JPS5825808A - Controlling method of sheet thickness at pass-through and run-out in rolling mill - Google Patents
Controlling method of sheet thickness at pass-through and run-out in rolling millInfo
- Publication number
- JPS5825808A JPS5825808A JP56124359A JP12435981A JPS5825808A JP S5825808 A JPS5825808 A JP S5825808A JP 56124359 A JP56124359 A JP 56124359A JP 12435981 A JP12435981 A JP 12435981A JP S5825808 A JPS5825808 A JP S5825808A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- plate thickness
- gauge
- pattern
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/16—Control of thickness, width, diameter or other transverse dimensions
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は冷間連続圧延機における板厚、特に圧延コイル
のトップ部及びボトム部を目標板厚に仕上げるための圧
延機の通板、灰抜時の板厚制御方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for controlling plate thickness in a cold continuous rolling mill, particularly during threading and ash removal in a rolling mill, in order to finish the top and bottom parts of a rolling coil to a target thickness. It is related to.
冷延鋼板の製造に際しての最重要管理項目は板厚精度で
あシ、板厚精度向上のための自動板厚制御技術、所謂A
GC技術が種々開発されている。ところで冷間連続圧延
機(以下単にタンデムミルという)Kよる圧延工程を圧
延速度についてみると、一般に素材となる熱延コイルの
トップを圧延機に噛込ませる低い圧延速度の通板時、通
板時からより高速の定常の圧延速度に迄高めてゆく加速
時、定常圧延速度から減ぎしてゆく減速時、及び低い圧
延速度でコイルボトムを圧延機より抜いてゆく灰抜時の
期間等に分類される。九だコイルの大部分は通常の速度
で圧延されるからAGC技術の多くは上記定常圧延時を
対象とするものであシ、他の低速の通板時、加速時、又
は減速時を対象とするものは、皆無に近い。これを補う
ための通常AGCの通用域を圧延速度が定常圧延速度の
&96〜20%の範囲に迄拡大し、それよりも低速の範
囲ではオペレータが手動にて板厚制御を行っているのが
現状である。The most important control item when manufacturing cold-rolled steel sheets is plate thickness accuracy, and automatic plate thickness control technology, so-called A, is used to improve plate thickness accuracy.
Various GC techniques have been developed. By the way, if we look at the rolling speed of the rolling process using a cold continuous rolling mill (hereinafter simply referred to as a tandem mill) K, we can see that generally when the sheet is passed at a low rolling speed in which the top of the hot-rolled coil, which is the raw material, is bitten into the rolling mill, It is classified into three periods: acceleration, when the rolling speed is increased to a higher steady rolling speed; deceleration, when the rolling speed is decreased from the steady rolling speed; and ash removal, when the coil bottom is removed from the rolling mill at a low rolling speed. be done. Since most of the nine-deck coils are rolled at normal speeds, most of the AGC techniques are aimed at the above-mentioned steady rolling, and are not intended for other low-speed threading, acceleration, or deceleration. There is almost nothing to do. In order to compensate for this, the usable range of normal AGC has been expanded to a rolling speed range of +96 to 20% of the steady rolling speed, and at lower speeds the operator manually controls the plate thickness. This is the current situation.
