JPS5825721B2 - Mold for powder molding - Google Patents
Mold for powder moldingInfo
- Publication number
- JPS5825721B2 JPS5825721B2 JP51006996A JP699676A JPS5825721B2 JP S5825721 B2 JPS5825721 B2 JP S5825721B2 JP 51006996 A JP51006996 A JP 51006996A JP 699676 A JP699676 A JP 699676A JP S5825721 B2 JPS5825721 B2 JP S5825721B2
- Authority
- JP
- Japan
- Prior art keywords
- die
- die hole
- mold
- bottom element
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Forging (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
本発明は、粉末成形用金型に係り、特に粉末冶金に於け
る金属粉末等の成形を行う粉末成形用金型に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder molding mold, and particularly to a powder molding mold for molding metal powder, etc. in powder metallurgy.
機械構造用鉄系焼結合金の一般的な製造方法は、先ず合
金主体となる鉄粉に銅粉や黒鉛粉などを混合し、これら
の混合粉末を種々の形状をした目的の金型キャビティ内
に充填し、常温下に於て通常密度が6.0〜7. Og
lcd位になるまで加圧成形する。The general manufacturing method for ferrous sintered alloys for machine structures is to first mix copper powder, graphite powder, etc. with iron powder, which is the main component of the alloy, and then pour these mixed powders into mold cavities of various shapes. The density is usually 6.0 to 7.0 at room temperature. Og
Pressure mold until it reaches about lcd.
次Cごこの成形体をアンモニア分解ガスやエンドサーミ
ックスガスなどの無酸化性のガス雰囲気中で1120〜
1150℃程度の温度にて加熱焼結する○かかる加熱工
程に於て、鉄、銅、黒鉛などが拡散、焼結し、十分な機
械的強度を有する合金が得られる。Next C, the molded body is placed in a non-oxidizing gas atmosphere such as ammonia decomposition gas or endothermic gas to
Heat and sinter at a temperature of about 1150° C. During this heating step, iron, copper, graphite, etc. are diffused and sintered, resulting in an alloy with sufficient mechanical strength.
加熱焼結後は徐冷し、そのまま製品として使用する場合
もあれば、一部機械加工などにより寸法を補正して使用
する場合もある。After heating and sintering, the product may be slowly cooled and used as a product, or it may be used after its dimensions are partially corrected by machining.
このような一般的な鉄系焼結合金の製造方法に於ては、
金型を用いて金属粉末を加圧成形する際、金型と成形体
のかじりや成形体を金型から容易に抜出すために金型と
成形体との間に潤滑を施す必要がある。In the manufacturing method of such general iron-based sintered alloys,
When press-molding metal powder using a mold, it is necessary to provide lubrication between the mold and the molded body in order to prevent galling between the mold and the molded body and to easily extract the molded body from the mold.
かかる潤滑法にはステアリン、酸亜鉛などの潤滑剤を金
属粉末中に予め混入しておく潤滑剤混合法と、金型に潤
滑剤を塗布する型潤滑法とが従来から知られている。Conventionally known such lubrication methods include a lubricant mixing method in which a lubricant such as stearin or zinc oxide is mixed into metal powder in advance, and a mold lubrication method in which a lubricant is applied to a mold.
し力)シ、前者の潤滑剤混合法にあっては、潤滑剤を一
応に分布できる利点を備えているが、金属粉末中に潤滑
剤が含まれているため成形体や焼結体の機械的強度か劣
化する欠点を含んでいる。The former lubricant mixing method has the advantage of being able to distribute the lubricant to a certain extent, but since the lubricant is contained in the metal powder, it is Contains defects that deteriorate the physical strength.
又かかる潤滑剤は焼結時の拡散現象に悪影響を与え、製
品強度の低下をもたらすので、一般の焼結炉では加熱ゾ
ーンの前に予熱ゾーンを設け、該予熱ゾーンに於て潤滑
剤をガス化して取り除くようにしている。In addition, such lubricants have a negative effect on the diffusion phenomenon during sintering, resulting in a decrease in product strength. Therefore, in general sintering furnaces, a preheating zone is provided before the heating zone, and the lubricant is introduced into the gas in the preheating zone. I'm trying to remove it by changing it.
