[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5833500Y2 - air conditioner - Google Patents

air conditioner

Info

Publication number
JPS5833500Y2
JPS5833500Y2 JP1975023532U JP2353275U JPS5833500Y2 JP S5833500 Y2 JPS5833500 Y2 JP S5833500Y2 JP 1975023532 U JP1975023532 U JP 1975023532U JP 2353275 U JP2353275 U JP 2353275U JP S5833500 Y2 JPS5833500 Y2 JP S5833500Y2
Authority
JP
Japan
Prior art keywords
gas
compressor
liquid separator
refrigeration cycle
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1975023532U
Other languages
Japanese (ja)
Other versions
JPS51104459U (en
Inventor
健児 梅津
豊 岩堀
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP1975023532U priority Critical patent/JPS5833500Y2/en
Publication of JPS51104459U publication Critical patent/JPS51104459U/ja
Application granted granted Critical
Publication of JPS5833500Y2 publication Critical patent/JPS5833500Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、冷暖房運転可能なヒートポンプ式の空気調和
装置に係り、特に暖房運転に対する冷凍サイクルの改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type air conditioner capable of heating and cooling operation, and particularly relates to improvement of a refrigeration cycle for heating operation.

近時、スイッチを切換えるのみで冷房運転と暖房運転と
が行えるヒートポンプ式の空気調和装置が多用される傾
向にある。
BACKGROUND ART In recent years, heat pump type air conditioners, which can perform cooling operation and heating operation simply by switching a switch, have been increasingly used.

日本の一般的な気候(例えば冬0°C夏30″C)では
、冷暖能力比は、冷房能力を1とすれば暖房能力は1.
5程度必要とされる。
In Japan's general climate (for example, 0°C in winter and 30"C in summer), the cooling/heating capacity ratio is: cooling capacity is 1, heating capacity is 1.
Approximately 5 is required.

ところが能力を可変しない圧縮機を使用した場合には、
一般に上記した冷暖能力比は、冷凍サイクル設計上冷房
能力1に対して暖房能力は1.2程度しかとれず圧縮機
の能力を冷房能力に合わせると暖房能力が不足する。
However, when using a compressor whose capacity is not variable,
Generally, the above-mentioned cooling/heating capacity ratio is such that the heating capacity is only about 1.2 for the cooling capacity of 1 due to the design of the refrigeration cycle, and if the capacity of the compressor is matched to the cooling capacity, the heating capacity will be insufficient.

逆に圧縮機の能力を暖房能力に合せると今度は冷房作用
時に圧縮機の能力が上り過ぎ、いわゆる冷え過ぎとなり
かえって身体に悪影響を与えるばかりでなく、0NOF
F作用にともなう電力のロス、急撃な0NOFF作用に
ともなう起動時の衝撃により圧縮機の耐久性が低下する
などの不都合がある0また、暖房能力の不足を補うため
に従来補助電熱装置を使用した装置が多い。
On the other hand, if you match the capacity of the compressor to the heating capacity, the capacity of the compressor will increase too much during the cooling operation, which will not only cause you to get too cold, but will also have a negative impact on your body, as well as 0NOF.
There are inconveniences such as loss of power due to F action and reduced durability of the compressor due to shock at startup due to sudden NOFF action.In addition, conventional auxiliary electric heating equipment is used to compensate for the lack of heating capacity. There are many devices that have

この場合は比較的小能力の圧縮機でよいので冷房時の効
率は問題ないが、暖房時補助電熱装置により入力、電流
が増加し、電源容量を大きくする必要があり、安全装置
その仕付ずいする部品が多く、装置の大形化も避けられ
ない。
In this case, a relatively small-capacity compressor is sufficient, so there is no problem with efficiency during cooling, but when heating, the input and current increase due to the auxiliary electric heating device, and the power supply capacity must be increased, and safety devices must be installed. There are many parts that need to be replaced, and it is inevitable that the equipment will become larger.

さらに熱効率的にみれば、補助電熱装置のそれを1とす
ると、冷凍サイクルのものでは2〜2.5もあり暖房時
の補助電熱装置の使用は冷凍サイクルのものに比較して
熱効率的にも悪い。
Furthermore, in terms of thermal efficiency, if the value of the auxiliary electric heating device is 1, that of the refrigeration cycle is 2 to 2.5, so the use of the auxiliary electric heating device during heating has a lower thermal efficiency than that of the refrigeration cycle. bad.