しかしこのような方法では板厚か目標板厚に入らない、
所謂オフゲージとなる部分が長くなシがちであり、この
オフゲージ部分の切捨による歩留低下は避けられないも
のとなっていた。このようなオフゲージを発生させる原
因の一つは例えば通板時についてみると圧延コイルのト
ップ部が1のスタンドを出た後、これに隣接する次スタ
ンドに噛み込まれる迄の間はストリップの前方張力が全
く作用しない、張力零の状態で圧延がなされることKあ
る。即ち圧延コイルの中間部では隣接スタンド間で発生
した前方及び後方張力が加えられた圧延が施されるのに
対し、圧延コイルのドッグ部では各スタンド毎に隣接ス
タンド間で作用せしめられる前方張力を受ける時間が他
の中間部に比較してトップ部にゆく程短くなり、この状
態が各隣接するスタンド間毎に反復される結果、圧延コ
イルトップ部の板厚が他の部分よりも厚くなってしまう
ことにある。このような事情は灰抜時における圧延コイ
ルのボトム部についても同様であって、後方張力を受け
ないことによるオフゲージ部分が発生する。また上述し
た如きオフゲージを発生させる他の原因の一つに、主と
して薄い圧延コイルの圧延に際して生じることであるが
、圧延コイルの通板時に各スタンドへの噛み込み不安定
に起因する場合がある。この場合は、各スタンド毎の圧
延コイルの噛み込みを容易にするため、必要に応じて各
スタンドにおける圧下位置、換言すればロールギャップ
を変動調節するため、板厚にノ(ラツキが生じて結果的
にオフゲージ長が大きくなってしまうことによるもので
ある。However, with this method, the plate thickness does not fall within the target plate thickness.
The so-called off-gauge portion tends to be long, and a decrease in yield due to the truncation of this off-gauge portion is unavoidable. One of the reasons why such off-gauge occurs is, for example, during strip threading.After the top of the rolled coil leaves the first stand, until it is bitten by the next stand adjacent to it, the front part of the strip is Rolling is sometimes performed in a state of zero tension, where no tension is applied at all. In other words, in the intermediate part of the rolling coil, rolling is performed with the forward and backward tensions generated between adjacent stands applied, whereas in the dog part of the rolling coil, the forward tension applied between adjacent stands is applied to each stand. As a result, the time required for rolling coils to be exposed to the rolling coil becomes shorter toward the top portion compared to other intermediate portions, and this condition is repeated between each adjacent stand, resulting in the plate thickness at the top portion of the rolled coil becoming thicker than other portions. It's about putting it away. This situation also applies to the bottom part of the rolling coil during ash removal, and an off-gauge part occurs because it is not subjected to rear tension. Another cause of off-gauge as described above, which mainly occurs during rolling of thin rolled coils, may be due to instability of the rolled coils being jammed into each stand during threading. In this case, in order to make it easier for the rolling coil to be caught in each stand, the rolling position of each stand, in other words, the roll gap, is adjusted as necessary, resulting in uneven plate thickness. This is due to the fact that the off-gauge length becomes large.
本発明はかかる事情に艦みなされ次ものであって、その
目的とするところは被圧延材が仕上圧延された時点での
被圧延材のトップ部、ボトム部等におけるオフゲージ長
さを可及的に低減させ得るために必要な目標板厚パター
ンを予め被圧延材の寸法諸元、改いは圧延条件等に基い
て設定しておき、当該被圧延材の圧延に際し、目標板厚
パターンに一致するよう圧下位置等を制御して、オフゲ
ージを低減し、歩留の大幅な向上が図れるようKした圧
延機の通板持、尻抜時の板厚制御方法を提供するにある
。The present invention has been developed in view of the above circumstances, and its purpose is to reduce the off-gauge length at the top, bottom, etc. of the rolled material at the time when the rolled material is finished rolled. The target plate thickness pattern necessary to achieve a reduction in thickness is set in advance based on the dimensional specifications of the material to be rolled, rolling conditions, etc., and when rolling the material to be rolled, the target thickness pattern is matched to the target plate thickness pattern. To provide a method for controlling sheet thickness during sheet threading and tail removal of a rolling mill, which controls the rolling position etc. so as to reduce off-gauge and significantly improve yield.