そのため製造工程が1工程増え、生産性が悪くなるばか
りでなく、品質の安定した焼結品を得るためには前記予
熱ゾーンでガス化した潤滑剤が加熱ゾーンに入らないよ
う焼結炉中の雰囲気ガスの流し方や流量を制御しなけれ
ばならなくなる。This not only increases the number of manufacturing steps by one step and reduces productivity, but in order to obtain sintered products with stable quality, the sintering furnace must be carefully designed to prevent the lubricant gasified in the preheating zone from entering the heating zone. It becomes necessary to control the flow and flow rate of the atmospheric gas.
又最近、より強度の高い焼結品を得るために、粉末成形
体を加熱焼結後鍛造する粉末鍛造法か開発されつつあり
、かかる粉末鍛造法では、粉末成形体の加熱焼結を高周
波誘導加熱で実施し、加熱サイクルを速める動きがある
。Recently, in order to obtain a sintered product with higher strength, a powder forging method is being developed in which a powder compact is heated and sintered and then forged. There is a movement to implement this by heating and speed up the heating cycle.
この場合などでは、粉末成形体に潤滑剤が混入されてい
ると、急速加熱による急激な潤滑剤の蒸発により粉末成
形体にクラックが生じたり、発生した潤滑剤ガスが加熱
雰囲気を乱す度合が一層著しくなり、そのため粉末成形
体内に潤滑剤が混入されていると実際には殆ど加熱でき
ないのが現状である。In this case, if a lubricant is mixed in the powder compact, the rapid evaporation of the lubricant due to rapid heating may cause cracks in the powder compact, and the generated lubricant gas will further disturb the heating atmosphere. Therefore, the current situation is that if a lubricant is mixed into the powder compact, it is practically impossible to heat it.
又後者の型潤滑法によれば、粉末成形体に潤滑剤が含ま
れていないので前述した如き潤滑剤混合法に於ける欠点
や不具合は生じないが、液体状の潤滑剤を金型に一応に
塗布することが難しく、又潤滑剤を金型に噴霧塗布する
と潤滑材が周囲に飛散するため作業環境を汚染し、人体
に対して有害であり、しかも一回の成形毎に潤滑材を塗
布しなければならないので生産性が著しく悪くなり、実
際には殆ど実用化されていない。Also, according to the latter mold lubrication method, since the powder compact does not contain lubricant, the disadvantages and problems of the lubricant mixing method described above do not occur, but it is necessary to apply liquid lubricant to the mold. It is difficult to apply the lubricant to the mold, and if the lubricant is sprayed onto the mold, the lubricant will scatter around the mold, polluting the working environment and being harmful to the human body. As a result, productivity is significantly reduced, and it is hardly ever put into practical use.
又、金属粉末の成形性には前述した如き金型成形法以外
に、ゴムのように変形が可能な型に金属粉末を充填し、
型全体に液圧や気圧を加え、金属粉末を静水圧的に加圧
成形する方法があり、かかる方法によればステアリン酸
亜鉛などの潤滑剤は全く不用となるか、しかしゴムなど
の型を使用するため寸法精度が悪く、又ゴムなどの型に
金属粉末を充填し密封後金体に圧力を加えなければなら
ないため、生産性が悪く大量生産には向かない。In addition to the above-mentioned mold forming method, the moldability of metal powder can be improved by filling metal powder into a mold that can be deformed like rubber.
There is a method of isostatically pressurizing metal powder by applying hydraulic pressure or air pressure to the entire mold.This method eliminates the need for lubricants such as zinc stearate at all, or does not require a mold made of rubber or other materials. The dimensional accuracy is poor due to the use of molds, and since pressure must be applied to the metal body after filling a mold made of rubber or the like and sealing it, productivity is poor and it is not suitable for mass production.
ところで、成形金型の焼付きやかじりは、特にダイか前
記加圧ポンチの移動軸線方向に移動自在で且前記加圧ポ
ンチによる加圧方向とは反対の方向に押圧され、一般に
下ポンチと称されるダイ穴の底部要素のみが固定配置さ
れた謂ゆる浮型式成形金型やダイか加圧と同時に加圧方
向に移動される型引下げ弐底形金型によれば、潤滑剤を
用いなくとも加圧成形工程時に於ては殆ど生じず、加圧
成形後の成形品抜出し工程に於て生じることが判明した
。By the way, seizure or galling of the molding die is particularly caused by a die that is movable in the direction of the movement axis of the pressure punch and is pressed in a direction opposite to the direction of pressure applied by the pressure punch, which is generally called a lower punch. According to so-called floating molding molds in which only the bottom element of the die hole is fixedly arranged, and two-bottom molds in which the die is moved in the pressing direction at the same time as pressure is applied, no lubricant is used. It has been found that both of them hardly occur during the pressure molding process, but occur during the molded product extraction process after pressure molding.