そこで暖房能力が増大するよう暖房時気液分離器で分離
されたガス冷媒を圧縮機の圧縮行程中シリンダ内に導く
ガスインジェクション方式を採用することが考えられる
Therefore, in order to increase the heating capacity, it may be possible to adopt a gas injection method in which the gas refrigerant separated by the gas-liquid separator during heating is introduced into the cylinder during the compression stroke of the compressor.

しかしながら上記ガスインジェクション方式によれば圧
縮機の仕事量が大であることから、特に暖房過負荷時に
は、圧縮機の吐出温度が上昇し圧縮機のモータを過熱し
モータコイルの焼損をきたすという欠点があった。
However, according to the above-mentioned gas injection method, since the amount of work of the compressor is large, the discharge temperature of the compressor rises, especially during heating overload, and the compressor motor overheats, resulting in burnout of the motor coil. there were.

本考案は上記事情にもとづきなされたものであり、その
目的とするところは、暖房能力の増大を図るため暖房時
気液分離器で分離されたガス冷媒を圧縮機の圧縮行程中
のシリンダ内に導くガスインジェクション方式を採用す
ると共に暖房過負荷時圧縮機を過熱させることを防止す
るようにした空気調和装置を提供しようとするものであ
る。
The present invention was developed based on the above circumstances, and its purpose is to transfer gas refrigerant separated by a gas-liquid separator during heating into a cylinder during the compression stroke of a compressor in order to increase heating capacity. The purpose of the present invention is to provide an air conditioner that employs a gas injection method and that prevents a compressor from overheating during heating overload.

以下本考案の一実施例を図面にもとづいて説明する。An embodiment of the present invention will be described below based on the drawings.

第1図は冷凍サイクルの構成を示すものであり、図中1
は圧縮機、2は四方弁、3は室外側熱交換器、4は逆止
弁、5は気液分離器、6は減圧装置であるところのキャ
ピラリチューブ、7は室内側熱交換器であり、これらは
上記番号順に冷媒管を介して連通され、ヒートポンプ式
の冷凍サイクルを構成している。
Figure 1 shows the configuration of the refrigeration cycle.
is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a check valve, 5 is a gas-liquid separator, 6 is a capillary tube which is a pressure reducing device, and 7 is an indoor heat exchanger. , these are communicated via refrigerant pipes in the above numerical order to constitute a heat pump type refrigeration cycle.

また逆止弁4と気液分離器5との間には分岐具8が設け
られている。
Further, a branching device 8 is provided between the check valve 4 and the gas-liquid separator 5.

8aは気液分離器5で分離された液冷媒導入管で、液冷
媒導入管8aは補助膨張弁9を介して導通管10で接続
されている。
8a is a liquid refrigerant introduction pipe separated by the gas-liquid separator 5, and the liquid refrigerant introduction pipe 8a is connected via an auxiliary expansion valve 9 to a conduction pipe 10.

さらに、8bは気液分離器5で分離されたガス冷媒導入
管でガス冷媒導入管8bには後述するガスインジェクシ
ョン回路11が設けられている。
Further, reference numeral 8b denotes a gas refrigerant introduction pipe separated by the gas-liquid separator 5, and the gas refrigerant introduction pipe 8b is provided with a gas injection circuit 11, which will be described later.

すなわち、このガスインジェクション回路11は気液分
離器5で分離されたガス冷媒を圧縮機1の圧縮行程のシ
リンダ内に導ひくもので一端部をガス冷媒導入管8bに
接続し、中途部に暖房運転時圧縮機1の吐出側温度を感
知する感熱部12aを備え、かつこれが所定温度以上を
感知した場合外気温が高い場合等の暖房過負荷時に閉成
し、常時は開放する電磁開閉弁12を設け、他端部を圧
縮機1の図示しないシリンダに連通ずるガスインジェク
ション管13からなる。
That is, this gas injection circuit 11 introduces the gas refrigerant separated by the gas-liquid separator 5 into the cylinder of the compression stroke of the compressor 1, and one end is connected to the gas refrigerant introduction pipe 8b, and a heating An electromagnetic opening/closing valve 12 is provided with a heat sensing part 12a that senses the discharge side temperature of the compressor 1 during operation, and when this senses a predetermined temperature or higher, it closes during heating overload such as when the outside temperature is high, and is normally open. A gas injection pipe 13 is provided, and the other end thereof communicates with a cylinder (not shown) of the compressor 1.