本発明に係る圧延機の通板時、灰抜時の板厚制御方法は
被圧延材のトップ部又はボトム部の畏手力向に対する目
標板厚パターンを予め設定し、被圧延材のトップ部又は
ボトム部の圧延中、圧下位置及び圧延荷重に基いて長手
方向各部のゲージメータ板厚を演算し、このゲージメー
タ板厚による板厚パターンが前記目標板厚パターンと一
致するよう圧下位置を調節すること、並びに上記ゲージ
メータ板厚は圧延機出側に設置した厚み計の検出値に基
き較正することを夫々特徴としている。The method of controlling plate thickness during sheet passing and ash removal in a rolling mill according to the present invention is to set a target plate thickness pattern in advance for the direction of force at the top or bottom part of the material to be rolled, and Alternatively, during rolling of the bottom part, the gauge meter plate thickness of each part in the longitudinal direction is calculated based on the rolling position and rolling load, and the rolling position is adjusted so that the plate thickness pattern based on the gauge meter plate thickness matches the target plate thickness pattern. In addition, the gauge meter plate thickness is calibrated based on the detected value of a thickness gauge installed on the exit side of the rolling mill.
以下先ず本発明に係る板厚制御方法(以下本発明方法と
いう)の理論について説明する。第1図(イ)、(ロ)
、Cうは被圧延材たるコイルのトップ部に対する目標板
厚パターンの例をIi1スタンドについて示す模式図で
あり、第1図(イ)は圧延機出側におけるコイルの目標
板厚り、。と等しくした目標板厚パターンXを、また第
1図(ロ)は圧延機出側におけるコイルの目標板厚hl
oよりも薄くなるよう設定した目標板厚パターンYを、
更に第1図e9は圧延機出側におけるコイルの目標板厚
り、0よりも厚くなるよう設定した目標板厚パターンZ
の例を示している。First, the theory of the plate thickness control method according to the present invention (hereinafter referred to as the method of the present invention) will be explained below. Figure 1 (a), (b)
, C are schematic diagrams showing an example of the target plate thickness pattern for the top part of the coil, which is the material to be rolled, for the Ii1 stand, and FIG. Figure 1 (b) shows the target thickness pattern X of the coil at the exit side of the rolling mill.
The target plate thickness pattern Y, which is set to be thinner than o, is
Furthermore, Fig. 1 e9 shows the target thickness pattern Z of the coil at the exit side of the rolling mill, which is set to be thicker than 0.
An example is shown.
目標板厚パターンの設定は既述した如く仕上圧延を終了
した時点でのトップ部のオフゲージ長さを可及的に短縮
し得るよう経験的、実験的に定められる。例えば第1図
(→に示すものは厚肉のコイルトップ部を圧延する際に
、また第1図e今に示すものは逆に薄肉のコイルトップ
部を圧延する際に夫々効果のある目標板厚パターンであ
り、更に第1図(イ)に示すものは上記以外の一般的な
コイルの圧延に用いられる目標板厚パターンを示してい
る。As described above, the target plate thickness pattern is determined empirically and experimentally so that the off-gauge length of the top portion at the end of finish rolling can be shortened as much as possible. For example, the target plate shown in Figure 1 (→) is effective when rolling a thick coil top part, and the one shown in Figure 1e is effective when rolling a thin coil top part. The thickness pattern shown in FIG. 1(a) is a target plate thickness pattern used for general coil rolling other than the above.
