[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5830397B2 - Electrolytic coloring method for aluminum or aluminum alloys - Google Patents

Electrolytic coloring method for aluminum or aluminum alloys

Info

Publication number
JPS5830397B2
JPS5830397B2 JP13314978A JP13314978A JPS5830397B2 JP S5830397 B2 JPS5830397 B2 JP S5830397B2 JP 13314978 A JP13314978 A JP 13314978A JP 13314978 A JP13314978 A JP 13314978A JP S5830397 B2 JPS5830397 B2 JP S5830397B2
Authority
JP
Japan
Prior art keywords
aluminum
acid
coloring
electrolytic
stannous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13314978A
Other languages
Japanese (ja)
Other versions
JPS5562197A (en
Inventor
初男 広野
和夫 相川
裕 大田
雄史 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshida Kogyo KK filed Critical Yoshida Kogyo KK
Priority to JP13314978A priority Critical patent/JPS5830397B2/en
Publication of JPS5562197A publication Critical patent/JPS5562197A/en
Publication of JPS5830397B2 publication Critical patent/JPS5830397B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】 本発明は、アルミニウムlたはアルミニウム合金(以下
アルミニウムという)のゴールド色への電解着色法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrolytically coloring aluminum or an aluminum alloy (hereinafter referred to as aluminum) to a gold color.

従来、アルミニウムを着色させる方法は数多く報告され
ているが、その代表的なものとしては、アルミニウムの
陽極酸化皮膜を有機染料または無機化合物の液に浸漬し
て着色する方法(染色法)、アルミニウム合金の組成ま
たは陽極酸化時の電解液組成により、陽極酸化しながら
皮膜を発色させる方法(自然発色法)、陽極酸化皮膜を
金属塩浴中で交流電解して金属または金属酸化物を皮膜
の孔中に吸着させることにより発色させる特公昭38−
1715号公報に記載の方法(電解着色法)などが実用
化されている。
Many methods for coloring aluminum have been reported, but the most representative ones include a method in which anodized aluminum film is immersed in an organic dye or inorganic compound solution (dying method), and aluminum alloy coloring. A method in which the film develops color during anodization (natural coloring method) by changing the composition of the anodized film or the composition of the electrolyte during anodization, and a method in which the anodic oxide film is electrolyzed with alternating current in a metal salt bath to inject metals or metal oxides into the pores of the film. Tokuko Sho 38-, which develops color by adsorbing it to
The method described in Japanese Patent No. 1715 (electrolytic coloring method) and the like have been put into practical use.

これらのうち、染色法にふ−いては、特に耐候性の問題
、浴温や皮膜厚さのバラツキからくる色の不均一などの
難しさがあり、一方、自然発色法にち・いては、均一な
組成の合金が得がたいこと、皮膜のバラツキ、浴温のバ
ラツキなどによる色の不均一、コスト高などの問題゛が
ある。
Among these, dyeing methods have particular difficulties such as weather resistance and uneven color due to variations in bath temperature and film thickness.On the other hand, natural coloring methods have There are problems such as difficulty in obtaining an alloy with a uniform composition, non-uniformity of color due to variations in coating film, variations in bath temperature, etc., and high cost.

したがって、陽極酸化皮膜を金属塩浴中で交流電解して
着色させる方法が広く用いられている。
Therefore, a method of coloring an anodic oxide film by electrolyzing it with alternating current in a metal salt bath is widely used.

ところで、この方法においてゴールド色を得る方法はい
くつか報告されているが、いずれも使用金属が高価であ
ったり、あるいは有害であったため、量産の面、浴管理
の面あるいは公害の面に訃いて問題があった。
By the way, several methods have been reported for obtaining a gold color using this method, but in all of them, the metals used were expensive or harmful, resulting in problems in terms of mass production, bath management, and pollution. There was a problem.