なお一般に圧縮機の負荷が高くなれば、結果として圧縮
機の吐出温度が高くなる関係を有し、暖房過負荷検知手
段として圧縮機の吐出温度、外気温を検知したものであ
る。
Generally, as the load on the compressor increases, the discharge temperature of the compressor increases as a result, and the heating overload detection means detects the discharge temperature of the compressor and the outside air temperature.

又、外気温が高くなれば圧縮機の吸い込み圧力も高くな
り圧縮機の負荷も高くなる。
Furthermore, as the outside temperature increases, the suction pressure of the compressor also increases, and the load on the compressor also increases.

つぎに上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

はじめに冷房運転について説明すると、圧縮機1か岨出
される冷媒は図中破線矢印に示すように四方弁2を介し
て室外側熱交換器3に導かれ凝縮液化する。
First, to explain the cooling operation, the refrigerant discharged from the compressor 1 is guided to the outdoor heat exchanger 3 via the four-way valve 2, as shown by the broken line arrow in the figure, and is condensed and liquefied.

さらに逆止弁4、気液分離器5、キャピラリーチューブ
6を介して室内側熱交換器7に導かれ、被空調室内から
蒸発潜熱を奪って冷房作用を行うことができる。
Furthermore, it is guided to the indoor heat exchanger 7 via the check valve 4, the gas-liquid separator 5, and the capillary tube 6, and can perform a cooling action by removing the latent heat of vaporization from the air-conditioned room.

このとき電磁開閉弁12は常に閉成していてガスインジ
ェクション回路11は何らの作用をもなさない。
At this time, the electromagnetic on-off valve 12 is always closed and the gas injection circuit 11 does not perform any operation.

つぎに暖房運転について説明すると、圧縮機1から吐出
される冷媒は図中実線矢印で示すように四方弁2を介し
て室内側熱交換器7に導かれ凝縮熱を被空調室に放出し
て暖房作用を行なうことができる。
Next, explaining the heating operation, the refrigerant discharged from the compressor 1 is guided to the indoor heat exchanger 7 via the four-way valve 2 as shown by the solid line arrow in the figure, and the condensed heat is released into the air-conditioned room. A heating effect can be performed.

凝1化した冷媒はキャピラリーチューブ6を介して気液
分離器5に導かれ、液冷媒中からガス分が分離される。
The condensed refrigerant is led to the gas-liquid separator 5 via the capillary tube 6, and the gas component is separated from the liquid refrigerant.

分離後液冷媒は液冷媒導入管8aから導通管10に導か
れ補助膨張弁9でさらに膨張し、室外側熱交換器3で蒸
発して圧縮機1に吸込1れる。
After separation, the liquid refrigerant is guided from the liquid refrigerant introduction pipe 8a to the conduit pipe 10, further expanded by the auxiliary expansion valve 9, evaporated by the outdoor heat exchanger 3, and sucked into the compressor 1.

一方、気液分離器5で分離さレルガス冷媒はガスインジ
ェクション回路11に導かれ、電磁開閉弁12を介して
圧縮行程中の圧縮機1のシリンダに吸込1れ暖房能力の
向上を図ることができる。
On the other hand, the gas refrigerant separated by the gas-liquid separator 5 is guided to the gas injection circuit 11, and is sucked into the cylinder of the compressor 1 during the compression stroke via the electromagnetic on-off valve 12, thereby improving the heating capacity. .

したがってこの状態の冷凍サイクルは第2図に示すモリ
エル線図から説明できる。
Therefore, the refrigeration cycle in this state can be explained from the Mollier diagram shown in FIG.

即ち、通常の冷凍サイクルの状態変化は、A−B −C
−Dで表わされ、A−Bは圧縮行程、B−Cは放熱行程
、C−Dは膨張行程、D−Aは吸熱行程をそれぞれ示し
ている。
That is, the state change in a normal refrigeration cycle is A-B-C
-D, AB represents a compression stroke, BC represents a heat radiation stroke, CD represents an expansion stroke, and DA represents an endothermic stroke.

