JPS5829580A - Shielding or restraining gaseous mixture - Google Patents
Shielding or restraining gaseous mixtureInfo
- Publication number
- JPS5829580A JPS5829580A JP12775981A JP12775981A JPS5829580A JP S5829580 A JPS5829580 A JP S5829580A JP 12775981 A JP12775981 A JP 12775981A JP 12775981 A JP12775981 A JP 12775981A JP S5829580 A JPS5829580 A JP S5829580A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- gas
- gaseous
- gaseous mixture
- shielding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はアルゴンガスと水素ガスからなり被包ガス又は
拘束ガスとり、て自動、手動併用の不活性ガス被包タン
グステン溶接法(T I G)又はプラズマ溶接に用い
る混合ガスに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is a mixture of argon gas and hydrogen gas used for automatic and manual inert gas encapsulated tungsten welding (TIG) or plasma welding. Regarding gas.
普通鋼、不銹鋼又は低合金鋼の溶接における被包ガスは
アルゴンガスが最も多く用いられている。Argon gas is most often used as the encapsulating gas in welding ordinary steel, stainless steel, or low alloy steel.
アルゴンガスが多用される理由は、溶接施工時における
アーク長及び溶接電流の設定範囲の変化に対応1〜で溶
接結果への影響が緩慢であ)、溶接作業者の技量差に左
右される度合いが小さいことに起因していることが知ら
れている。The reason why argon gas is frequently used is that it responds to changes in the arc length and welding current setting range during welding, and its effect on welding results is slow (1 to 1), and the degree to which it is affected by differences in the skill of welding workers. It is known that this is due to the small size of
一方、アルゴンガスに代えてヘリウノ・ガス、アルゴン
ガスと60〜80係のヘリウムガスとの混合ガス、又は
アルゴンガスと5〜65%の水素ガスとの混合ガス等の
被包ガスがT I G溶接又はプラズマ溶接に用いられ
ている。On the other hand, instead of argon gas, an encapsulating gas such as heliuno gas, a mixed gas of argon gas and 60 to 80% helium gas, or a mixed gas of argon gas and 5 to 65% hydrogen gas may be used. Used for welding or plasma welding.
前述の如きヘリウムガスリッチの被包ガス及び5〜35
チ水素ガスとアルゴンガスとの混合組成の被包ガスの場
合は、溶接機の電弧知:圧のaシ、いものを用いないと
アークスタートが困t1tであり溶着金属の溶は込みも
大きく被溶接材が薄板の場合の溶接では溶は落ちの発生
頻度が高くなることが知られている。従って、被溶接材
の板厚は2・3 +n+o以上か、又は溶接条件の設定
変動因子の少ない高速自動TIG溶接の被包ガスや、プ
ラズマ溶接、プラズマ切断の拘束ガス等に限定1〜て用
いられている現状である^
前述の如き観点から本発明者は釉々検削かつ実験の結果
、本発明の開発に成功i−だものであり、本発明の要旨
とするところは前記特許請求の範囲に明記[、たとおり
であるが、更に本発明eこついて具体的(C説明すZ・
。Helium gas-rich encapsulation gas as described above and 5 to 35
In the case of an encapsulated gas with a mixed composition of dihydrogen gas and argon gas, it is difficult to start the arc unless the welding machine's electric detection: high pressure is used, and the weld penetration of the weld metal is large. It is known that when welding thin plates to be welded, welding often occurs more frequently. Therefore, the thickness of the material to be welded is 2.3+n+o or more, or the use is limited to encapsulating gas for high-speed automatic TIG welding, where there are few factors that change the setting of welding conditions, and restraining gas for plasma welding and plasma cutting. From the above-mentioned viewpoint, the present inventor has succeeded in developing the present invention as a result of glaze inspection and experiments, and the gist of the present invention is the above-mentioned patent claim. This is clearly stated in the scope of the invention.
.
本発明の被包又は拘束混合ガスは0.5〜6.5チの水
素ガスと残部アルゴンガス七ヲ混合ガスしたものでル)
るが、被溶接材の板厚が3−2 nun以下の場合Kr
t、板厚の数値と略同等の数値の水素ガス混合率の混合
ガスを用いることにより、溶着部の機械的諸性負を低下
させることなく、溶接施工速度を改善できることを知見
1〜た。The encapsulated or restrained mixed gas of the present invention is a mixture of 0.5 to 6.5 liters of hydrogen gas and the balance argon gas.
However, if the thickness of the material to be welded is 3-2 nun or less, Kr
It was found from Findings 1 to 1 that by using a mixed gas with a hydrogen gas mixing ratio that is approximately the same as the value of the plate thickness, the welding speed can be improved without reducing the mechanical properties of the welded part.
被包ガス(又は拘束ガス)としてアルゴンがス単味の場
合と本発明のアルゴン+水素混合ガスとの各溶接条件及
び溶接結果を表1 (TIG溶接)、p2(fラズマ溶
接)に示す。これら実験において被溶接材はフェライト
系及びオーステナイト系鋼材である。Tables 1 (TIG welding) and p2 (f plasma welding) show welding conditions and welding results when argon is used as the encapsulating gas (or restraining gas) and when the argon + hydrogen mixed gas of the present invention is used. In these experiments, the materials to be welded were ferritic and austenitic steels.
