JPS5832903A - Axial flow turbine - Google Patents
Axial flow turbineInfo
- Publication number
- JPS5832903A JPS5832903A JP12933881A JP12933881A JPS5832903A JP S5832903 A JPS5832903 A JP S5832903A JP 12933881 A JP12933881 A JP 12933881A JP 12933881 A JP12933881 A JP 12933881A JP S5832903 A JPS5832903 A JP S5832903A
- Authority
- JP
- Japan
- Prior art keywords
- wall
- turbine
- blade
- intersection
- ventral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/145—Means for influencing boundary layers or secondary circulations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/142—Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
- F01D5/143—Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
・本発明は軸流タービンに係りとくに興の両端を内壁、
外壁に取付けた翼列を備えた軸流ター−ビンに関する。[Detailed Description of the Invention] - The present invention relates to an axial flow turbine, and in particular, the present invention relates to an axial flow turbine.
The present invention relates to an axial flow turbine with a row of blades mounted on an outer wall.
軸流タービンの段落は環状列をなす動員、および静翼で
構成されておシ、これらの異な〉のりちと〈k翼高さの
比較的低い□翼列では、二次流れkよる損失が翼列損失
のうちの和尚な割合を占め養ことが知られている。The stages of an axial flow turbine are composed of annular rows of movable and stationary blades, and due to these different slopes and relatively low blade heights, losses due to secondary flows are It is known that a large proportion of the total losses are accounted for.
以下%第1図に示す従来の翼列によシニ次流れの発生の
機構を説明すると、矢印Xの向i&に流入した作動流体
は、タービン翼t1m*111b 1%IO通路を流れ
矢印Yiで向きを変えるため、その遠心力により興の腹
側12の圧力が背側13の圧力よ〕大きくなシ、通路の
横断方向に圧力勾配を生じている。一方翼列の外壁14
および内壁1sの付近では境界層が形成されているので
流速が小さく、前記圧力勾配とつザ合うだけの遠心力が
存在しないため、外壁14.および内壁15の付近では
圧力勾配により腹側12から背側13へと通路を横断す
る方向の流れ2が発生し、二次流れと呼ばれる。二次流
れが存在すると作動流体のもつエネルギーが渦によ抄消
散されて有効に利用されず翼列損失の原因と愈る。To explain the mechanism of generation of secondary flow in the conventional blade row shown in Fig. 1 below, the working fluid flowing in the direction i & of the arrow X flows through the 1% IO passage of the turbine blade t1m Due to the centrifugal force, the pressure on the ventral side 12 of the tube is greater than the pressure on the dorsal side 13, creating a pressure gradient across the passageway. On the other hand, the outer wall 14 of the blade row
Since a boundary layer is formed in the vicinity of the inner wall 1s, the flow velocity is low, and there is no centrifugal force sufficient to combine with the pressure gradient, so the outer wall 1s. In the vicinity of the inner wall 15, a pressure gradient causes a flow 2 in a direction across the passage from the ventral side 12 to the dorsal side 13, which is called a secondary flow. When a secondary flow exists, the energy of the working fluid is dissipated by the vortices and is not used effectively, causing blade row loss.
かかる二次流れkよる損−失を肪止すゐため従来より種
々の構造が提案されてい石。たとえば外壁14、および
内壁15面の形状を第1図のような単一な円筒面、ある
いは円錐面とせず、タービン翼11a、llbの腹側1
2、背側13で高さを異ならしめる方法がある。第2図
はその一例であって翼列出口部において腹側12におけ
る内壁15の位flt16を、背@13における内壁1
5の位置17よシも高くなるよう内壁15に勾配をもた
せタービンjllla、flbの回転による遠心力によ
って内壁15付近の流体に背側13から腹111!12
へと向う流れを生せしめて二次流れを打ち消そうとする
ものである。この構造の翼列では、静翼のような回転し
ない翼列においては効果を示さず、また翼列出口部にお
いて腹側12、背側13の内壁15の位置16.17が
異なゐため、出口部の下 。Various structures have been proposed in the past in order to reduce losses due to such secondary flows. For example, the shape of the outer wall 14 and the inner wall 15 is not a single cylindrical surface or a conical surface as shown in FIG.
2. There is a method of making the height different on the dorsal side 13. FIG. 2 shows an example of this, in which the inner wall 15 on the ventral side 12 is placed at the outlet of the blade row, and the inner wall 1 on the back @13 is
The inner wall 15 is sloped so as to be higher than the position 17 of 5, and the fluid near the inner wall 15 is caused to flow from the dorsal side 13 to the antral side 111!