従って通常の冷凍サイクルでは、損失を無視すれば外気
からの吸熱量Q1、圧縮機の仕事量Qcomp、放熱量
(暖房能力)Q2とは次の関係を有する。
Therefore, in a normal refrigeration cycle, if loss is ignored, the amount of heat absorbed from the outside air Q1, the amount of work Qcomp of the compressor, and the amount of heat released (heating capacity) Q2 have the following relationship.

Q 2 = Q 1 +Q comp ■
又気液分離器で分離されたガス冷媒を圧縮機1の圧縮行
程中のシリンダ内に導びくガスインジェクションサイク
ル(以下「カスインジェクションサイクル」という)の
状態変化は、A−A’〜)l’−BC−E−F−Gで表
わされ、A−A”−H’−Bは圧縮行程、B−Cは放熱
行程、C−E−F−Gは膨張行程、G−Aは吸熱行程を
それぞれ示している。
Q 2 = Q 1 +Q comp ■
In addition, the state changes of the gas injection cycle (hereinafter referred to as "cass injection cycle") in which the gas refrigerant separated by the gas-liquid separator is introduced into the cylinder during the compression stroke of the compressor 1 are as follows: A-A'~)l' -BC-E-F-G, where A-A"-H'-B is a compression stroke, B-C is a heat radiation stroke, C-E-F-G is an expansion stroke, and G-A is an endothermic stroke. are shown respectively.

即ち冷媒はE点で液とガスとに分離され(F点は液、■
点叶ガス冷媒を示す。
That is, the refrigerant is separated into liquid and gas at point E (point F is liquid,
Indicates a hot gas refrigerant.

)液冷渫は0点1で膨張する。) Liquid cooling expands at 0 points and 1.

その結果通常の冷凍サイクルに比較しG−D間のエンタ
ルピ差だけ外気からの吸熱量が増加することとなる。
As a result, compared to a normal refrigeration cycle, the amount of heat absorbed from the outside air increases by the enthalpy difference between G and D.

一方E点で分離されたガス冷媒は圧縮行程中にシリンダ
内に導ひかれる。
On the other hand, the gas refrigerant separated at point E is guided into the cylinder during the compression stroke.

その結果ガスインジェクションされるガスはH点のガス
であるかう、A点から圧縮過程にあるガス冷媒より温度
が低く混合することにより圧縮機1のシリンダ内のガス
は折れ線部分(A’−H’ ) tで冷却されることと
なる。
As a result, the injected gas is the gas at point H, which is lower in temperature than the gas refrigerant in the compression process from point A, so that the gas in the cylinder of compressor 1 is mixed with the gas at point H, which is the gas in the cylinder of compressor 1 at the polygonal line (A'-H' ) It will be cooled at t.

従ってガスインジェクションサイクルでは、損失を無視
すれば、外気からの吸熱量Q1t、圧縮機の仕事量Q’
comp、放熱量r暖房能力)Q2′とは、次の関係を
有する。
Therefore, in the gas injection cycle, if losses are ignored, the amount of heat absorbed from the outside air is Q1t, and the work of the compressor is Q'
comp, heat radiation amount r heating capacity) Q2' have the following relationship.

Q 2’ = Q 1’ + Qc’o m p
■そこで、通常の冷凍サイクルの[F]式とガス
インジェクションサイクル0式とを比較すると、Ql’
>Ql ■’、’G−D間のエ
ンタルピ差だけ外気からの吸熱量が増加する。
Q2' = Q1' + Qc'o m p
■Then, when comparing the [F] formula of a normal refrigeration cycle and the gas injection cycle formula 0, Ql'
>Ql ■', 'The amount of heat absorbed from the outside air increases by the enthalpy difference between G and D.

又 Q’c omp>Qc omp ■°、°
圧縮機の仕事も気液分離器で分離されたガス冷媒を圧縮
する分だけ多くの仕事をする。
Also Q'c omp>Qc omp ■°, °
The compressor also does more work to compress the gas refrigerant separated by the gas-liquid separator.

従って■式■式よりQ’ 2 >Q 2となりガスイン
ジェクションサイクルの方が通常の冷凍サイクルと比較
し暖房能力が増加することとなる。
Therefore, from equation (2), Q' 2 >Q 2, and the heating capacity of the gas injection cycle is greater than that of the normal refrigeration cycle.