勿論、上述した如き1標I板厚パターンはコイルの寸法
諸元、圧延条件によって種々異なるものであり、予めコ
イルの各寸法諸元、圧延条件毎の目標板厚パターンを定
。めてお、き、寸法諸元、圧延条件毎にオフゲージ長を
可及的に低減し得る最適の目標板厚パターンを選択し、
この目標板厚パターンによって与えられるコイルトップ
部の長手方向各部の板厚を目標板厚として絶対値ゲージ
メータAGC(Automatic Gage Con
trol )を実施する。即ち、選定した目標板厚パタ
ーンに基いてこれを実現すべく圧下位置と、圧延荷重と
を検出し、下記(1)式で与えられるゲージメータ板厚
りを算出し、このゲージメータ板厚hKよる圧延構出例
のコイルトップ部の板厚パターンが目標板厚パターンと
一致するよう圧下位置、ロール速度等を制御する。Of course, the single standard I plate thickness pattern as described above varies depending on the coil dimensions and rolling conditions, and the target plate thickness pattern for each coil dimension and rolling condition is determined in advance. First, select the optimal target plate thickness pattern that can reduce the off-gauge length as much as possible for each dimension specification and rolling condition,
The plate thickness of each part in the longitudinal direction of the coil top section given by this target plate thickness pattern is set as the target plate thickness using an absolute value gauge meter AGC
trol). That is, based on the selected target plate thickness pattern, the rolling position and rolling load are detected to achieve this, the gauge meter plate thickness given by the following formula (1) is calculated, and this gauge meter plate thickness hK is calculated. The rolling position, roll speed, etc. are controlled so that the plate thickness pattern of the coil top portion of the rolling configuration example matches the target plate thickness pattern.
h = S+So+P/M+S、r ・・・(1)
但し、So:圧下位置の初期設定値
S :圧下位置
P:圧延荷重 M:ミル剛性
SoF :バックアップロール軸受部の油膜厚
なおゲージメータ板厚りはタコジェネレータ等を用いて
検出したロール速度vK各スタンドの先進率fを加えて
各スタンド出側のコイル速度を算出し、コイルがスタン
ドに噛込まれた後のコイルトップからの長さを求めてコ
イルトップ部における長手方向各部について所定のタイ
ミングで求め、ゲージメータ板厚の板厚パターンとする
。h = S+So+P/M+S, r...(1)
However, So: Initial setting value of the rolling position S: Rolling position P: Rolling load M: Mill rigidity SoF: Thickness of the oil film on the backup roll bearing The thickness of the gauge meter plate is determined by the roll speed vK detected using a tacho generator, etc. Calculate the coil speed at the exit side of each stand by adding the advancement rate f of the stand, find the length from the coil top after the coil is bitten by the stand, and calculate the length at the predetermined timing for each part in the longitudinal direction of the coil top part. Determine the thickness pattern of the gauge meter plate thickness.
次に本発明方法を5スタンドのコールドタンデムミルに
適用した場合につき具体的に説明する。Next, a case in which the method of the present invention is applied to a 5-stand cold tandem mill will be specifically explained.
第2図は本発明方法を適用した5スタンドのコールドタ
ンデムミル及びその制御系を示す模式図であり、図中S
T1.S Tt 、 S Ts 、 S T4 、
S Tsはスタンド、X、、 X、−X、はX線厚み計
、MM、、 MM、・MM。Figure 2 is a schematic diagram showing a 5-stand cold tandem mill to which the method of the present invention is applied and its control system.
T1. S Tt , S Ts , S T4 ,
S Ts is the stand, X, X, -X is the X-ray thickness gauge, MM, MM, MM.
はミルモータ、TG、、 TG、・・・TG、はタコジ
ェネレータ、LC,、LC,・・・LC,はロードセル
、swl、sw。is a mill motor, TG, TG,...TG is a tacho generator, LC,, LC,...LC is a load cell, swl, sw.
・・・SW、はスクリュの圧下モータ、そしてch被圧
延材たるコイルを示している。コイルCは白抜矢符方向
から各スタンドST□〜ST、 に通されてるが、そ
の通板時には以下に述べる如き板厚制御を施される。各
スタンドにおいて各ストリップに施すべき板厚制御社原
理的には同じであり、以下にスタンドST1における制
御態様を説明する。図中1は演算制御装rあって、これ
には圧下位置の初期設定値、即ち零点56KIQするデ
ータ、バックアップロールにおける油膜厚5(IP K
関するデータが入力サレテおり、またロードセルLC1
からは圧延荷重P1に関しての、圧下位置検出器2から
は現に設定されている圧下位置StK関しての、更にタ
コジェネレータTG、からミルモータMM1の速度に関
するデータを順次所定のタイミングで読み込み、前記(
1)式に基き、コイルトップ部から長手方向における各
部のゲージメータ板厚h1を演算し、これを圧下位置制
御装置2に出力する。...SW indicates the screw lowering motor and the coil which is the ch rolled material. The coil C is threaded through each of the stands ST□ to ST from the direction of the white arrow, and during the threading, the board thickness is controlled as described below. The plate thickness control to be applied to each strip in each stand is basically the same, and the control mode in stand ST1 will be explained below. In the figure, reference numeral 1 denotes an arithmetic control unit r, which contains the initial set value of the rolling position, that is, the data for the zero point 56KIQ, and the oil film thickness 5 (IPK) on the backup roll.