This is an attempt to cancel out the secondary flow by creating a flow towards it. This structure of blade rows does not show any effect on non-rotating blade rows such as stationary blades, and since the positions 16 and 17 of the inner walls 15 on the ventral side 12 and the dorsal side 13 are different at the exit section of the blade row, Under the department.
流で腹側12と背側13の流れが合流する際に損失を生
ずる可能性がある。Losses may occur when the ventral 12 and dorsal 13 streams merge.
本発明の目的は、静翼、動翼め如何忙よらず二次流れに
よる翼列損失を低減し、かつ付加的な損失や強度の低下
を招かカい軸流タービンを提供することにある。An object of the present invention is to provide an axial flow turbine that reduces blade cascade loss due to secondary flow regardless of whether the stationary blades or rotor blades are busy, and which does not cause additional loss or reduction in strength. .
本発明忙よる軸流タービンは翼列の入口部、出口部にお
ける壁面の位置を腹側、前側で同一とする一方、入口部
と出口部の中間部−て背側1fcEう壁面形状を通路方
向外側くわん曲させ、腹側Kaう壁面形状を通路方向内
側へわん面させたことを特徴とするものである。In the axial flow turbine according to the present invention, the positions of the wall surfaces at the inlet and outlet sections of the blade row are the same on the ventral side and the front side, while the wall surface shape is different from the middle section between the inlet section and the outlet section to the dorsal side 1fcE in the passage direction. It is characterized by being curved on the outside, and the wall surface shape on the ventral side is curved inward in the passage direction.
以下、本発明による軸流タービンの翼列の詳細を第3図
および第4図を参照して説明する。Hereinafter, details of the blade row of the axial flow turbine according to the present invention will be explained with reference to FIGS. 3 and 4.
第3図は本発明に係る翼列の斜視図で、21a。FIG. 3 is a perspective view 21a of a blade row according to the present invention.
21bカタービン員、22がタービン軸に近い内壁23
がタービン軸から遠い外壁、24は外11!3とタービ
ン翼211の背側面の交線、25a、2$bは外112
3とタービン翼21!l 、 21bの腹側面の交線、
26は内壁22とタービン翼21aの背側面の交線%2
7a 、 27bは内壁22とタービン翼21R921
bの腹側面との交線をそれぞれ示している。第4図は本
発明による翼列の要部断面図で符号は第3図と同じであ
る。21b turbine member, 22 inner wall 23 close to the turbine shaft;
is the outer wall far from the turbine axis, 24 is the intersection line of the outer 11!3 and the back side of the turbine blade 211, 25a, 2$b are the outer wall 112
3 and turbine blade 21! l, the intersection line of the ventral aspect of 21b,
26 is the intersection line %2 between the inner wall 22 and the back side of the turbine blade 21a
7a and 27b are the inner wall 22 and the turbine blade 21R921
The lines of intersection with the ventral surface of b are shown, respectively. FIG. 4 is a sectional view of a main part of a blade row according to the present invention, and the reference numerals are the same as in FIG. 3.
さて、第3図および第4図に示されるように本発明によ
ると、外壁23がタービン翼21mの背・腹側面と接す
る交線24 、25mは具入口端において点28に集ま
り、具用口端にて点’29に集まる。According to the present invention, as shown in FIGS. 3 and 4, the intersection lines 24 and 25m where the outer wall 23 touches the dorsal and ventral surfaces of the turbine blade 21m converge at a point 28 at the tool inlet end, and They converge at point '29 at the end.
オた内壁22がタービン翼21mの背Φ腹側面と接すふ
交線26 、27Jlは具入口端にて点3oに集まり、
具用口端にて点31に集まる。すなわち翼列入口端、出
口端における壁面の高さは腹側、背側で同一となってい
る。次に本発明では、外@23がタービン翼21aの背
側面と接する交線24は、第4図の断面図に示すように
入口・出口端に比較して中央部でタービン軸から遠ざか
り流路の外方に凸の曲率を有しているのに対し、外壁2
3がタービン翼218の腹側面と村する交1125aは
入ロΦ出ロ端よりも中央部でタービン軸に近づき、流路
内@忙凸の曲率を有している。外壁23は、交線24
、25bの間をなめらかに接続して曲面を形成する。The intersection lines 26 and 27Jl, where the inner wall 22 touches the dorsal and ventral side surfaces of the turbine blade 21m, converge at a point 3o at the tool inlet end,
It gathers at a point 31 at the mouth end of the tool. That is, the height of the wall surface at the inlet end and outlet end of the blade row is the same on the ventral side and the dorsal side. Next, in the present invention, the intersection line 24 where the outside @ 23 touches the back side of the turbine blade 21a is moved away from the turbine axis at the center compared to the inlet and outlet ends, as shown in the cross-sectional view of FIG. has an outwardly convex curvature, whereas the outer wall 2
The intersection 1125a where 3 crosses the ventral surface of the turbine blade 218 is closer to the turbine axis at the center than the input end and the exit end, and has a convex curvature inside the flow path. The outer wall 23 is connected to the intersection line 24
, 25b are smoothly connected to form a curved surface.