また、ゴールド色に関しては耐候性の悪いものが多かっ
た・ 上記の事情に鑑み、本発明者らは、耐候性、浴管理、量
産生、均一着色性、対公害、コスト等の面で優れる電解
着色法によるゴールド色への着色について長年研究を行
なってむり、耐候性に優れ、均一な一定のゴールド色へ
の電解着色が可能である方法を開発し、先に本出願人に
より特願昭50−26066号(特開昭51−1017
38号)として特許出願している。
In addition, many gold colors had poor weather resistance.In view of the above circumstances, the present inventors have developed an electrolytic solution that is excellent in terms of weather resistance, bath management, mass production, uniform coloring, anti-pollution, cost, etc. After many years of research into gold coloring using coloring methods, we developed a method that has excellent weather resistance and is capable of electrolytic coloring to a uniform gold color. -26066 (Unexamined Japanese Patent Publication No. 51-1017
A patent application has been filed as No. 38).

本発明者らは、さらに錫塩を含有する電解浴中でのゴー
ルド色への電解着色について鋭意研究の結果、耐候性、
浴管理、量産性、均一着色性、対公害、コスト等の全て
の面に釦いて満足な結果が得られるアルミニウムのゴー
ルド色への電解着色に関する知見を得て、本発明方法を
完成したものである。
The present inventors further conducted extensive research on electrolytic coloring to gold in an electrolytic bath containing tin salts, and found that weather resistance,
We have completed the method of the present invention by obtaining knowledge about the electrolytic coloring of aluminum to a gold color that provides satisfactory results in all aspects such as bath management, mass production, uniform coloring, anti-pollution, and cost. be.

すなわち、本発明方法においては、陽極酸化処理を施し
たアルミニウムを金属塩を含有する電解液中で交流また
はそれと同等の効果をもつ電流波形(以下交流という)
により電解着色する方法において、電解液として第一錫
塩と、分子中にイオウを有し、液中で徐々に分解するか
あるいは交流通電による酸化還元反応を受けて分解する
ことにより分子中に含有するイオウを放出する物質(以
下分解性イオウ化合物という)を主成分とする電解液を
用いることを特徴とするものであり、このよう左方法に
よって上記した課題を全て満足してアルミニウムをゴー
ルド色に電解着色することが可能であることを見出した
That is, in the method of the present invention, anodized aluminum is heated in an electrolytic solution containing a metal salt using an alternating current waveform or a current waveform having an equivalent effect (hereinafter referred to as alternating current).
In the method of electrolytic coloring, the electrolytic solution is a stannous salt and sulfur is contained in the molecule, which is gradually decomposed in the solution or decomposed by undergoing an oxidation-reduction reaction due to alternating current. This method is characterized by the use of an electrolytic solution whose main component is a substance that releases sulfur (hereinafter referred to as a decomposable sulfur compound).This method satisfies all of the above-mentioned problems and turns aluminum into gold color. It has been found that electrolytic coloring is possible.

ところで、陽極酸化皮膜を施したアルミニウムの着色交
流電解液として錫塩を含有する電解液を使用する方法は
公知であるが(特公昭47−37823号)、この方法
では電解条件、他の電解質成分を調整しても淡いベージ
ュ色、オリーブ色、アンバー色、エンジ色、ブラック色
への着色は可能であるが、ゴールド色への着色は不可能
であった。
Incidentally, a method of using an electrolytic solution containing tin salt as a colored AC electrolyte for aluminum coated with an anodized film is known (Japanese Patent Publication No. 37823/1982), but this method does not require the electrolytic conditions or other electrolyte components. Even if adjusted, coloring to pale beige, olive, amber, red, and black was possible, but coloring to gold was impossible.

一方、本発明によると、電解液中に第一錫塩と゛分解性
イオウ化合物″が含まれていれば均一に一定のゴールド
色への電解着色が可能である。
On the other hand, according to the present invention, if the electrolytic solution contains a stannous salt and a "degradable sulfur compound", it is possible to uniformly electrolytically color the product to a certain gold color.

本発明の詳細な説明すると、筐ずアルミニウムを必要に
応じて常法により脱脂、エツチング、中和、水洗、スマ
ット除去などの処理を施した後、無機酸または有機酸、
例えば硫酸、シュウ酸、クロム酸などを電解液として用
い、常法に従って陽極酸化してアルミニウム表面上に陽
極酸化皮膜を形成させる。
To explain the present invention in detail, after degreasing aluminum, etching it, neutralizing it, washing it with water, removing smut, etc. using conventional methods as necessary, the aluminum is treated with an inorganic or organic acid.
For example, using sulfuric acid, oxalic acid, chromic acid, or the like as an electrolytic solution, anodic oxidation is performed according to a conventional method to form an anodic oxide film on the aluminum surface.