The related data is input, and the load cell LC1
From then on, data regarding the rolling load P1, data regarding the currently set rolling down position StK from the rolling position detector 2, and data regarding the speed of the mill motor MM1 from the tacho generator TG are read in sequence at predetermined timing, and the
1) Based on the formula, the gauge meter plate thickness h1 of each part in the longitudinal direction from the coil top part is calculated and outputted to the rolling position control device 2.
3は目標板厚パターン発生器であって、これには既述し
た如き、予め求めた種々の圧延条件毎における目標板厚
パターンx、y、z等が入力され−ており、圧延開始に
先立ってそのうちの適切な目標板厚パターンを選定する
と、タコジェネレータTG、からミルモータMM、の回
転数に関するデータを読み込み、コイルトップ部が第1
スタンドS T。Reference numeral 3 denotes a target plate thickness pattern generator, into which the target plate thickness patterns x, y, z, etc. for each of the various rolling conditions determined in advance, as described above, are inputted. When an appropriate target plate thickness pattern is selected, data regarding the rotation speed of the mill motor MM is read from the tachogenerator TG, and the coil top section is set to the first
Stand ST.
に噛み込まれるのと同期してコイルトップ部からの圧延
位置に応じた各部の目標板厚を圧下位置制御装置2に出
力する。圧下位置制御装置2け前記演算制御装置1から
入力されるゲージメータ厚り。In synchronization with the rolling position, the target plate thickness of each part corresponding to the rolling position from the coil top part is output to the rolling position control device 2. Press down position control device 2 Gauge meter thickness input from the arithmetic and control device 1.
と、目標板厚パターン発生器2から入力される目標板厚
h1とを比較し、前者を後者に一致させるに必要な圧下
位置調整量iSを演算し、圧下モータSW1に指令信号
を発するようにしである。and the target plate thickness h1 inputted from the target plate thickness pattern generator 2, calculate the reduction position adjustment amount iS necessary to make the former match the latter, and issue a command signal to the reduction motor SW1. It is.
一方圧下位置のゼロ点S6の決定は次のようにして行う
。即ち、演算制御装置1において前記(1)式に基いて
算出したゲージメータ板厚りとこのゲージメータ板厚り
が演算された部分が厚み計に到達した時に測定された板
厚hxとを演算制御装置i1において比較し、ゲージメ
ータ板厚りが板厚hXに一致するようゼロ点S0を決定
すればよい。On the other hand, the zero point S6 of the lowered position is determined as follows. That is, the arithmetic and control device 1 calculates the gauge meter plate thickness calculated based on the formula (1) above and the plate thickness hx measured when the part for which this gauge meter plate thickness was calculated reaches the thickness gauge. The control device i1 may compare and determine the zero point S0 so that the gauge meter plate thickness matches the plate thickness hX.
なお、第1スタンドのロールに偏心が存在すると、ゲー
ジメータ板厚の計算に誤差が入ることとなるから、ロー
ル1回転の周期よりも長い期間にわたってゲージメータ
板厚りと測定板厚hXセを求めてその平均的データに基
きゼロ点を決定子るのが精度向上を図るうえでより望ま
しいといえる。Note that if there is eccentricity in the roll of the first stand, an error will be included in the calculation of the gauge meter plate thickness, so the gauge meter plate thickness and the measured plate thickness h In order to improve accuracy, it is more desirable to determine the zero point based on the average data.