また、内壁22がタービン翼21aの背側面と接する交
線26は、入口・出口端に比較して中央部でタービン軸
に近づき、流路外方に凸の曲率な有し、内壁22が腹側
面に接する交線271は入口・出口端より中央部でター
ビン軸から遠ざかり流路内方へ凸の曲率を有する。内壁
22杜交流26゜27bを々めらかに接続し曲面を形成
する。In addition, the intersection line 26 where the inner wall 22 contacts the back side of the turbine blade 21a is closer to the turbine axis at the center than at the inlet/outlet ends, and has a convex curvature outward in the flow path, so that the inner wall 22 has an inclined surface. The intersection line 271 that touches the side surface has a curvature that is farther away from the turbine axis at the center than the inlet and outlet ends and is convex toward the inside of the flow path. The inner walls 22 and 26 and 27b are smoothly connected to form a curved surface.
次に1本発明の翼列を有する軸流タービンの作用を第4
図により説明する。Next, the operation of the axial flow turbine having the blade cascade of the present invention will be explained in the fourth section.
This will be explained using figures.
矢印Xの方向に流入した作動流体のうち、外壁23が背
側面と接する交線24付近を通過する流体は、流路外方
に凸の曲率を有する壁面形状により壁面側へ押しつけら
れるため、外壁23Kaう背側の圧力が高まる。これに
対し外ll2Bが腹側面に接する交線25a、25b
付近の圧力は流路内方に凸の曲率な有する壁面形状によ
り、第1図に示される従来の翼列に比べ低くなる。一方
、内壁22付近の流れを考えると、内壁22が背側面と
接する交線26付近の流れは、流路外方へ凸の曲率をも
つ壁面形状のため壁面側へ押しつけられ、内壁22に沿
う背側の圧力が上昇し、逆の曲率をもつ交11127.
a、27b付近の内壁<Bう腹・側の圧力は低下する。Among the working fluid flowing in the direction of arrow Dorsal pressure increases by 23 Ka. On the other hand, the intersection lines 25a and 25b where the outer ll2B touches the ventral surface
The pressure in the vicinity is lower than that of the conventional blade array shown in FIG. 1 due to the wall shape of the channel having a convex curvature inward. On the other hand, considering the flow near the inner wall 22, the flow near the intersection line 26 where the inner wall 22 contacts the back surface is pushed toward the wall and flows along the inner wall 22 due to the wall shape having a convex curvature outward of the flow path. Intersection 11127 with increased dorsal pressure and opposite curvature.
The pressure on the inner wall <B abdomen/side near a and 27b decreases.
前記したように二次流れの主原因は壁面上の腹側から前
側にかゆての圧力勾配であるから、壁面付近の腹側、背
側の圧力、差を小さくするととけ二次流れの頓減につな
がる。しかしてこれまで述べたように本発明の翼列を有
する軸流タービンは内@22.外壁23付近においてそ
れぞれ従来のものより背側の圧力を高め、腹側の圧力を
低める作用を有するから、壁面における腹・背、測量の
圧力勾配を緩和することができ、翼列内の二次流れを
4゜軽減し、損失のより少ない軸流ター゛ビンを提供
することが可能となる。tた、本発明によると、翼列出
口部において背側、腹側の壁面位置は同一であるから、
下流で背側と腹側との流れが合流する際の付加的な損失
はない。また、本発明では翼面あるいは壁面に溝や切欠
きを設ける必要がないので強度の低下がない。As mentioned above, the main cause of secondary flow is the pressure gradient from the ventral side to the anterior side on the wall surface, so reducing the pressure difference between the ventral side and dorsal side near the wall will dramatically reduce the secondary flow. Leads to. However, as described above, the axial flow turbine having the blade cascade of the present invention has an inner diameter of 22 mm. In the vicinity of the outer wall 23, it has the effect of increasing the pressure on the dorsal side and lowering the pressure on the ventral side compared to the conventional one, so it is possible to alleviate the pressure gradient between the ventral side, the dorsal side, and the survey on the wall surface. flow
4°, making it possible to provide an axial flow turbine with less loss. Furthermore, according to the present invention, the dorsal and ventral wall surface positions are the same at the blade row outlet.