ついで、水洗などの必要な処理を行なった後、電解浴に
第一錫塩および ゛′分解性イオウ化合物 ”のそれぞ
れ少なくとも1種を添加したものを電解液として電解着
色を行なう。
After carrying out necessary treatments such as washing with water, electrolytic coloring is carried out using an electrolytic solution containing at least one of a stannous salt and a ``decomposable sulfur compound'' added to the electrolytic bath.

本発明において使用される電解液の主成分の一つである
第一錫塩としては、硫酸第一錫、シュウ酸第−錫、塩化
第−錫等があり、電解液に溶けて錫■イオンを提供して
くれるものであればよい。
Examples of stannous salts, which are one of the main components of the electrolytic solution used in the present invention, include stannous sulfate, stannous oxalate, and stannous chloride. It is fine as long as it provides the following.

第一錫塩の濃度は、その塩中の第一錫成分の量として0
.3SF/l(硫酸第一錫としては約0.55t/l
(0,55XSn/SnS 04 ==o、3)、塩化
第一錫としては約0.5f/lである)以上、好1しく
はコストの点も考慮すると、第一錫成分の量としては1
.0〜2oy/l、、(硫酸第一錫としては約1.8〜
35 t/l )である。
The concentration of a stannous salt is 0 as the amount of stannous component in the salt.
.. 3SF/l (approx. 0.55t/l as stannous sulfate)
(0,55XSn/SnS 04 ==o, 3), which is about 0.5 f/l as stannous chloride) From the above, preferably considering the cost, the amount of the stannous component is 1
.. 0~2oy/l, (approx. 1.8~ as stannous sulfate)
35 t/l).

゛分解性イオウ化合物″としては、チオ尿素、塩化チオ
ニルやチオグリコール酸、チオシアン酸、チオ酢酸、チ
オカルバミン酸など及びそのナトリウム、カリウム、ア
ンモニウムなどの塩のようにチオ化合物に属するもの、
あるいは硫酸およびその塩を除くスルホキシル酸、亜ニ
チオン酸、亜硫酸、ピロ硫酸、ピロ亜硫酸、ニチオン酸
、三チオン酸、四チオン酸、五チオン酸、六チオン酸等
のイオウ酸素酸もしくはそれらのナトリウム、カリウム
、アンモニウムなどの塩、及び二塩化イオウ、−臭化イ
オウなどのハロゲン化イオウがある。
"Degradable sulfur compounds" include those belonging to thio compounds such as thiourea, thionyl chloride, thioglycolic acid, thiocyanic acid, thioacetic acid, thiocarbamic acid, etc., and their salts such as sodium, potassium, and ammonium;
or sulfur oxyacids such as sulfoxylic acid, dithionite, sulfurous acid, pyrosulfuric acid, pyrosulfite, dithionic acid, trithionic acid, tetrathionic acid, pentathionic acid, hexathionic acid, excluding sulfuric acid and its salts, or their sodium; There are salts such as potassium and ammonium, and sulfur halides such as sulfur dichloride and sulfur bromide.

°゛分解性イオウ化合物″′の濃度は、その分子中のイ
オウ成分の量として約0.08 f//l (チオグリ
コール酸H80H2COOHとして約0.25r/l(
0,25XS/H8CH3CO0H中0.os)以上で
あり、好1しくは分子中のイオウ成分の量として0.1
2〜159/を程度(チオグリコール酸H8CH2C0
OHとして約0.43〜54グA)である。
The concentration of the degradable sulfur compound is approximately 0.08 f//l as the amount of sulfur component in its molecule (approximately 0.25 r/l as thioglycolic acid H80H2COOH).
0.25XS/H8CH3CO0H. os) or more, preferably 0.1 as the amount of sulfur component in the molecule
2-159/degree (thioglycolic acid H8CH2C0
0.43 to 54 gA) as OH.

電解液には、上記の第一錫塩のグループおよびパ分解性
イオウ化合物″のグループから選ばれたそれぞれ少なく
とも1種以上が添加されるが、通常は電導性を持たせる
ために電解質成分が加えられ、筐た、第一錫の酸化防止
剤を添加してもよい。
At least one selected from the group of stannous salts and sulfur compounds mentioned above is added to the electrolytic solution, but usually an electrolyte component is added to make it conductive. In addition, a stannous antioxidant may be added.