本発明は、潤滑剤を用いることなく金型からの粉末成形
体の抜出し時に金型や粉末成形体が焼付いたりこれにか
じりが生じるのを回避し、良好な粉末成形を行うことの
できる改良された粉末成形用金型を提供することを目的
としている。The present invention provides an improved powder molding method that avoids seizure or galling of the mold and the powder molded product when the powder molded product is extracted from the mold without using a lubricant, and can perform good powder molding. The purpose of this invention is to provide a mold for powder molding.
かかる目的は、本発明によれば、金属粉末等の成形を行
う粉末成形用金型に於て、ダイ穴を備えたダイと、前記
ダイ穴内に嵌入され該ダイ穴の途中に位置する底面を構
成する底部要素と、前記ダイ穴内に前記底部要素に対向
して嵌入される加圧ポンチとを含み、前記ダイは前記ダ
イ穴を通る分割面に沿って少なくとも2個に分割された
分割ダイ要素により構成され、該分割ダイ要素は互いに
離接すべく前記加圧ポンチの移動軸線に対して実質的に
直角方向に移動でき且前記底部要素の前記底面が前記ダ
イ穴より出る位置まで前記底部要素に対し相対的に移動
し得るよう構成されていることを特徴とする粉末成形用
金型によって達成される。According to the present invention, in a powder molding mold for molding metal powder, etc., a die having a die hole and a bottom surface inserted into the die hole and located in the middle of the die hole are provided. a divided die element, the die being divided into at least two parts along a dividing plane passing through the die hole, and a pressurizing punch inserted into the die hole opposite to the bottom element; the split die elements are movable toward and away from each other in a direction substantially perpendicular to the axis of movement of the pressure punch, and the bottom element is configured to move toward and away from each other in a direction substantially perpendicular to the axis of movement of the pressure punch, and This is achieved by a powder molding mold characterized in that it is configured to be movable relative to the powder molding mold.
かかる構成によれば、加圧成形工程では分割ダイ要素同
志を接触させて、謂ゆる型締め状態としておき、成形体
抜出し工程では前記分割ダイ要素を加圧ポンチの軸線方
向に対して実質的に直角方向に移動させてこれを成形体
より引離すことにより成形体をダイに対して摺動させる
ことなく抜き出すことができる。According to this configuration, in the pressure forming process, the split die elements are brought into contact with each other to create a so-called mold clamping state, and in the molded body extraction process, the split die elements are substantially moved in the axial direction of the pressure punch. By moving it in the right angle direction and separating it from the molded object, the molded object can be extracted without sliding against the die.
その結果、潤滑材を用いなくとも金型の焼付きやかじり
などを生じることなく成形体を金型から抜き出すことが
できるようになる。As a result, the molded body can be extracted from the mold without using a lubricant without causing seizure or galling of the mold.
金属などの粉末に潤滑材を混入しなくとも良いので、成
形体焼結体の強度を増加することができ、特に成形体で
は強度増加によりクラックが発生し難くなり、それのハ
ンドリングが容易となり、搬送の自動化が可能となる。Since there is no need to mix a lubricant into powder such as metal, it is possible to increase the strength of the compact sintered body, and in particular, the increased strength of the compact makes it difficult to crack, making it easier to handle. Automation of transportation becomes possible.
又脱潤滑材工程が不要となり、生産性の向上と共に、焼
結炉内の雰囲気が安定し、製品品質のばらつきが少なく
なり、粉末鍛造部品の製造では焼結加熱に高周波誘導加
熱を利用することができる。In addition, the delubrication process is no longer necessary, improving productivity, stabilizing the atmosphere inside the sintering furnace, and reducing variations in product quality.In the production of powder forged parts, high-frequency induction heating can be used for sintering heating. I can do it.
又成形品抜出し時に成形体とダイとが摺動しないので、
製品抜出し時に成形体に大きな力が加わることはなく、
クラックが発生し難くなると共に、成形品抜出し時に加
圧ポンチとダイ穴とのクリアランスが大きくなるので型
のかじりが減少され、型寿命が大巾に向上する。Also, since the molded body and die do not slide when the molded product is extracted,
No large force is applied to the molded object when the product is extracted.