コイル圧延中にあっては上述した如き実測データを用い
た圧下位置のゼロ点S0を連続的、或いは一定のタイミ
ングで算出し得るが、ロール替、その他の理由によって
圧延が行なわれていない間にあっては、ロール温度の変
化に伴う熱膨張の変化により、ゼロ点位置が変わるにも
かかわらず、上述した態様でのゼロ点S、の算出を行う
ことが出来ない。そこで圧延が一時的に中断した場合に
あっては、一旦、上、下ロールを直接転接せしめ、ロー
ドセルLC1が予め定め九所定の圧下刃を示すよう設定
し、その時の圧延荷重Vと圧下位置百を検出して圧下位
置のゼロ点S0を算出する。During coil rolling, the zero point S0 of the rolling position can be calculated continuously or at a fixed timing using the actual measurement data as described above, but it is possible to calculate the zero point S0 of the rolling position using the actual measurement data as described above. Although the zero point position changes due to a change in thermal expansion due to a change in roll temperature, it is not possible to calculate the zero point S in the manner described above. If rolling is temporarily interrupted, the upper and lower rolls are brought into direct rolling contact, the load cell LC1 is set to indicate a predetermined rolling edge, and the rolling load V and rolling position at that time are adjusted. 100 is detected and the zero point S0 of the lowered position is calculated.
その後圧下モータを操作して圧下位置を元の位置に設定
し、圧延開始に備え、前記一連の動作をオペレータが始
動スイッチをONするのみで自動的に行なえるようにし
ておけば圧延作業の障害となることはない。After that, the rolling motor is operated to set the rolling position to the original position, and in preparation for the start of rolling, it is possible to automatically perform the above series of operations by simply turning on the start switch by the operator, which will prevent the rolling operation from occurring. It will never be.
次に本発明方法を用いた際の圧延結果、について説明す
る。結果は板厚2.6−の素材コイルを仕上板厚0.8
mに圧延する場合のものである。第3図(イ)は本発明
方法を適用した場合の、また第3図(ロ)は従来方法を
適用した場合の結果を示すグラフであり、いずれも横軸
に圧延機出側におけるコイルトップ部の長手方向位置を
、縦軸には前記仕上板厚に対する板厚偏差をとって示し
である。このグラフから明らかな如く、本発明方法によ
った場合にはコイルトップ部におけるオフゲージ(±5
0)1以上)長は5mであるのに対し、従来方法を適用
した場合にあっては11n4に達しており、本発明方法
はオフゲージ長の短縮に著しい効果が認められる。Next, the rolling results obtained using the method of the present invention will be explained. The result is a finished material coil with a plate thickness of 2.6- and a plate thickness of 0.8.
This is for rolling to m. Fig. 3 (a) is a graph showing the results when the method of the present invention is applied, and Fig. 3 (b) is a graph showing the results when the conventional method is applied. The vertical axis shows the position in the longitudinal direction of the part, and the deviation of the plate thickness from the finished plate thickness is plotted on the vertical axis. As is clear from this graph, when the method of the present invention is used, the off-gauge (±5
0)1 or more) length is 5 m, whereas in the case of applying the conventional method, it reaches 11n4, and the method of the present invention is recognized to have a remarkable effect in shortening the off-gauge length.
以上の如く本発明方法にあっては、圧延条件等に応じて
予めオフゲージ長が最も短くなし得る板厚制御パターン
を経験的、実験的に定めておき、これを実現すべく板厚
制御を行うこととしているからオフゲージ長が大幅に短
縮でき、それだけ歩留も向上するなど本発明は優れた処
果を奏するものである。As described above, in the method of the present invention, a plate thickness control pattern that can achieve the shortest off-gauge length is determined in advance according to rolling conditions, etc., and plate thickness control is performed to achieve this pattern. Since this is the case, the off-gauge length can be significantly shortened, and the yield rate can be improved accordingly.The present invention has excellent results.