電導性を持たせるための電解質としては、通常電解着色
で用いられる硫酸、硝酸、塩酸、リン酸、ホウ酸、クロ
ム酸、などの無機酸、釦よびシュウ酸、酢酸、プロピオ
ン酸、蟻酸、酒石酸、クエン酸などの有機酸いるいはそ
れらのアンモニウム塩、アミノ塩もしくはイミノの塩な
どがあり、これらの水溶液を電解液として前記した化合
物を添加して電解液とする。
Electrolytes to provide conductivity include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and chromic acid, which are usually used in electrolytic coloring, as well as oxalic acid, acetic acid, propionic acid, formic acid, and tartaric acid. , organic acids such as citric acid, or their ammonium salts, amino salts, or imino salts.An aqueous solution of these is used as an electrolytic solution, and the above-mentioned compound is added thereto to obtain an electrolytic solution.

また、発色に関与しないリチウム、ナトリウム、カリウ
ム、マグネシウム、アルミニウムなどの金属の上記無機
酸もしくは有機酸の塩を電解質として添加することもで
きる。
Furthermore, salts of the above-mentioned inorganic or organic acids of metals such as lithium, sodium, potassium, magnesium, and aluminum, which do not participate in color development, can also be added as electrolytes.

これら電解質の添加濃度は約3?/を以上、好筐しくは
約52/を以上(飽和直重で)である。
The concentration of these electrolytes added is about 3? / or more, preferably about 52 / or more (at saturated normal weight).

第一錫から第二錫への酸化を防止するために酸化防止剤
を添加することは、錫塩が高価であることや浴濃度を一
定に保つために有用であり、錫メッキ浴によく用いられ
るが、本発明の電解液に釦いても酸化防止剤(還元剤)
の添加は濃い均一なゴールド色の着色皮膜を得るのに有
効である。
Adding an antioxidant to prevent the oxidation of stannous to stannic is often used in tin plating baths because tin salts are expensive and it is useful to keep the bath concentration constant. However, even if the electrolyte of the present invention contains an antioxidant (reducing agent)
The addition of is effective in obtaining a deep and uniform gold-colored colored film.

酸化防止剤としては、たとえばヒドラジン(硫酸ヒドラ
ジン)、ヒドロキノン、レゾルシン、ヒドロキシルアミ
ン、クレゾールスルフオン酸ナトの強還元性物質や、L
−アスコルビン酸、無機酸もしくは有機酸の第一鉄塩、
ホルマリンなどの弱還元性物質などがある。
Examples of antioxidants include strong reducing substances such as hydrazine (hydrazine sulfate), hydroquinone, resorcinol, hydroxylamine, cresol sodium sulfonate, and L.
- ascorbic acid, ferrous salts of inorganic or organic acids,
Examples include weakly reducing substances such as formalin.

還元性が強いもの程第二錫の発生は抑えられるが、添加
量が増すにつれてゴールド色が淡くなり、約51/を以
上になると無着色に近い状態となる。
The stronger the reducing property is, the more suppressed the generation of stannic tin is, but as the amount added increases, the gold color becomes lighter, and when it exceeds about 51/2, it becomes almost uncolored.

一方、弱還元性のものでもホルマリンは若干淡色となる
が、L−アスコルビン酸、無機酸もしくは有機酸の第一
鉄塩では全く濃さにも色調にも変化は起こらない。
On the other hand, even with weakly reducing formalin, the color becomes slightly lighter, but with L-ascorbic acid, ferrous salts of inorganic acids, or organic acids, there is no change in density or color tone at all.

したがって、酸化防止剤を添加する場合、弱還元性物質
、特にL−アスコルビン酸むよび第一鉄塩が好1しく、
強還元性物質の場合5?/を以下で用いなければならな
い。
Therefore, when adding an antioxidant, weakly reducing substances, especially L-ascorbic acid and ferrous salts are preferred;
5 for strongly reducing substances? / must be used below.