Cracks are less likely to occur, and the clearance between the pressurizing punch and the die hole during ejection of the molded product is increased, so mold galling is reduced and mold life is greatly improved.
以下に添付の図を用いて本発明を実施例について詳細に
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings.
第1図1〜4は本発明による粉末成形用金型を用いて円
柱状成形体を成形する場合の加工[程を解図的に示す工
程図である。1 to 4 are process diagrams schematically showing the process of molding a cylindrical molded body using the powder molding die according to the present invention.
第1図に於て、1はダイであり、該ダイ1は実質的に半
円柱状をなす二つの分割材要素la、ibにより構成さ
れでいる。In FIG. 1, 1 is a die, and the die 1 is composed of two substantially semi-cylindrical split material elements la and ib.
この分割ダイ要素1a及び1bの各々の直径面にはその
中心軸線に沿って断面半円状をなす凹部2a 、2bが
形成されており、この両分側グイ要素1a、Ibをそれ
の直径面同志で互いに接合させたとき、前記凹部2a
、2bの共働により中央部を上下に貫通する断面円形の
ダイ穴2が形成されるようになっている。Recesses 2a and 2b having a semicircular cross section are formed along the central axis of each of the split die elements 1a and 1b, and the die elements 1a and 1b have recesses 2a and 2b formed along their central axes. When the comrades are joined to each other, the recess 2a
, 2b form a die hole 2 with a circular cross section that passes vertically through the center.
即ち、ダイ1は断面円形状をなすダイ穴2の中心を通る
分割面(直径面)に沿って分割された二つの分割ダイ要
素1a、lbにより構成されている。That is, the die 1 is composed of two divided die elements 1a and 1b divided along a dividing plane (diameter plane) passing through the center of a die hole 2 having a circular cross section.
ダイ1の上方には前記ダイ穴2と対応する断面円形の円
柱状をなす加圧ポンチ3があり、該加圧ポンチ3は図示
されていない成形機のラムに固定され、ダイ穴2の軸線
に沿って上下移動するようになっている。Above the die 1, there is a pressure punch 3 having a cylindrical shape with a circular cross section corresponding to the die hole 2, and the pressure punch 3 is fixed to a ram of a molding machine (not shown), and It is designed to move up and down along the
前記ダイ穴2内にはこれの下側開口部から一般に下ポン
チと称される円柱状の底部要素4が嵌挿されており、該
底部要素4の上面が前記ダイ穴2の実質的な底面を構成
している。A cylindrical bottom element 4, generally referred to as a lower punch, is inserted into the die hole 2 from its lower opening, and the upper surface of the bottom element 4 corresponds to the substantial bottom surface of the die hole 2. It consists of
この実施例の場合、前記底部要素4は型基盤5の上面に
固定されているが、前記分割ダイ要素1a及び1bの各
々は、前記加圧ポンチ3の移動軸線方向(ダイの軸線方
向)に移動自在で且圧縮コイルばね6,6により前記加
圧ポンチ3による加圧方向(図にて降下方向)とは反対
の方向(図にて上昇方向)に押圧され、通常時は、第1
図1に示す如く前記圧縮コイルはね6の・作用により前
記ダイ穴2の下部に前記底部要素4か所定量嵌挿される
所定の高さ位置に維持されている。In this embodiment, the bottom element 4 is fixed to the upper surface of the mold base 5, and each of the divided die elements 1a and 1b is arranged in the direction of the movement axis of the pressure punch 3 (in the axial direction of the die). It is movable and is pressed by compression coil springs 6, 6 in a direction (upward direction in the figure) opposite to the pressing direction (downward direction in the figure) by the pressurizing punch 3.
As shown in FIG. 1, the compression coil is maintained at a predetermined height position by the action of the spring 6 so that the bottom element 4 is inserted into the lower part of the die hole 2 by a predetermined amount.
又この分割材要素1a、1bの各々は互いに離接すべく
前記加圧ポンチ3の移動軸線に対して実質的に直角方向
に、即ち図にて前記直径面とは直交する方向に実質的に
水平に移動できるよう構成されでいる。Further, each of the divided material elements 1a, 1b is arranged in a direction substantially perpendicular to the axis of movement of the pressurizing punch 3, that is, in a direction perpendicular to the diametrical plane in the figure, in order to move away from each other. It is constructed so that it can be moved horizontally.