このことは冷凍サイクル自身で能力の向上を図っており
、従来暖房補助熱源として使用していた電気ヒータに比
較し効率もよい。
This improves the capacity of the refrigeration cycle itself, making it more efficient than the electric heater conventionally used as an auxiliary heat source.

父上記暖房能力の増加は、放熱側で見れば気液分離器で
分離されたガス冷媒を圧縮機に吸い込んだ分循環量が増
加するからである。
The above increase in heating capacity is due to an increase in the amount of gas refrigerant separated by the gas-liquid separator and circulated by the compressor from the heat radiation side.

即ち、暖房能力は冷凍サイクルを循環する冷媒量と凝縮
器出入口のエンタルピ差の積で表わされる。
That is, the heating capacity is expressed as the product of the amount of refrigerant circulating in the refrigeration cycle and the enthalpy difference between the inlet and outlet of the condenser.

そして凝縮器入口のエンタルピは圧縮機からの吐出ガス
冷凍温度(第2図B点のエンタルピ・・・損失を無視す
れば吐出ガス冷媒温度のエンタルビニ凝縮器入口のエン
タルピ)で、凝縮器出口のエンタルピは凝縮器出口液冷
媒温度(第2図C点のエンタルピ)で決するので、通常
の冷凍サイクルとガスインジェクションにおける第2図
B点C点のエンタルピはそれぞれ等しいと考えてもさし
つかえない。
The enthalpy at the condenser inlet is the refrigerating temperature of the discharge gas from the compressor (the enthalpy at point B in Figure 2...ignoring the loss, the enthalpy at the condenser inlet is the enthalpy of the discharge gas refrigerant temperature), and the enthalpy at the condenser outlet is the enthalpy at the condenser inlet. is determined by the temperature of the liquid refrigerant at the condenser outlet (enthalpy at point C in Figure 2), so it is safe to assume that the enthalpy at point B and C in Figure 2 in a normal refrigeration cycle and in gas injection are the same.

また暖房運転時、感熱部12aが所定温度以上を感知し
た場合、外気温が高い等の暖房過負荷時電磁開閉弁12
は閉威し、気液分離器5で分離されるガス分の圧縮機1
導通を阻止し圧縮機1が過熱するのを防止する。
In addition, during heating operation, if the heat sensing part 12a detects a temperature higher than a predetermined temperature, the electromagnetic on-off valve 12
compressor 1 for gas which is closed and separated by gas-liquid separator 5
This prevents electrical conduction and prevents the compressor 1 from overheating.

以上説明したように本考案によれば、ヒートポンプ式の
冷凍サイクルを備えたものにおいて、室外側熱交換器と
減圧装置との間に設けられた気液分離器と、この気液分
離器と圧縮機とを開閉弁を介して接続すると共に上記気
液分離器で分離されるガス冷媒を圧縮機の圧縮行程中の
シリンダ内に導くガスインジェクション回路を設けたか
ら、暖房能力の増大を図ることができる。
As explained above, according to the present invention, in a device equipped with a heat pump type refrigeration cycle, a gas-liquid separator provided between an outdoor heat exchanger and a pressure reducing device, a gas-liquid separator and a compressor are provided. The heating capacity can be increased by providing a gas injection circuit that is connected to the air conditioner via an on-off valve and that guides the gas refrigerant separated by the gas-liquid separator into the cylinder during the compression stroke of the compressor. .