従来の錫浴での交流電解着色法での析出物は、金属錫、
酸化錫あるいは還元水酸化錫であると推測されているの
に対して、本発明の方法においては、゛分解性イオウ化
合物”から供給された硫化錫を多く作っているものと思
われ、この硫化錫の色(金色)が加わりゴールド色とな
って見えるものと思われる。
The precipitates produced by the conventional alternating current electrolytic coloring method in a tin bath are metallic tin,
It is assumed that tin oxide or reduced tin hydroxide is produced, but in the method of the present invention, it seems that a large amount of tin sulfide is produced from "degradable sulfur compounds", and this sulfur It is thought that the color of tin (gold) is added to give the appearance of a gold color.

本発明で使用されるアルミニウムとは、陽極処理を施し
得るものであればよく、特に制約はない。
The aluminum used in the present invention is not particularly limited as long as it can be anodized.

以上のようにして電解着色された陽極酸化皮膜は、必要
により沸騰水、薬品あるいは加圧水蒸気などによる封孔
処理が施される。
The anodic oxide film electrolytically colored as described above is subjected to a sealing treatment using boiling water, chemicals, pressurized steam, or the like, if necessary.

筐た、この封孔処理を施した後、あるいは封孔処理を施
すことなく、必要によりさらに樹脂塗料による浸漬塗装
置たは電着塗装を行ない表面の保護を行なってもよい。
After carrying out this sealing treatment, or without sealing, the surface of the housing may be further protected by dip coating or electrodeposition coating with a resin paint, if necessary.

次に、実施例をあげて本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail by giving examples.

実施例に記す一次電解の条件、電解着色の極比、浴温、
電圧等の条件は具体例であり、これに限定されるもので
はない。
Conditions for primary electrolysis, polar ratio of electrolytic coloring, bath temperature,
Conditions such as voltage are specific examples and are not limited thereto.

実施例 1 常法により脱脂、エツチング、スマット除去されたアル
ミニウム押出形材A−60638,T −5を17.5
w/ v%硫酸水溶液中に浸漬して陽極とし、対極と
して設けられたアルミニウム陰極との間に電流密度1.
25A/dm” (電圧約15v)で常温で35分間
通電して、その表面に約15μmの陽極酸化皮膜を形成
させた。
Example 1 An extruded aluminum profile A-60638, T-5 that had been degreased, etched, and smutted by a conventional method was heated to 17.5 mm.
An anode was immersed in a w/v% sulfuric acid aqueous solution, and a current density of 1.
Electricity was applied at room temperature for 35 minutes at 25 A/dm'' (voltage of about 15 V) to form an anodic oxide film of about 15 μm on the surface.

次に、これを水洗した。Next, this was washed with water.

ついで、長さ300rrrm、幅100簡、高さ150
rrvnの容器を着色電解用装置として用い、カーボン
対極を容器の一方端に置き、長さ150問、幅70Cr
r1、厚さ1.3閣の前記被処理材を極間距離約280
mにして、下記の組成を有する浴温20℃の電解液中に
浸漬して、12vの印加電圧で4分間交流電解したとこ
ろ、アルミニウム押出形材の対極面、非対極面ともにむ
らのない均一なゴールド色の着色皮膜が得られた。
Next, the length is 300rrrm, the width is 100mm, and the height is 150mm.
rrvn container was used as a device for coloring electrolysis, a carbon counter electrode was placed at one end of the container, and the length was 150 and the width was 70 Cr.
r1, thickness 1.3 mm, the distance between the poles is about 280
When immersed in an electrolytic solution having the following composition at a bath temperature of 20°C and subjected to AC electrolysis for 4 minutes at an applied voltage of 12 V, both the counter electrode surface and the non-counter electrode surface of the aluminum extruded shape were uniform with no unevenness. A golden colored film was obtained.

電解液組成;硫酸第一錫 49/を 硫酸 401/を 三チオン酸ナトリウム 1、Of/l このようにして得られた着色皮膜を水洗した後、5Kg
/crAの加圧水蒸気で30分開封孔処理して、ウェザ
−メータにより3000時間の促進耐候性試験を行なっ
たところ、1つたく異常は認められず、200℃におけ
る2時間の加熱試験に訃いても着色に変化はなかった。
Electrolyte composition: stannous sulfate 49/sulfuric acid 401/sodium trithionate 1, Of/l After washing the colored film thus obtained with water, 5 kg
/crA pressurized steam for 30 minutes and accelerated weathering test for 3,000 hours with a weather meter, no abnormalities were observed, and the material was not tested after heating at 200℃ for 2 hours. There was no change in coloration.