以上の如く構成された粉末成形用金型を用いて金属粉末
の成形を行う場合は、以下に説明する順序で行う。When molding metal powder using the powder molding mold configured as described above, the molding is performed in the order described below.
先ず第1図1に示すように分割ダイ要素1a及び1bを
その直径面同志で接合させて型合せした状態でダイ穴2
及び底部要素4とにより郭定されたキャビティ内に金属
粉末を所定量充填する。First of all, as shown in FIG.
A predetermined amount of metal powder is filled into the cavity defined by the and bottom element 4.
次に第1図2に示すように加圧ポンチ3を降下させて前
記キャビティ内に充填された金属粉末を加圧し、グイ穴
2内に円柱状の成形体Wを加圧成形する。Next, as shown in FIG. 1 and 2, the pressure punch 3 is lowered to press the metal powder filled in the cavity to form a cylindrical molded body W in the gouging hole 2 under pressure.
この加圧成形時にダイ1は前記金属粉末との摩擦のため
加圧ポンチの降下に伴い圧縮コイルばね6の作用に抗し
て降下し、ダイ穴と前記金属粉末との間の滑りを最小限
に抑える。During this pressure forming, the die 1 descends against the action of the compression coil spring 6 as the pressure punch descends due to friction with the metal powder, minimizing slippage between the die hole and the metal powder. Keep it to.
加圧成形が完了したならば、加圧ポンチ3はその位置に
停止させた後、第1図3に示すように左側の分割ダイ要
素1aを図にて左方に、右側の分割ダイ要i1bを図に
て右方にそれぞれ実質的に水平移動させ、ダイ穴2の型
面を加圧ポンチ3、底部要素4及び成形体Wから引離す
。When the pressure forming is completed, the pressure punch 3 is stopped at that position, and then the left divided die element 1a is moved to the left in the figure, and the right divided die element i1b is moved to the left as shown in FIG. are moved substantially horizontally to the right in the figure, and the mold surface of the die hole 2 is separated from the pressure punch 3, the bottom element 4, and the molded body W.
即ちダイ1の分離を行う。That is, the die 1 is separated.
かかるダイ2の分離が完了したならば、次に第1図4に
示すように加圧ポンチ3を上昇させて元位置に戻し、そ
して分割ダイ要素1a及び1bをそれの上面か前記底部
要素4の上面に一致する高さ位にまで圧縮コイルばね6
の作用に抗して降下させる。When the separation of the dies 2 is completed, the pressurizing punch 3 is raised and returned to its original position as shown in FIG. Compression coil spring 6 to a height that corresponds to the top surface of
lowering against the action of
そしてこの状態で底部要素4の上面に載置されでいる成
形体Wを取出す。Then, in this state, the molded body W placed on the upper surface of the bottom element 4 is taken out.
従って成形体Wはダイ1に対し摺動することなく抜き出
される。Therefore, the molded body W is extracted without sliding with respect to the die 1.
尚、加圧ポンチ3の上昇作動は分割ダイ要素1a及び1
bを分離する以前に行なっても良い。Incidentally, the lifting operation of the pressurizing punch 3 is performed by the split die elements 1a and 1.
This may be performed before separating b.
第2図1〜46マ本発明による粉末成形用金型を用いて
内燃機関用コンロッドを粉末成形する場合の成形工程を
幾分解図的に示す工程図である。Figs. 2 1-46 are somewhat exploded process diagrams illustrating the molding process when powder molding a connecting rod for an internal combustion engine using the powder molding mold according to the present invention.
第2図に於て、11は第一の分割ダイ要素であり、該分
割ダイ要素11は成形すべきコンロッド形状をなすダイ
穴18の一部を構成すると共に第二及び第三の分割ダイ
要素12,13を収納する比較的大きな空間14を備え
ている。In FIG. 2, 11 is a first divided die element, and this divided die element 11 constitutes a part of a die hole 18 forming a connecting rod shape to be formed, and the second and third divided die elements. It is provided with a relatively large space 14 for storing 12 and 13.
前記第二及び第三〇分割ダイ要素12,13は互いに対
向する側に成形すべきコンロッドの端面形状に対応して
形成されたダイ穴構成用凹部12’、 13’を有し、
且互いに離接すべく前記コンロッドの長手方向軸線に対
し直交する方向に前記空間14内にて各々水平移動でき
るよう配置されている。The second and thirtieth die elements 12, 13 have die hole forming recesses 12', 13' formed corresponding to the shape of the end face of the connecting rod to be formed on opposite sides thereof,
The connecting rods are arranged to be horizontally movable within the space 14 in a direction perpendicular to the longitudinal axis of the connecting rod so as to move toward and away from each other.
