[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5832248Y2 - surge absorber - Google Patents

surge absorber

Info

Publication number
JPS5832248Y2
JPS5832248Y2 JP14022579U JP14022579U JPS5832248Y2 JP S5832248 Y2 JPS5832248 Y2 JP S5832248Y2 JP 14022579 U JP14022579 U JP 14022579U JP 14022579 U JP14022579 U JP 14022579U JP S5832248 Y2 JPS5832248 Y2 JP S5832248Y2
Authority
JP
Japan
Prior art keywords
surge
surge absorber
varistor element
center
varistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14022579U
Other languages
Japanese (ja)
Other versions
JPS5658808U (en
Inventor
大 小田
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP14022579U priority Critical patent/JPS5832248Y2/en
Publication of JPS5658808U publication Critical patent/JPS5658808U/ja
Application granted granted Critical
Publication of JPS5832248Y2 publication Critical patent/JPS5832248Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【考案の詳細な説明】 本考案はサージ吸収器の電極形状に関し、詳しくはバリ
スタ素子の中央部に流れる電流を制限して、その中央部
発熱を制限することによってバリスタ素子内の温度分布
を均一にし、サージ電流あるいは持続して流れる低電流
に強いサージ吸収器を提供するものである。
[Detailed description of the invention] The present invention relates to the electrode shape of a surge absorber, and more specifically, the current flowing through the center of the varistor element is restricted, and the temperature distribution within the varistor element is uniformed by limiting heat generation in the center. This provides a surge absorber that is resistant to surge currents or continuously flowing low currents.

従来、バリスタ素子は第1図に示すような構造であり、
1は酸化亜鉛等の金属酸化物よりなる円柱形状(または
円板形状)の焼結体、2はこの焼結体1の相対向する端
面に形成した円形の電極である。
Conventionally, a varistor element has a structure as shown in Figure 1.
1 is a cylindrical (or disc-shaped) sintered body made of metal oxide such as zinc oxide, and 2 is a circular electrode formed on opposing end surfaces of this sintered body 1.

この素子を第2図に示すように絶縁ケース3に積み重ね
て収納している。
These elements are stacked and housed in an insulating case 3 as shown in FIG.

ところで、このバリスタ素子にサージ電流が流れた場合
、そのエネルギーによって発熱し、その後徐々に放電し
て元の温度に復帰するのであるが、その復帰の程度は素
体各部で大きく異なる。
By the way, when a surge current flows through this varistor element, it generates heat due to the energy, and then gradually discharges and returns to its original temperature, but the degree of return varies greatly depending on each part of the element body.

すなわち、第1図におけるバリスタ素子の表面部Aでは
放熱が良く、冷却されるのが比較的速いが、中心部Bで
は遅い。
That is, the surface portion A of the varistor element in FIG. 1 has good heat dissipation and is cooled relatively quickly, but the center portion B is slow.

例えば、あるインターバルをもったサージ電流が連続的
にバリスタ素子に流れた場合、中心部Bの温度は表面部
分Aに比べてどんどん高くなる。
For example, when a surge current with a certain interval continuously flows through the varistor element, the temperature of the center part B becomes higher and higher than that of the surface part A.

一方、バリスタ素子は大きな電圧非直線性と負の温度特
性をもっているため、中央部分Bの立上がり電圧(動作
電圧)は温度の上昇に伴なって低下し、このバリスタ素
子が適用されている回路電圧による洩れ電流が急激に中
心部分Bに流れ込み、増々中心部分Bの温度が上昇して
遂には破壊に至る。
On the other hand, since the varistor element has large voltage nonlinearity and negative temperature characteristics, the rising voltage (operating voltage) at the central portion B decreases as the temperature rises, and the circuit voltage to which this varistor element is applied decreases. The leakage current suddenly flows into the center portion B, and the temperature of the center portion B increases, eventually leading to destruction.