さらに、キャス試験においても16時間で異常なく、外
装材としての性能を十分に有することを確認した。
Furthermore, there were no abnormalities in the Cath test after 16 hours, confirming that the product had sufficient performance as an exterior material.

比較例 1 実施例1と同様の方法で15μmの陽極酸化皮膜を形成
した後、着色電解液組成だけを下記の組成に変える他は
実施例1と同一条件で電解着色を行なったところ、アル
ミニウム押出形材は淡いベージュ色となり、対極面に比
し非対極面が若干淡く着色された。
Comparative Example 1 After forming a 15 μm anodic oxide film in the same manner as in Example 1, electrolytic coloring was performed under the same conditions as in Example 1 except that only the coloring electrolyte composition was changed to the following composition. The profile became a light beige color, and the non-opposite surface was colored slightly lighter than the counter electrode surface.

電解液組成:硫酸第一錫 41/を 硫酸 401/を 比較例 2 実施例1と同様にして陽極酸化処理を行なった後、実施
例1と同一組成の電解液に第一錫の酸化防止の目的で硫
酸ヒドラジン、クレゾールスルホン酸をそれぞれ10t
/lを加えた電解液を用いて実施例1と同一条件で電解
着色を行なったところ、両者とも極めて淡いゴールド色
になってしまい、無着色皮膜と変わらない程度のもので
あった。
Electrolyte composition: stannous sulfate 41/ and sulfuric acid 401/ Comparative Example 2 After anodizing in the same manner as in Example 1, an electrolyte with the same composition as in Example 1 was added with a stannous oxidation inhibitor. 10 tons each of hydrazine sulfate and cresol sulfonic acid for the purpose
When electrolytic coloring was carried out under the same conditions as in Example 1 using an electrolytic solution to which /l was added, both films became extremely pale gold colors, which were comparable to uncolored films.

比較例 3 比較例2と同様の目的で、実施例1と同一組成の電解液
にホルマリン37多水溶液、L−アスコルビン酸、硫酸
第一鉄をそれぞれlot/を加えて比較例2と同様に電
解着色を行なったところ、ホルマリンについては若干淡
色となったがかなり濃いゴールド色であり、L−アスコ
ルビン酸、硫酸第一鉄については実施例1で得られたゴ
ールド色と全く同じ濃さ、同じ色調であった。
Comparative Example 3 For the same purpose as Comparative Example 2, a lot/lot of formalin 37 polyaqueous solution, L-ascorbic acid, and ferrous sulfate were added to an electrolytic solution having the same composition as in Example 1, and electrolysis was carried out in the same manner as in Comparative Example 2. When coloring was carried out, the formalin color was slightly lighter, but it was a fairly deep gold color, and the L-ascorbic acid and ferrous sulfate had exactly the same depth and color tone as the gold color obtained in Example 1. Met.

実施例 2 実施例1と同様にしてアルミニウム押出形材A−606
3S、 T−5を電流密度1.OA/drr?で33分
間電解して10μmの陽極酸化皮膜を形成し、下記の組
成の電解液を用いて実施例1と同一の電解着色条件で電
解着色を行なったところ、対極面、非対極面ともに均一
なゴールド色の着色皮膜が得られた。
Example 2 Extruded aluminum profile A-606 in the same manner as Example 1
3S, T-5 at a current density of 1. OA/drr? Electrolysis was carried out for 33 minutes to form a 10 μm anodic oxide film, and when electrolytic coloring was carried out under the same electrolytic coloring conditions as in Example 1 using an electrolytic solution with the following composition, both the counter electrode surface and the non-counter electrode surface were uniform. A gold colored film was obtained.

電解液組成;硫酸第一錫 4グ/を 四チオン酸 0.5 r /l ナトリウム チオグリコール酸 0.5グ/l ホルマリン 51/1 (37φ水溶液) 硫酸 301/を 実施例 3 実施例1と同様にして15 umの陽極酸化皮膜を形成
した後、着色電解液組成だけを下記の組成に変えて、他
は実施例1と同一条件で電解着色を行なったところ、ア
ルミニウム押出形材の対極面、非対極面ともに均一な濃
いゴールド色の着色皮膜が得られた。
Electrolyte composition: stannous sulfate 4 g/l, tetrathionic acid 0.5 r/l, sodium thioglycolic acid 0.5 g/l formalin 51/1 (37φ aqueous solution) sulfuric acid 301/l Example 3 Example 1 After forming a 15 um anodic oxide film in the same manner, electrolytic coloring was carried out under the same conditions as in Example 1, except that only the composition of the colored electrolyte was changed to the composition shown below. A uniform dark gold colored film was obtained on both the non-counter electrode surface.