又これらの分割ダイ要素の上方にはこれらの分割ダイ要
素(こより構成されるコンロッド形状のダイ穴に対応す
る加圧ポンチ15か上下移動可能に配置されている。Further, above these divided die elements, a pressurizing punch 15 corresponding to the connecting rod-shaped die hole formed by these divided die elements is arranged so as to be movable up and down.
この場合、前記加圧ポンチ15はその下面にコンロッド
のリブ部の一方の面を成形するために所定形状をなす突
出部15′が設けられている。In this case, the pressurizing punch 15 is provided with a protrusion 15' having a predetermined shape on its lower surface in order to form one surface of the rib portion of the connecting rod.
前記第一の分割ダイ要素11の空間14と第二及び第三
の分割ダイ要素12,13のダイ穴構成凹部12′、1
3′により構成されるダイ穴12内には、その下側開口
縁から底部要素16か所定の深さにまで挿入されている
。The space 14 of the first split die element 11 and the die hole configuration recesses 12', 1 of the second and third split die elements 12, 13.
A bottom element 16 is inserted into the die hole 12 defined by 3' from its lower opening edge to a predetermined depth.
この底部要素16は前記加圧ポンチ15の突出部15′
と対応しコンロッドのリブ部の他方の面を成形するリブ
成形用底部要素17を含んでいる。This bottom element 16 corresponds to the protrusion 15' of the pressure punch 15.
It includes a rib-forming bottom element 17 that corresponds to and molds the other side of the rib portion of the connecting rod.
底部要素16は図示されていない型基盤に固定されてい
るか、リブ成形用底部部材17は前記底部要素16に対
して上下移動自在で、通常時第2図1に示す如く底部要
素16より十分上方に突出した状態にある。The bottom element 16 is fixed to a mold base (not shown), or the rib forming bottom member 17 is movable up and down with respect to the bottom element 16, and is normally positioned sufficiently above the bottom element 16 as shown in FIG. It is in a state of prominence.
又第−1第二及び第三の分割ダイ要素11,12,13
はそれぞれ前記加圧ポンチ15の移動軸線方向に移動自
在で且図示されていない圧縮コイルばね等の要素により
図にて上方に可撓的に付勢され、通常時前記圧縮コイル
ばねの作用により第1図に示す如く固定の前記底部要素
16に対し所定の高さ位置に維持されるようになってい
る。Also, -1 second and third split die elements 11, 12, 13
are movable in the movement axis direction of the pressurizing punch 15, and are flexibly biased upward in the figure by elements such as a compression coil spring (not shown). As shown in FIG. 1, it is maintained at a predetermined height position relative to the fixed bottom element 16.
次に、上述した如き構成の粉末成形用金型を用いて内燃
機関用コンロッドを粉末成形する場合について、その成
形工程を説明する。Next, the molding process will be described in the case where a connecting rod for an internal combustion engine is powder molded using the powder molding mold configured as described above.
先ず第2図1に示すように第二及び第三の分割ダイ要素
12゜13を互いに接合させて型合せした状態で前記空
間14、ダイ穴横取凹部12’、 13’の共働により
形成されたダイ穴18と前記底部要素16及びリブ成形
用底部要素17により郭定されたキャビティ内に所定量
の金属粉末を充填する。First, as shown in FIG. 2, the second and third split die elements 12 and 13 are joined together and molded together, and then the space 14 and the die hole-crossing recesses 12' and 13' work together to form a die. A predetermined amount of metal powder is filled into the cavity defined by the die hole 18, the bottom element 16, and the rib-forming bottom element 17.
次に第2図2に示すように加圧ポンチ15を降下させる
ことにより、前記キャビティ内に充填した金属粉末を加
圧し、ダイ穴18内にコンロッド形状をなす成形体W′
を成形する。Next, as shown in FIG. 2, by lowering the pressurizing punch 15, the metal powder filled in the cavity is pressurized, and a molded body W' having a connecting rod shape is placed in the die hole 18.
to form.