また、このときサージ電流による発熱ばかりでなく、バ
リスタ素子に定格以上の持続性の過電圧が印加され発熱
した場合には上記現象はより顕著になる。
Further, at this time, the above-mentioned phenomenon becomes more noticeable when heat is generated not only due to the surge current but also due to the application of a sustained overvoltage higher than the rated value to the varistor element.

また、大形のバリスタ素子の場合、素子の中央部まで均
一な特性とすることは困難で、焼成した時に中心部の特
性が他の部分と異なることがある。
Further, in the case of a large varistor element, it is difficult to achieve uniform characteristics up to the center of the element, and when fired, the characteristics of the center may differ from those of other parts.

これは単位長さ当りの立上り電圧が低く、良質の特性と
ならないことで、これがバリスタとしての特性の悪影響
を及ぼし、サージ電流が集中する等の、結果としてサー
ジ耐量が形状の割には増大しないという問題があった。
This is because the rising voltage per unit length is low and the characteristics are not of good quality, which has a negative effect on the characteristics as a varistor, causing surge current to concentrate, and as a result, the surge resistance does not increase considering the shape. There was a problem.

本考案は、このような従来の欠点を解決するもので、以
下本考案の一実施例を第3図および第4図に基づいて上
記と同一個所には同一番号を付して説明する。
The present invention is intended to solve these conventional drawbacks, and an embodiment of the present invention will be described below with reference to FIGS. 3 and 4, with the same numbers assigned to the same parts as above.

第3図に示すような金属製の環状電極板4を介して、第
4図に示すようにバリスタ素子1′を絶縁ケース3内に
スプリング(図示せず)によって圧接して収納する。
As shown in FIG. 4, the varistor element 1' is housed in an insulating case 3 by pressure contact with a spring (not shown) via a metal annular electrode plate 4 as shown in FIG. 3. As shown in FIG.

このように構成されたサージ吸収器は、サージ電流並び
に持続性の過電圧による電流が素子の表面部分Aに流れ
やすくなり、中央部分Bに流れる電流は制御され、これ
によって中央部分Bの局部的温度上昇が避けられ、より
均一な温度分布が得られる。
In the surge absorber configured in this way, current caused by surge current and persistent overvoltage easily flows through the surface portion A of the element, and the current flowing through the central portion B is controlled, thereby reducing the local temperature of the central portion B. temperature rise is avoided and a more uniform temperature distribution is obtained.

これによって、サージ電流並びに持続性の電流に対する
強度が向上するのである。
This improves the resistance to surge currents as well as sustained currents.

また、大型のバリスタ素子の場合も、中心部に流れる電
流を制御することによって中心部の劣性特性による影響
を少なくすることができ、サージ耐量特性が向上する。
Furthermore, even in the case of a large varistor element, by controlling the current flowing through the center, the influence of the recessive characteristics of the center can be reduced, and the surge resistance characteristics are improved.

第5図に本考案の他の実施例を示す。FIG. 5 shows another embodiment of the present invention.

すなわち、つぼ状でその底部に透孔を有する電極板5を
7バリスタ素子に接しスプリング6で圧接したもので、
結果的に素子への圧接部が環状であり、第1の実施例と
同様の効果が得られる。
That is, an electrode plate 5 which is pot-shaped and has a through hole at its bottom is pressed against seven varistor elements by a spring 6.
As a result, the pressure contact portion to the element is annular, and the same effect as in the first embodiment can be obtained.