電解液組成;硫酸第一錫 3グ/l チオ尿素 251/を 硫安 251/l グリコン酸 10 ?/l アンモニウム 実施例 4 実施例3と同様にして下記の組成を有する電解液を用い
て電解着色を行なったところ、対極面、非対極面ともに
均一な淡いゴールド色の着色皮膜が得られた。
Electrolyte composition: stannous sulfate 3 g/l thiourea 251/l ammonium sulfate 251/l glyconic acid 10 ? /l Ammonium Example 4 When electrolytic coloring was carried out in the same manner as in Example 3 using an electrolytic solution having the following composition, a uniform pale gold-colored colored film was obtained on both the counter electrode surface and the non-counter electrode surface.

電解液組成;塩化第一錫 14/を 塩化チオニル 0.4 f /l ホルマリン 3グ/1 (37多水溶液) 硫酸 30ff/を 硫安 20?/を 実施例 5 実施例3と同様にして下記の組成を有する電解液を用い
て電解着色を行なったところ、対極面、非対極面ともに
均一なやや淡いゴールド色の着色皮膜が得られた。
Electrolyte composition: stannous chloride 14/l, thionyl chloride 0.4 f/l, formalin 3 g/1 (37% aqueous solution) sulfuric acid 30ff/ammonium sulfate 20? Example 5 When electrolytic coloring was carried out in the same manner as in Example 3 using an electrolytic solution having the following composition, a uniform slightly pale gold-colored colored film was obtained on both the counter electrode surface and the non-counter electrode surface.

電解液組成;硫酸第一錫 101/を環ニチオン酸
32/l ナトリウム 酢酸 1ot/を 硫酸第一鉄 51/l (7水塩) 実施例 6 実施例3と同様にして下記の組成を有する電解液を用い
て電解着色を行なったところ、対極面、非対極面ともに
均一なゴールド色の着色皮膜が得られた。
Electrolyte composition: 101/l of stannous sulfate, 32/l of cyclic dithionic acid, 10/l of sodium acetic acid, 51/l of ferrous sulfate (7 hydrate) Example 6 Electrolysis with the following composition in the same manner as in Example 3. When electrolytic coloring was performed using the solution, a uniform gold-colored colored film was obtained on both the counter electrode surface and the non-counter electrode surface.

電解液組成;硫酸第一錫 1.59/を三チオン酸
0.4グ/l ナトリウム 硫酸 45f/1 ホルマリン Is’/A (37多水溶液) 硫安 30グ/を 実施例2〜6のゴールド色に着色されたアルミニウム押
出形材を水洗、温水洗後電着塗装を施してJISA−4
706に定める促進耐候性試験、耐アルカリ性、耐酸性
試験、付着性試験を行なった結果、JIBに規定する条
件を十分に満足する結果が得られた。
Electrolyte composition: stannous sulfate 1.59 g/l, trithionic acid 0.4 g/l, sodium sulfuric acid 45 f/1, formalin Is'/A (37 multi-aqueous solution) ammonium sulfate 30 g/l, gold color of Examples 2 to 6 The colored extruded aluminum shape is washed with water, and after washing with warm water, it is electrocoated to JISA-4.
As a result of conducting an accelerated weathering test, an alkali resistance test, an acid resistance test, and an adhesion test as specified in 706, results were obtained that fully satisfied the conditions specified in JIB.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極酸化処理を施したアルミニウムまたはアルミニ
ウム合金を金属塩を含有する電解液中で交流!たはそれ
と同等の効果をもつ電流波形により電解着色する方法に
おいて、電解液として第−錫塩と、分子中にイオウ原子
を有し、液中で徐々に分解するかあるいは交流通電によ
る酸化還元反応を受けて分解することにより含有するイ
オウを放出する物質を主成分とする電解液を用いること
を特徴とするアルミニウムまたはアルミニウム合金の電
解着色法。
1 Aluminum or aluminum alloy subjected to anodizing treatment is exposed to alternating current in an electrolyte containing metal salts! Or, in the method of electrolytic coloring using a current waveform that has an equivalent effect, the electrolyte contains a tin salt and a sulfur atom in the molecule, which gradually decomposes in the solution or undergoes an oxidation-reduction reaction by alternating current. 1. A method for electrolytic coloring of aluminum or aluminum alloys, which is characterized by using an electrolytic solution whose main component is a substance that releases sulfur when it is decomposed.
JP13314978A 1978-10-31 1978-10-31 Electrolytic coloring method for aluminum or aluminum alloys Expired JPS5830397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13314978A JPS5830397B2 (en) 1978-10-31 1978-10-31 Electrolytic coloring method for aluminum or aluminum alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13314978A JPS5830397B2 (en) 1978-10-31 1978-10-31 Electrolytic coloring method for aluminum or aluminum alloys