この加圧成形時、第一、第二及び第三の分割ダイ要素l
L12,13は金属粉末との摩擦により加圧ポンチ15
の降下に伴い降下する。During this pressure molding, the first, second and third divided die elements l
L12 and 13 are pressurized punches 15 due to friction with metal powder.
It descends with the descent of.
又このときリブ成形用底部要素17も加圧ポンチ15の
降下に伴い所定の高さにまで降下する。At this time, the rib forming bottom element 17 also descends to a predetermined height as the pressure punch 15 descends.
以上の如く成形体W′が成形されたならば、加圧ポンチ
15をその位置に停止させた状態で第2図3に示す如く
第二及び第三の分割ダイ要素12.13を互いに分離す
る方向に水平移動させる。Once the compact W' is formed as described above, the second and third split die elements 12 and 13 are separated from each other as shown in FIG. 2 with the pressurizing punch 15 stopped at that position. Move horizontally in the direction.
そして次に加圧ポンチ15そ元の位置にまで上昇させ、
第2図4に示す如く第一、第二及び第三の分割ダイ要素
lL12,13及びリブ成形用底部要素17をそれぞれ
所定の位置にまで降下させた状態で前記成形体W′を取
出す。Then, raise the pressure punch 15 to its original position,
As shown in FIG. 2, the molded body W' is taken out with the first, second and third divided die elements 1L12, 13 and the rib forming bottom element 17 lowered to their respective predetermined positions.
従ってこのときも成形体W′はダイ穴18の型面に対し
実質的に滑ることなく抜取られる。Therefore, at this time as well, the molded body W' can be pulled out without substantially slipping against the mold surface of the die hole 18.
尚、加圧ポンチ15の上昇作動は、第二および第三Φ分
割ダイ要素12.13を互いに分離させる以前に行なっ
ても良い。Incidentally, the lifting operation of the pressure punch 15 may be performed before the second and third Φ-split die elements 12.13 are separated from each other.
以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はかかる実施例のみに限定されるもので
はなく本発明の範囲内にて種々の実施例並びに修正が可
能であることは当業者にとって明らかであろう。Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to such embodiments, and various embodiments and modifications can be made within the scope of the present invention. This will be clear to those skilled in the art.
第1図1〜4は本発明による粉末成形用金型を用いて円
柱状の成形体を粉末成形する場合の成形工程を解図的に
示す工程図、第2図1〜4は本発明による粉末成形用金
型を用いて内燃機関用コンロッドを粉末成形する場合の
成形工程を幾分解図的に示す工程図である。
1・・・・・・ダイ、1a、1b・・・・・・分割ダイ
要素、2・・・・・・ダイ穴、2a、2b・・・・・・
凹部、3・・・・・・加圧用ポンチ、4・・・・・・底
部要素、5・・・・・・型基板、6・・・・・・圧縮コ
イルばね、11・・・・・・第一の分割ダイ要素、12
・・・・・・第二の分割ダイ要素、12′・・・・・・
ダイ穴構成用凹部、13・・・・・・第三の分割ダイ要
素、13′・・・・・・ダイ穴横取用凹部、14・・・
・・・空間、15・・・・・・加圧用ポンチ、16・・
・・・・底部要素、17・・・・・・リブ成形用底部要
素、18・・・・・・ダイ穴。1 to 4 are process diagrams schematically showing the molding process when powder molding a cylindrical compact using the powder molding mold according to the present invention, and FIGS. 2 1 to 4 are according to the present invention. FIG. 3 is a somewhat exploded process diagram illustrating a molding process when powder molding a connecting rod for an internal combustion engine using a powder molding mold. 1...Die, 1a, 1b...Divided die element, 2...Die hole, 2a, 2b...
Recessed portion, 3... Pressure punch, 4... Bottom element, 5... Type board, 6... Compression coil spring, 11...・First split die element, 12
...Second split die element, 12'...
Recess for configuring die hole, 13...Third split die element, 13'... Recess for intercepting die hole, 14...
... Space, 15 ... Pressure punch, 16 ...
... Bottom element, 17 ... Bottom element for rib forming, 18 ... Die hole.