There is no additional loss when the dorsal and ventral streams merge downstream. Further, in the present invention, there is no need to provide grooves or notches on the blade surface or wall surface, so there is no decrease in strength.
なお、第3図および第4図は本発明の一つの実施例であ
って、図示したような壁面嬢状を内壁22@外壁23の
両方に適用せずいずれか一方にのみ実施しても効果があ
υ、また第4図における交1! 24 、2!Sa 、
26 、27m のすべてに曲率をもたせる代抄に
交線24 、25mの一方、および交IJI26゜27
8の一方のみ曲線とし、残りを直線とする等の方法も本
発明の効果゛を有する。Note that FIG. 3 and FIG. 4 are one embodiment of the present invention, and the effect can be obtained even if the wall face shape shown in the figure is not applied to both the inner wall 22 @ the outer wall 23 but only to one of them. Yes, intersection 1 in Figure 4 again! 24, 2! Sa,
26, 27m, one of the intersection lines 24, 25m, and the intersection IJI26゜27
A method such as making only one of the lines 8 a curved line and making the rest a straight line also has the effect of the present invention.
以上述べたように本Haは、タービンの静翼、動翼のい
ずれKついても二次流れによる損失を低減することがで
き、かつ付伽的な損失や強度の°低下のない軸流タービ
ンを提供することができる。As mentioned above, this design can reduce losses due to secondary flow in both the stator blades and rotor blades of the turbine, and also creates an axial flow turbine without incidental loss or deterioration in strength. can be provided.
第1図および第2図は公知の軸流タービンにおける翼列
を′示す斜視図、第3図は本発ηによる軸流タービンの
一実施例を示す斜視図、第4図は本発明の翼列を有する
軸流タービンをタービン軸を含む面で切断した断面図で
ある。
21a、21b ・・・・タービン翼 22−・・・内
壁23・・・外壁
24・・・外壁とタービン翼の背側面の交線25a、2
5b・・・外壁とタービン翼の腹側面の交線26・・・
・内壁とタービン翼の背側面の交線 27m 、 27
b・・・内壁とタービン翼の腹側面の交線第1m
/、!;
第2aa
第38
第411
2乙1 and 2 are perspective views showing a row of blades in a known axial flow turbine, FIG. 3 is a perspective view showing an embodiment of an axial flow turbine based on the present invention, and FIG. 4 is a perspective view showing the blades of the present invention. FIG. 2 is a cross-sectional view of an axial turbine having rows taken along a plane including the turbine shaft. 21a, 21b...Turbine blade 22-...Inner wall 23...Outer wall 24...Intersecting line 25a, 2 of the outer wall and the back side of the turbine blade
5b... Intersection line 26 between the outer wall and the ventral surface of the turbine blade...
・Intersection line between the inner wall and the back side of the turbine blade 27m, 27
b...The 1st intersection line between the inner wall and the ventral surface of the turbine blade /,! ; 2nd aa 38th 411th 2nd B
Claims (1)
”軸流タービンにおいて、タービンgown画が外壁も
しくは内壁と交わる線と、タービン翼の腹側面が外壁も
しくは内壁と交わ、1111の位置関係が翼列の入口部
、および出口部で同一高さとなるようにすると共に、タ
ービン軸を含む断面KThいて、背側と外壁の交線がタ
ービン軸から遠ざかる方向に1もしくは背側と内壁の交
線がタービン軸の方向に凸の曲率を持ち、腹側と外壁の
交線がタービン軸の方向に1もしくは腹側と内壁の交線
がタービン軸から遠ざかる方向に凸の曲率を持つよ5.
にシたことを特徴とする軸流タービン。In an axial flow turbine having an annular row of turbine blades with blade tips attached to the inner and outer walls, the positional relationship 1111 between the line where the turbine blade intersects with the outer wall or inner wall and the ventral surface of the turbine blade intersects with the outer or inner wall. be at the same height at the inlet and outlet of the blade row, and in the cross section KTh that includes the turbine axis, the intersection line between the back side and the outer wall should be 1 or the intersection line between the back side and the inner wall in the direction away from the turbine axis. 5. The line has a convex curvature in the direction of the turbine axis, and the line of intersection between the ventral side and the outer wall has a convex curvature in the direction of the turbine axis, or the line of intersection between the ventral side and the inner wall has a convex curvature in the direction away from the turbine axis.5.
