龍でありたatかな116が高い精IIL″?求めら
れ、しかも物体金員に対する履標を求めることが可能と
なる。又、反射率が物体中で異な為場舎Kj1いても正
確な情報を求めることが容1であり、格子の移動方向に
より物体の凹凸の方向の判別が自動的になし得る。
As explained above, the method of shape adjustment using the A vlaK according to the present author is based on the method of adjusting the shape using the 4-array version. It is possible to obtain a high precision IIL"?, which was a detection error, and it is also possible to obtain a track record for the object. Also, since the reflectance varies among objects, it is accurate even if the location is Kj1. The first step is to obtain such information, and the direction of the unevenness of the object can be automatically determined based on the moving direction of the grid.

【図面の簡単な説明】[Brief explanation of drawings]

第1IIは本発−に係る峰アレ縞による形状測定方法を
実施するための装置の構成−の一実施例であ為、また菖
2rlA〜篇10図は零発−の原息を説―するための説
@図、第11−線光学系の配置図である。 符4#1に&被検物体、2は投影レンズv a結像レン
ズ、4は投影格子、墨はツンデンナレンズ、6は光源、
7は鳳動鴎路、8は結像格子、9はリレーレンズ、1G
は撮像素子、1N!演算回路、12は入出力装置である
。 特許出願人      キャノン株式幽社第16 1113閣 G(n、m) 1411 1s5■ 鯵η− 1111閣
Part 1II is an example of the configuration of a device for carrying out the shape measurement method using peak array fringes according to the present invention, and Fig. 10 of the Iris 2rlA~ edition explains the origin of the Zero Derivation. Fig. 11 is a layout diagram of the 11th line optical system. Mark 4 #1 & test object, 2 is projection lens v a imaging lens, 4 is projection grating, ink is Tsundenna lens, 6 is light source,
7 is Houdou Omoji, 8 is an imaging grating, 9 is a relay lens, 1G
is the image sensor, 1N! The arithmetic circuit 12 is an input/output device. Patent Applicant: Canon Co., Ltd. Yusha No. 16 1113 Kaku G (n, m) 1411 1s5 ■ Horsetail η- 1111 Kaku

Claims (1)

【特許請求の範囲】 t  aS格子を移動薯着て被mm点の光量変化な幡ア
レ編の位相として検烏するeとにより、被検物体の形状
をlII意す為格子毅影履噌アレ縞欄電方渋11cjl
いて、前記光量変化を位相に変換する一k。 但し、N線投影格子の一周期分の挙動量の等分数、 r番投mm子の前記NK*応した位 置MKmllする被**点e47し縞によって変調され
た光量。 一#を位置、 な4武を層い尋ことを特徴とする篭アレIIKよる膠状
11jI!方法。
[Claims] By moving the t aS grating and detecting the change in light intensity at the point to be measured as the phase of the lattice array, the grating is used to detect the shape of the object to be inspected. Shimaran Denkata Shibu 11cjl
and converting the light amount change into a phase. However, the equal fraction of the amount of behavior for one period of the N-ray projection grating is the amount of light modulated by the fringe at the point e47 at the position MKmll corresponding to the NK* of the r-th projection mm. Glue-like 11jI by Kago Are IIK, which is characterized by positioning 1 # and layering 4 martial arts! Method.
JP13507981A 1981-08-28 1981-08-28 Configuration measuring method utilizing moire fringes Pending JPS5835406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13507981A JPS5835406A (en) 1981-08-28 1981-08-28 Configuration measuring method utilizing moire fringes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13507981A JPS5835406A (en) 1981-08-28 1981-08-28 Configuration measuring method utilizing moire fringes

Publications (1)

Publication Number Publication Date
JPS5835406A true JPS5835406A (en) 1983-03-02

Family

ID=15143341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13507981A Pending JPS5835406A (en) 1981-08-28 1981-08-28 Configuration measuring method utilizing moire fringes

Country Status (1)

Country Link
JP (1) JPS5835406A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2591329A1 (en) * 1985-12-10 1987-06-12 Canon Kk APPARATUS AND METHOD FOR PROCESSING THREE-DIMENSIONAL INFORMATION
US4988886A (en) * 1989-04-06 1991-01-29 Eastman Kodak Company Moire distance measurement method and apparatus
US5075560A (en) * 1990-09-20 1991-12-24 Eastman Kodak Company Moire distance measurements using a grating printed on or attached to a surface
US5075562A (en) * 1990-09-20 1991-12-24 Eastman Kodak Company Method and apparatus for absolute Moire distance measurements using a grating printed on or attached to a surface
EP2051042A1 (en) * 2007-10-18 2009-04-22 MHT Optic Research AG Device for tomographically recording objects
CN113237437A (en) * 2021-06-02 2021-08-10 苏州大学 Structured light three-dimensional shape measuring method and device based on phase coding element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2591329A1 (en) * 1985-12-10 1987-06-12 Canon Kk APPARATUS AND METHOD FOR PROCESSING THREE-DIMENSIONAL INFORMATION
US4988886A (en) * 1989-04-06 1991-01-29 Eastman Kodak Company Moire distance measurement method and apparatus
US5075560A (en) * 1990-09-20 1991-12-24 Eastman Kodak Company Moire distance measurements using a grating printed on or attached to a surface
US5075562A (en) * 1990-09-20 1991-12-24 Eastman Kodak Company Method and apparatus for absolute Moire distance measurements using a grating printed on or attached to a surface
EP2051042A1 (en) * 2007-10-18 2009-04-22 MHT Optic Research AG Device for tomographically recording objects
JP2009098146A (en) * 2007-10-18 2009-05-07 Mht Optic Research Ag System for tomographic scanning objects
CN113237437A (en) * 2021-06-02 2021-08-10 苏州大学 Structured light three-dimensional shape measuring method and device based on phase coding element
CN113237437B (en) * 2021-06-02 2023-11-10 苏州大学 Structured light three-dimensional morphology measurement method and device based on phase coding element

Similar Documents

Publication Publication Date Title
US5289264A (en) Method and apparatus for ascertaining the absolute coordinates of an object
JPH05502732A (en) Method and apparatus for measuring absolute moiré distance
CA2048358A1 (en) Field shift moire system
US5410397A (en) Method and apparatus for holographic wavefront diagnostics
JP3435019B2 (en) Lens characteristic measuring device and lens characteristic measuring method
US5018803A (en) Three-dimensional volumetric sensor
JPH10288578A (en) Particle measuring device and its calibration method
JPS5835406A (en) Configuration measuring method utilizing moire fringes
RU2148793C1 (en) Process measuring form and spatial position of surface of object
EP1485678B1 (en) Chromatic diffraction range finder
US4113388A (en) Optical apparatus for determining relative positioning of two members
US4231662A (en) Phase shift correction for displacement measuring systems using quadrature
US4678324A (en) Range finding by diffraction
US4395123A (en) Interferometric angle monitor
US4830443A (en) Three-dimensional volumetric sensor
EP0343158B1 (en) Range finding by diffraction
JPH05502731A (en) Moiré distance measurement method and apparatus using a grid printed or attached on a surface
WO2020170382A1 (en) Surface position detecting device, exposure apparatus, substrate processing system and device manufacturing method
EP0553181A1 (en) Position fixing.
JPH09505150A (en) Right angle encoder
EP0331353A2 (en) Detecting change in location of a moving source of electromagnetic radiation
JPH08320205A (en) Evaluation apparatus for interference fringes and inspection method of diffraction interference optical system employing the apparatus
JP2546317B2 (en) Alignment device
US7161684B2 (en) Apparatus for optical system coherence testing
JPS6126005B2 (en)