以上詳述したように、本考案によれば素子内部の温度分
布がより均一となり、これによってサージ電流並びに持
続性の電流に対する強度を向上させることができ、また
大形の素子の場合には中心部における劣性特性の影響を
少なくすることが可能となり、サージ耐量を向上したサ
ージ吸収器を容易に得ることができる。
As detailed above, according to the present invention, the temperature distribution inside the element becomes more uniform, which improves the strength against surge currents and sustained currents. It becomes possible to reduce the influence of recessive characteristics in the parts, and it is possible to easily obtain a surge absorber with improved surge resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はバリスタ素子の断面図、第2図は従来例のサー
ジ吸収器の要部断面図、第3図は本考案サージ吸収器を
構成する電極の一例を示す斜視図、第4図は本考案サー
ジ吸収器の一実施例を示す要部断面図、第5図は他の実
施例の要部断面図である。 1′・・・・・・バリスタ素子、2・・・・・・電極、
3・・・・・・絶縁ケース、4,5・・・・・・金属製
の電極板。
Fig. 1 is a sectional view of a varistor element, Fig. 2 is a sectional view of a main part of a conventional surge absorber, Fig. 3 is a perspective view showing an example of an electrode constituting the surge absorber of the present invention, and Fig. 4 is a sectional view of a varistor element. A sectional view of a main part showing one embodiment of the surge absorber of the present invention, and FIG. 5 is a sectional view of a main part of another embodiment. 1'... Varistor element, 2... Electrode,
3... Insulating case, 4, 5... Metal electrode plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 円板または円柱状の焼結体の相対向する平面に電極部を
有するバリスタ素子に、金属製の電極板を圧接して絶縁
ケースに収納するサージ吸収器において、前記金属製の
電極板が環状または素子への圧接部が環状であることを
特徴とするサージ吸収器。
In a surge absorber in which a metal electrode plate is pressed into contact with a varistor element having electrode portions on opposing planes of a disk or cylindrical sintered body and housed in an insulating case, the metal electrode plate is annular. Alternatively, a surge absorber characterized in that the pressure contact portion to the element is annular.
JP14022579U 1979-10-09 1979-10-09 surge absorber Expired JPS5832248Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14022579U JPS5832248Y2 (en) 1979-10-09 1979-10-09 surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14022579U JPS5832248Y2 (en) 1979-10-09 1979-10-09 surge absorber

Publications (2)

Publication Number Publication Date
JPS5658808U JPS5658808U (en) 1981-05-20
JPS5832248Y2 true JPS5832248Y2 (en) 1983-07-18

Family

ID=29371565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14022579U Expired JPS5832248Y2 (en) 1979-10-09 1979-10-09 surge absorber

Country Status (1)

Country Link
JP (1) JPS5832248Y2 (en)

Also Published As

Publication number Publication date
JPS5658808U (en) 1981-05-20

Similar Documents

Publication Publication Date Title
CA1050093A (en) Sealed thermostatic heater employing a heater and ptc thermistor
JPS5832248Y2 (en) surge absorber
JP3175102B2 (en) Positive thermistor body and positive thermistor
US6466425B1 (en) Insulating arrester capable of providing a voltage distribution that is substantially symmetrical around the center of the overall height of the arrester
JPS587042B2 (en) Kotaiden Atsugataseitokuseisa Mista
US2509094A (en) Ignition rotor with resistor
JPH0669002A (en) Positive temperature coefficient characteristic thermistor
US4028793A (en) Method of assembling helical resistor
JPH10125505A (en) Positive characteristic thermistor and positive characteristic thermistor device
JPS5971280A (en) Central electrode for ignition plug
JPS626641Y2 (en)
JPS6348084Y2 (en)
JPS6219030Y2 (en)
JPS5849602Y2 (en) Voltage dependent nonlinear resistor
JPH028608Y2 (en)
JPH046201Y2 (en)
JPH04119989U (en) Positive characteristic thermistor device
JPH03208301A (en) Positive temperature coefficient thermistor
JPH0635460Y2 (en) Ceramic capacitors
JPS6325684Y2 (en)
JPH0140617Y2 (en)
JPS589498Y2 (en) Metal oxide nonlinear resistor for motor spark suppression
JPS587603Y2 (en) surge absorber
JPS6123637B2 (en)
JPS6355755B2 (en)