An axial flow turbine characterized by the following characteristics:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12933881A JPS5832903A (en) | 1981-08-20 | 1981-08-20 | Axial flow turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12933881A JPS5832903A (en) | 1981-08-20 | 1981-08-20 | Axial flow turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5832903A true JPS5832903A (en) | 1983-02-26 |
Family
ID=15007132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12933881A Pending JPS5832903A (en) | 1981-08-20 | 1981-08-20 | Axial flow turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5832903A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0846867A2 (en) * | 1996-12-06 | 1998-06-10 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Turbomachine with a transsonic compression stage |
EP1712737A1 (en) * | 2005-04-14 | 2006-10-18 | The General Electric Company | Crescentic ramp turbine stage |
US7134842B2 (en) | 2004-12-24 | 2006-11-14 | General Electric Company | Scalloped surface turbine stage |
US7217096B2 (en) | 2004-12-13 | 2007-05-15 | General Electric Company | Fillet energized turbine stage |
US7249933B2 (en) | 2005-01-10 | 2007-07-31 | General Electric Company | Funnel fillet turbine stage |
JP2012202224A (en) * | 2011-03-23 | 2012-10-22 | Mitsubishi Heavy Ind Ltd | Blade body of rotary machine, gas turbine and method for designing blade body of rotary machine |
JP2015017615A (en) * | 2014-09-24 | 2015-01-29 | 三菱日立パワーシステムズ株式会社 | Blade body of rotary machine and gas turbine |
WO2021234115A1 (en) * | 2020-05-20 | 2021-11-25 | turbonik GmbH | Flow guiding device for a turbomachine |
-
1981
- 1981-08-20 JP JP12933881A patent/JPS5832903A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0846867A2 (en) * | 1996-12-06 | 1998-06-10 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Turbomachine with a transsonic compression stage |
EP0846867A3 (en) * | 1996-12-06 | 1999-03-24 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Turbomachine with a transsonic compression stage |
US7217096B2 (en) | 2004-12-13 | 2007-05-15 | General Electric Company | Fillet energized turbine stage |
US7134842B2 (en) | 2004-12-24 | 2006-11-14 | General Electric Company | Scalloped surface turbine stage |
US7249933B2 (en) | 2005-01-10 | 2007-07-31 | General Electric Company | Funnel fillet turbine stage |
EP1712737A1 (en) * | 2005-04-14 | 2006-10-18 | The General Electric Company | Crescentic ramp turbine stage |
JP2006291949A (en) * | 2005-04-14 | 2006-10-26 | General Electric Co <Ge> | Crescentic ramp turbine stage |
US7220100B2 (en) | 2005-04-14 | 2007-05-22 | General Electric Company | Crescentic ramp turbine stage |
JP2012202224A (en) * | 2011-03-23 | 2012-10-22 | Mitsubishi Heavy Ind Ltd | Blade body of rotary machine, gas turbine and method for designing blade body of rotary machine |
JP2015017615A (en) * | 2014-09-24 | 2015-01-29 | 三菱日立パワーシステムズ株式会社 | Blade body of rotary machine and gas turbine |
WO2021234115A1 (en) * | 2020-05-20 | 2021-11-25 | turbonik GmbH | Flow guiding device for a turbomachine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6375420B1 (en) | High efficiency blade configuration for steam turbine | |
JP2005133697A (en) | Equipment for turbine blade cascade | |
JPH07259796A (en) | Centrifugal compressor | |
KR19980063783A (en) | Turbine nozzle | |
JPS5832903A (en) | Axial flow turbine | |
JP3910648B2 (en) | Turbine nozzle, turbine blade and turbine stage | |
JPH04277307A (en) | Mechanism for controlling pressure loss at bent part for flow passage | |
JP3883245B2 (en) | Axial flow turbine | |
JP3786443B2 (en) | Turbine nozzle, turbine blade and turbine stage | |
JP3070167B2 (en) | Turbine nozzle | |
JP2000045703A (en) | Axial flow turbine cascade | |
JPS58172408A (en) | Guide blade row for divergent type steam path of steam turbine | |
EP3736482A1 (en) | Bend pipe and fluid machine comprising same | |
JP4776333B2 (en) | Hydraulic machine guide vane and hydraulic machine equipped with the guide vane | |
JP2012052491A (en) | Turbine stage, and steam turbine using the same | |
JP4090613B2 (en) | Axial flow turbine | |
JPH08296403A (en) | Gas turbine air cooled blade | |
JP4441836B2 (en) | Secondary flow suppression cascade | |
US2690053A (en) | Hydrodynamic torque converter | |
JPH10196303A (en) | High performance blade | |
JPH06212902A (en) | Turbine moving blade | |
JP3123726B2 (en) | Axial fan | |
JP7533994B2 (en) | chimney | |
JPS61258998A (en) | Centrifugal type multistage fluid machine | |
JP3909179B2 (en) | Suction pipe of water turbine or pump water turbine |