又吐出温度が高い、外気温が高い等の暖房過負時上記気
液分離器で分離されるガス冷媒を上記圧縮機の圧縮行程
のシリンダ内に導ひかないよう上記開閉弁を閉成させた
から圧縮機が過熱するのを防止することができる等の効
果を奏する。
In addition, the on-off valve is closed to prevent the gas refrigerant separated by the gas-liquid separator from being introduced into the cylinder in the compression stroke of the compressor when there is an overload of heating due to high discharge temperature or high outside temperature. This provides effects such as being able to prevent the compressor from overheating.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例を示すものであり、第1図は冷
凍サイクルの構成図、第2図はモリエル線図である。 1・・・圧縮機、3・・・室外側熱交換器、5・・・気
液分離器、6・・・減玉装置、11・・・ガスインジェ
クション回路。
The drawings show one embodiment of the present invention, and FIG. 1 is a block diagram of a refrigeration cycle, and FIG. 2 is a Mollier diagram. DESCRIPTION OF SYMBOLS 1... Compressor, 3... Outdoor heat exchanger, 5... Gas-liquid separator, 6... Ball reduction device, 11... Gas injection circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、四方弁、室外側熱交換器、減圧装置および室内
側熱交換器を順次連通してなるヒートポンプ式の冷凍サ
イクルを備えたものにおいて、室外側熱交換器と減圧装
置との間に設けられた気液分離器と、この気液分離器と
圧縮機とを開閉弁を介して接続すると共に上記気液分離
器で分離されるガス冷媒を圧縮機の圧縮行程中のシリン
ダ内に導くガスインジェクション回路とを具備し、吐出
温度が高い、外気温が高い等の暖房過負荷時上記気液分
離器で分離されるガス冷媒を上記圧縮機の圧縮行程のシ
リンダ内に導びかないよう上記開閉弁を閉成させること
を特徴とする空気調和装置。
In a heat pump type refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are connected in sequence, a heat pump type refrigeration cycle is installed between the outdoor heat exchanger and the pressure reducing device. A gas-liquid separator connected to the compressor via an on-off valve, and a gas that guides the gas refrigerant separated by the gas-liquid separator into the cylinder during the compression stroke of the compressor. The injection circuit is equipped with an injection circuit that opens and closes to prevent the gas refrigerant separated by the gas-liquid separator from being introduced into the cylinder of the compression stroke of the compressor during heating overload such as when the discharge temperature is high or the outside temperature is high. An air conditioner characterized by closing a valve.
JP1975023532U 1975-02-20 1975-02-20 air conditioner Expired JPS5833500Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1975023532U JPS5833500Y2 (en) 1975-02-20 1975-02-20 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1975023532U JPS5833500Y2 (en) 1975-02-20 1975-02-20 air conditioner

Publications (2)

Publication Number Publication Date
JPS51104459U JPS51104459U (en) 1976-08-20
JPS5833500Y2 true JPS5833500Y2 (en) 1983-07-26

Family

ID=28118690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1975023532U Expired JPS5833500Y2 (en) 1975-02-20 1975-02-20 air conditioner

Country Status (1)

Country Link
JP (1) JPS5833500Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586226Y2 (en) * 1977-02-07 1983-02-02 株式会社東芝 Air conditioning equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568466A (en) * 1968-05-06 1971-03-09 Stal Refrigeration Ab Refrigeration system with multi-stage throttling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568466A (en) * 1968-05-06 1971-03-09 Stal Refrigeration Ab Refrigeration system with multi-stage throttling

Also Published As

Publication number Publication date
JPS51104459U (en) 1976-08-20

Similar Documents

Publication Publication Date Title
KR101324935B1 (en) Air conditioner
EP2381180A2 (en) Heat pump type hot water supply apparatus
US6874326B2 (en) Air conditioning system with two compressors and method for operating the same
JP2006170537A (en) Heat exchange system
CN108155439B (en) Air conditioner battery cooling single cooling system and control method
CN101344338B (en) Energy-saving control type air cooling three-operating units and its use method
CN207936537U (en) A kind of air-conditioning
JP2001296068A (en) Regenerative refrigerating device
JPS5833500Y2 (en) air conditioner
CN214406241U (en) Constant temperature dehumidification fresh air conditioner
CN201138023Y (en) High-efficient multifunctional air conditioner device
EP3196557A1 (en) Brine/water heat pump system
KR100857565B1 (en) Method for controlling air conditionner
CN212805887U (en) Indirect evaporation air conditioning unit capable of realizing total heat and partial heat recovery
JP2007101093A (en) Air conditioner and its operation control method
CN219494348U (en) Air conditioning unit for partial heat recovery
JP3954781B2 (en) Operation method of ice heat storage air conditioner and ice heat storage air conditioner
JPH04263742A (en) Refrigerator
KR20040103596A (en) Heat pump system for electric-car
JPS586226Y2 (en) Air conditioning equipment
JPH06272992A (en) Air conditioner
KR20030023077A (en) cooling or heating cycle of air-conditioner
CN116086035A (en) Air conditioner capable of preventing liquid impact by low-temperature refrigeration and control method
JP2000130878A (en) Heat pump cycle
JPS6341771A (en) Air conditiner