Publications (2)

Publication Number Publication Date
JPS5562197A JPS5562197A (en) 1980-05-10
JPS5830397B2 true JPS5830397B2 (en) 1983-06-29

Family

ID=15097854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13314978A Expired JPS5830397B2 (en) 1978-10-31 1978-10-31 Electrolytic coloring method for aluminum or aluminum alloys

Country Status (1)

Country Link
JP (1) JPS5830397B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261996A (en) * 1987-04-20 1988-10-28 Matsushita Electric Ind Co Ltd Voice coil for speaker
JPH06237500A (en) * 1993-11-16 1994-08-23 Sony Corp Electroacoustic transducer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221597A (en) * 1985-03-11 1985-11-06 Yoshida Kogyo Kk <Ykk> Method for electrolytically coloring aluminum or aluminum alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261996A (en) * 1987-04-20 1988-10-28 Matsushita Electric Ind Co Ltd Voice coil for speaker
JPH06237500A (en) * 1993-11-16 1994-08-23 Sony Corp Electroacoustic transducer

Also Published As

Publication number Publication date
JPS5562197A (en) 1980-05-10

Similar Documents

Publication Publication Date Title
US7196221B2 (en) Ionic liquids and their use
CA1046975A (en) Process for electrolytic colouring of the anodic oxide film on aluminum or aluminum base alloys
US6379523B1 (en) Method of treating surface of aluminum blank
US3878056A (en) Process for electrolytic coloring of the anodic oxide film on a aluminum or aluminum base alloys
BR112016018584A2 (en) trivalent chrome continuous bath process
EP2640873A1 (en) Electrolytic dissolution of chromium from chromium electrodes
SE444585B (en) MATERIALS FOR SELECTIVE ABSORPTION OF SOLAR ENERGY AS WELL AS MANUFACTURING THE MATERIAL
CA1048963A (en) Process for electrolytically coloring aluminum and aluminum alloys
US4043880A (en) Method for producing green-colored anodic oxide film on aluminum or aluminum base alloy articles
JPS5830397B2 (en) Electrolytic coloring method for aluminum or aluminum alloys
US3365377A (en) Method of sealing anodized aluminum
CA1075189A (en) Process for electrolytically coloring aluminum and aluminum alloys in gold
US3346469A (en) Method of selectively coloring titanium bodies
JPS5916994A (en) Formation of colored protective film on surface of aluminum material
JPH10147899A (en) Electrolytic coloring method of aluminum material and gray-colored aluminum material produced therewith
US3330744A (en) Anodic treatment of zinc and zinc-base alloys and product thereof
JP2000355795A (en) Surface treatment of aluminum and aluminum alloy
US4042471A (en) Process for electrolytically coloring aluminum and aluminum alloys
JPS607039B2 (en) Electrodeposition coating method for aluminum or aluminum alloys
JPS5948879B2 (en) Aluminum electrolytic coloring method
JPS6137997A (en) Surface treatment of aluminum or aluminum alloy
JPS593559B2 (en) Dipping coloring method for aluminum or its alloy materials
JPS5952719B2 (en) Method for forming a corrosion-resistant anodic oxide film with a thick electrodeposition coating
JPS61110797A (en) Surface treatment of aluminum or aluminum alloy
JPS636638B2 (en)