$1図(イ)、(→、(ハ)は本発明方決において用い
る目標板厚パターンの例を示す説明図、vIz図は本発
明方法を適用したコールドタンデムミル及びその制御系
を示す模式図、第3図(イ)、(ロ)は本発明方法と従
来方法との板厚制御効果を示すグラフである。
1・・・演算制御装置 2・・・圧下位置制御装置3・
・・板厚パターン発生装置 C・・・コイルST、〜S
T、・・・スタンド x1〜X、・・・厚み叶MM、〜
MM、・・・ミルモータ SW、〜SW、・・・圧下モ
ータ TG、 −TG、・・・タコジェネレータLC,
〜LC3・・・ロードセル
特 許 出 願 人 住友金属工業株式会社代理人
弁理士 河 野 登 夫
(1)
第1 図
第 3 図$1 Figures (A), (→, and (C) are explanatory diagrams showing examples of target plate thickness patterns used in the method of the present invention, and Figure vIz is a schematic diagram showing a cold tandem mill to which the method of the present invention is applied and its control system. Figures 3(a) and 3(b) are graphs showing the plate thickness control effects of the method of the present invention and the conventional method. 1... Arithmetic control device 2... Rolling position control device 3.
...Plate thickness pattern generator C...Coil ST, ~S
T,...Stand x1~X,...Thickness MM,~
MM, ... Mill motor SW, ~SW, ... Pressure motor TG, -TG, ... Tacho generator LC,
~LC3...Load cell patent applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono (1) Figure 1 Figure 3
Claims (1)
する目標板厚バクーンを予め設定し、被圧延材のトップ
部又はボトム部の圧延中、圧下位置及び圧延荷重に基い
て長手方向各部の圧延機出側におけるゲージメータ板厚
を演算し、このゲージメータ板厚による板厚パターンが
前記目標板厚パターンと一致するよう圧下位置を調節す
ることを特徴とする圧延機の通板、灰抜時の板厚制御方
法。 2、 被圧延材のトップ部又はボトム部の長手力向に対
する目標板厚パターンを予め設定し、被圧延材のトップ
部又はボトム部の圧延中、圧下位置及び圧延荷重に基い
て長手方向各部の圧延機出側におけるゲージメーク板厚
を演算し、このゲージメーク板厚による板厚パターンが
前記目標板厚パターンと一致するよう圧下位置を調節す
る一方、前記ゲージメータ板厚は圧延機出側に設置した
厚み計の検出値に基き較正することを特徴とする圧延機
の通−板、灰抜時の板厚制御方法。[Claims] 1. A target plate thickness for the longitudinal force of the top or bottom of the material to be rolled is set in advance, and the rolling position and rolling load are adjusted during rolling of the top or bottom of the material to be rolled. A rolling mill characterized in that the gauge meter plate thickness at each part in the longitudinal direction on the exit side of the rolling machine is calculated based on the gauge meter plate thickness, and the rolling position is adjusted so that the plate thickness pattern based on the gauge meter plate thickness matches the target plate thickness pattern. Method for controlling plate thickness during plate threading and ash removal. 2. A target plate thickness pattern for the longitudinal force direction of the top or bottom part of the material to be rolled is set in advance, and during rolling of the top or bottom part of the material to be rolled, each part in the longitudinal direction is adjusted based on the rolling position and rolling load. The gauge make plate thickness at the exit side of the rolling mill is calculated, and the rolling position is adjusted so that the plate thickness pattern based on the gauge make plate thickness matches the target plate thickness pattern. A method for controlling plate thickness during plate passing and ash removal in a rolling mill, characterized in that calibration is performed based on the detected value of an installed thickness gauge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56124359A JPS5825808A (en) | 1981-08-07 | 1981-08-07 | Controlling method of sheet thickness at pass-through and run-out in rolling mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56124359A JPS5825808A (en) | 1981-08-07 | 1981-08-07 | Controlling method of sheet thickness at pass-through and run-out in rolling mill |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5825808A true JPS5825808A (en) | 1983-02-16 |