434−
本発明は以」二詳述した如き構成からなるTIG又はプ
ラズマ溶接用被包力゛ス又は拘束ガスであって、奏せら
、ffLる作用効果を挙げれば次のとおりである:
(11本発明の被包ガスの電位傾度はAr に近い電
位傾度であり、従来のAr ifガス用溶接機を改造
することなしに使用し旬、アークのスタートが容品であ
る。(11) The potential gradient of the encapsulated gas of the present invention is close to that of Ar, so that a conventional Arif gas welding machine can be used without modification, and the arc can be started easily.
(2)板厚0・41以上の不銹鋼、普通鋼、低合金鋼の
手動及び自動1” I C溶接及びプラズマ手動溶接が
できる。尚、手動溶接における溶接速度は技世により異
なるが、一般に1〜50L:1n/分であり、自動溶接
は溶接条件の設定変更因子が少ないので任意に設定が可
能である。(2) Capable of manual and automatic 1" IC welding and manual plasma welding of stainless steel, common steel, and low-alloy steel with plate thicknesses of 0.41 mm or more. The welding speed for manual welding varies depending on the technology, but generally 1" ~50L: 1 n/min, and since automatic welding has few factors to change the settings of welding conditions, it can be set arbitrarily.
+3+ Ar ガスに比較して、同一溶接電流値に
おいて15〜4G俤の溶接施工速度の増大が、優れた継
手の機械的性能、外観、裏波の形成と共に達成できる。Compared to +3+ Ar gas, an increase in welding speed of 15-4 Gt at the same welding current value can be achieved with excellent joint mechanical performance, appearance, and under-wave formation.
(4) オーステナイト系鋼材に比較してフェライト
系鋼材は溶接入熱量の増加によって溶着部の結晶が粗大
化し、溶着部の機械的性能を著しく低下させることが知
られている。本発明混合ガスを被包ガスとして用いた場
合は、溶接が難しいとされているフェライト系溶接材に
おいても表6及び4に示す如く、安定した機械的特性、
溶接速度の改善と共に溶接製品の歪も少なくすることが
できることが判明した。(4) Compared to austenitic steel materials, it is known that in ferritic steel materials, the crystals in the weld zone become coarser due to an increase in welding heat input, which significantly reduces the mechanical performance of the weld zone. When the mixed gas of the present invention is used as the encapsulating gas, even ferritic welding materials, which are difficult to weld, have stable mechanical properties as shown in Tables 6 and 4.
It has been found that the distortion of the welded product can be reduced as well as the welding speed improved.
尚1表3はフェライト系鋼材のTIG溶接における本発
明混合ガスとAr ガスとを被包ガスと17で夫々用
いた場合の溶接速度を対比した1例を示し、第4表はフ
ェライト系鋼材のTIG溶接における本発明混合ガスと
Ar ガスとを被包ガスとして夫々用いた場合の、第
6表に示すそれぞれの溶接条件におけるビード「1〕及
びその機械的性能を対比して示すものである。Table 1 and Table 3 show an example comparing the welding speeds when the mixed gas of the present invention and Ar gas are used as the encapsulating gas and 17, respectively, in TIG welding of ferritic steel, and Table 4 shows the welding speed of TIG welding of ferritic steel. This table shows a comparison of the bead "1" and its mechanical performance under the respective welding conditions shown in Table 6 when the mixed gas of the present invention and Ar gas are used as encapsulating gases in TIG welding.
一般に薄板溶接では被溶接材強度に近い溶着部、即ち継
手部の機械的強度を得るには、裏波のビード巾(裏ビー
ド巾)を被溶接材の板厚の1〜1.5倍の範囲に管理す
る必要がある。表ビード巾を略一定に設定した状態でも
溶は込み指数(表ビード[IJ/裏ビード巾)がAr
ガスの場合は2前後であり、かつバラツキがあるのに
対し、本発明混合ガスの場合は1・5前後であり、かつ
バラツキが少なく改善できる。薄板に限らず実際の溶接
製品が円筒形状又は箱形のものにおいては、内側に形成
1−た裏波及び裏ビード巾を目視できないことが多い。Generally, in thin plate welding, in order to obtain the mechanical strength of the welded part, that is, the joint part, close to the strength of the material to be welded, the bead width of the back wave (back bead width) should be set to 1 to 1.5 times the thickness of the material to be welded. Must be managed within a range. Even when the front bead width is set approximately constant, the penetration index (front bead [IJ/back bead width)] is Ar.
In the case of gas, it is around 2 and there is some variation, whereas in the case of the mixed gas of the present invention, it is around 1.5 and can be improved with less variation. When the actual welded product is cylindrical or box-shaped, not only thin plates, it is often impossible to visually see the inner corrugation and the width of the bead formed on the inside.