Family
ID=14883442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56124359A Pending JPS5825808A (en) | 1981-08-07 | 1981-08-07 | Controlling method of sheet thickness at pass-through and run-out in rolling mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5825808A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58122111A (en) * | 1982-01-18 | 1983-07-20 | Toshiba Corp | Method and device for controlling rolling mill |
JPS60145210A (en) * | 1984-01-05 | 1985-07-31 | Nippon Steel Corp | Shape controlling method in hot strip rolling |
JPS62502052A (en) * | 1985-02-12 | 1987-08-13 | キャタピラー インコーポレーテッド | bucket |
JP2010214426A (en) * | 2009-03-17 | 2010-09-30 | Kobe Steel Ltd | Method and apparatus for controlling plate thickness in multi roll mill |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5119462A (en) * | 1974-08-09 | 1976-02-16 | Seiko Instr & Electronics | Suishodenshidokeino kankyusochi |
-
1981
- 1981-08-07 JP JP56124359A patent/JPS5825808A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5119462A (en) * | 1974-08-09 | 1976-02-16 | Seiko Instr & Electronics | Suishodenshidokeino kankyusochi |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58122111A (en) * | 1982-01-18 | 1983-07-20 | Toshiba Corp | Method and device for controlling rolling mill |
JPS60145210A (en) * | 1984-01-05 | 1985-07-31 | Nippon Steel Corp | Shape controlling method in hot strip rolling |
JPS62502052A (en) * | 1985-02-12 | 1987-08-13 | キャタピラー インコーポレーテッド | bucket |
JP2010214426A (en) * | 2009-03-17 | 2010-09-30 | Kobe Steel Ltd | Method and apparatus for controlling plate thickness in multi roll mill |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3531961A (en) | Method and system for controlling strip thickness in a tandem reduction mill | |
JPS6016850B2 (en) | Rolling speed uniform method for cold tandem mill | |
JPS5825808A (en) | Controlling method of sheet thickness at pass-through and run-out in rolling mill | |
JPH0218168B2 (en) | ||
JP2011088172A (en) | Device and method for controlling sheet thickness in cold rolling mill | |
JPH01205808A (en) | Preventing method for rear throttling continuous rolling mill | |
JPH0379087B2 (en) | ||
JPS5852724B2 (en) | Metal rolling machine and setting method | |
JPH05208204A (en) | Method for controlling shape in strip rolling | |
JP3610338B2 (en) | Method and apparatus for temper rolling of metal strip | |
KR100467229B1 (en) | Rolling speed compensation apparatus at rolling process and its compensation method | |
JPH0246284B2 (en) | ||
JP3218598B2 (en) | Thickness control method for leading and trailing edges of material in tandem rolling mill | |
JP3456082B2 (en) | Edge drop control method in cold rolling | |
JP3935116B2 (en) | Thickness control device for rolling mill | |
JPS6213084B2 (en) | ||
JPH08150406A (en) | Thickness controller for cold tandem mill | |
JP2719216B2 (en) | Edge drop control method for sheet rolling | |
JPH09206814A (en) | Method for controlling edge drop in cold rolling | |
JPS5942567B2 (en) | Strip width control method using cold rolling tandem mill | |
JPH0212647B2 (en) | ||
JPH10263612A (en) | Rolling method with two stand cold mill and rolling controller | |
JPH0938703A (en) | Method for controlling looper in finish-rolling mill | |
JPS60210312A (en) | Control method of sheet crown in hot tandem mill | |
JPH05237529A (en) | Control method of finishing mill of hot strip mill |