またAr ガスのように溶は込み指数の大きい被包ガ
スにおめでは、薄板におりても濡れ特性が高く表ビード
巾は広くなるが、反面裏波が出にくく、かつバラツキが
大きく、表ビード巾によって裏ビードを管理することが
困難である。1〜かし、本発明混合ガスでは溶は込み指
数の・すラツキが少なく表ビード11]による裏ビード
巾の管理も容易であシ生産性が向上できる。In addition, when using an encapsulating gas with a large penetration index such as Ar gas, the wetting properties are high even if it falls on a thin plate, and the front bead width becomes wider, but on the other hand, it is difficult to generate back waves, and there is a large variation in the surface bead width. It is difficult to manage the back bead depending on the bead width. 1 to 1, the mixed gas of the present invention has less sluggishness in the melt penetration index, and the width of the back bead by the front bead 11 can be easily controlled and productivity can be improved.
合金銀に水素脆化及び溶接欠陥のない状態で用いること
ができる。Alloyed silver can be used without hydrogen embrittlement and welding defects.
(617°72”マ溶接では、プラズマガス(パイロッ
トアークガス)に拘束ガスと同種のガスを用いることが
でき、施工速度の増大と共に溶接製品の品質の向上が計
れる。(In 617°72" ma welding, the same type of gas as the restraining gas can be used as the plasma gas (pilot arc gas), which increases the construction speed and improves the quality of the welded product.
436436
Claims (1)
はプラズマ溶接用のD・5〜6・5%水素ガスと残部ア
ルゴンガスとからなる被包又は拘束混合ガス。A encapsulated or constrained mixed gas consisting of D.5 to 6.5% hydrogen gas and the balance argon gas for automatic and manual inert gas encapsulated tungsten welding or plasma welding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12775981A JPS5829580A (en) | 1981-08-17 | 1981-08-17 | Shielding or restraining gaseous mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12775981A JPS5829580A (en) | 1981-08-17 | 1981-08-17 | Shielding or restraining gaseous mixture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5829580A true JPS5829580A (en) | 1983-02-21 |
Family
ID=14967980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12775981A Pending JPS5829580A (en) | 1981-08-17 | 1981-08-17 | Shielding or restraining gaseous mixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5829580A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516148A (en) * | 1996-08-12 | 2000-12-05 | ティーアールアイ・トゥール・インコーポレーテッド | Welding method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4870639A (en) * | 1971-12-25 | 1973-09-25 | ||
JPS5343649A (en) * | 1976-10-01 | 1978-04-19 | Tomizawa Seimitsukan Yuugen | Gas shielded arc welding |
JPS546830A (en) * | 1977-06-20 | 1979-01-19 | Matsushita Electric Ind Co Ltd | Tig arc welding method |
-
1981
- 1981-08-17 JP JP12775981A patent/JPS5829580A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4870639A (en) * | 1971-12-25 | 1973-09-25 | ||
JPS5343649A (en) * | 1976-10-01 | 1978-04-19 | Tomizawa Seimitsukan Yuugen | Gas shielded arc welding |
JPS546830A (en) * | 1977-06-20 | 1979-01-19 | Matsushita Electric Ind Co Ltd | Tig arc welding method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516148A (en) * | 1996-08-12 | 2000-12-05 | ティーアールアイ・トゥール・インコーポレーテッド | Welding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2498116C (en) | Metal-core gas-metal arc welding of ferrous steels with noble gas shielding | |
CA2204344C (en) | Metal-core weld wire with reduced core fill percentage | |
GB1355763A (en) | Austenitic stainless steel and method of welding therewith | |
US20020190033A1 (en) | Tandem welding shielding gases | |
GB1490772A (en) | Process for welding low-alloy steels containing niobium | |
JPH03166000A (en) | Metal core electrode | |
JPS58132393A (en) | Composite wire for welding 9% ni steel | |
US3405248A (en) | Core wire for electric arc welding | |
CA1071441A (en) | Bare electrode for welding of low temperature steel | |
JPS5829581A (en) | 3 component shielding or restraining gaseous mixture | |
JPS5829580A (en) | Shielding or restraining gaseous mixture | |
US2807562A (en) | Welding composition for hard facing | |
US3023301A (en) | Silica-free welding flux | |
US2011706A (en) | Arc welding electrode | |
US2988627A (en) | Metal arc welding | |
US3328557A (en) | Nickel arc welding electrode | |
US2920181A (en) | Electric arc deoxidized metal deposition | |
CN100389000C (en) | Nb-containing stainless flux-cored wire with favorite detachability | |
JPS6397396A (en) | Iron powder flux cored wire | |
US3149220A (en) | Inert-gas shielded arc welding method | |
Kryukov et al. | Quality of weld seams produced with flux based on silicomanganese slag | |
US3457388A (en) | Electrode for welding and building up metals and their alloys | |
CN109175777B (en) | 550 MPa-level low-temperature steel matched flux-cored wire | |
US2950377A (en) | Metal arc welding | |
GB1045620A (en) | Improvements in and relating to gas shielded arc welding processes |