Claims (1)
に沿って嵌入され該ダイ穴の途中に位置する底面を構成
する底部要素と、前記ダイ穴内にその縦軸線に沿って前
記底部要素に対向して嵌入される加圧ポンチとを含み、
前記底部要素と前記加圧ポンチとが前記ダイ穴内にて互
いに近付けられることによりその間に装填された金属粉
末等の圧縮成形を行う粉末成形用金型に於て、前記ダイ
は前記ダイ穴をその縦軸線に沿う方向に通る分割面に沿
って少くとも二個に分割された分割ダイ要素により構成
され、該分割ダ不要素は前記分割面にて互いに接合し前
記ダイ穴を与える閉位置と前記分割面同士が互いに離れ
前記ダイ穴を拡大し開放した開位置との間で前記ダイ穴
の縦軸線に対し実質的に直角の方向に移動でき且前記底
部要素の前記底面が前記ダイ穴より出る位置まで前記ダ
イ穴の縦軸線に沿う方向に前記底部要素に対し相対的に
移動し得るよう構成されていることを特徴とする粉末成
形用金型。 2、特許請求の範囲第1項の粉末成形用金型に於て、前
記ダイは前記底部要素の前記底面が前記ダイ穴の途中に
位置するよう可撓的に支持されていることを特徴とする
粉末成形用金型。[Scope of Claims] 1. A die with a die hole, a bottom element that is fitted into the die hole along its longitudinal axis and constitutes a bottom surface located in the middle of the die hole, and a bottom element that is fitted into the die hole along its longitudinal axis and constitutes a bottom surface located in the middle of the die hole. a pressure punch fitted opposite the bottom element along the
In a powder molding mold for compressing metal powder, etc. loaded therebetween by bringing the bottom element and the pressurizing punch close to each other in the die hole, the die is placed in the die hole. It is constituted by a split die element divided into at least two parts along a splitting plane passing in a direction along the longitudinal axis, and the splitting die element is joined to each other at the splitting plane to provide the die hole and the closed position. the dividing planes are movable in a direction substantially perpendicular to the longitudinal axis of the die hole between an open position in which the parting surfaces are separated from each other and the die hole is enlarged and open, and the bottom surface of the bottom element exits the die hole; A powder molding mold, characterized in that it is configured to be movable relative to the bottom element in a direction along the longitudinal axis of the die hole to a position. 2. In the powder molding mold according to claim 1, the die is flexibly supported so that the bottom surface of the bottom element is located halfway in the die hole. Mold for powder molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51006996A JPS5825721B2 (en) | 1976-01-23 | 1976-01-23 | Mold for powder molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51006996A JPS5825721B2 (en) | 1976-01-23 | 1976-01-23 | Mold for powder molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5290404A JPS5290404A (en) | 1977-07-29 |
JPS5825721B2 true JPS5825721B2 (en) | 1983-05-30 |
Family
ID=11653722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51006996A Expired JPS5825721B2 (en) | 1976-01-23 | 1976-01-23 | Mold for powder molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5825721B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57146499A (en) * | 1981-03-06 | 1982-09-09 | Sumitomo Metal Ind Ltd | Compression forming device for pulverulent body |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4926867A (en) * | 1972-07-05 | 1974-03-09 | ||
JPS49135805A (en) * | 1973-05-04 | 1974-12-27 | ||
JPS5342150A (en) * | 1976-09-30 | 1978-04-17 | Kawatetsu Galvanizing | Zinced steel sheet applied with primer coating which is spottweldable |
-
1976
- 1976-01-23 JP JP51006996A patent/JPS5825721B2/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4926867A (en) * | 1972-07-05 | 1974-03-09 | ||
JPS49135805A (en) * | 1973-05-04 | 1974-12-27 | ||
JPS5342150A (en) * | 1976-09-30 | 1978-04-17 | Kawatetsu Galvanizing | Zinced steel sheet applied with primer coating which is spottweldable |
Also Published As
Publication number | Publication date |
---|---|
JPS5290404A (en) | 1977-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4472350A (en) | Method of making a compound valve seat | |
US5043123A (en) | Method and apparatus for manufacturing finished parts as composite bodies from pulverulent rolling materials | |
US6973723B2 (en) | Piston formed by powder metallurgical methods | |
US3631583A (en) | Method for producing substantially solid extrusions from powdered metal | |
US3648343A (en) | Method of making a composite high-temperature valve | |
JP3957868B2 (en) | Molding method of green compact | |
US3611546A (en) | Method of highly-densifying powdered metal | |
US6365094B1 (en) | Lubricated die | |
JPS5825721B2 (en) | Mold for powder molding | |
JP2007222879A (en) | Mold for powder molding and powder molding method | |
US3583672A (en) | Composite high-temperature valve and method of making the same | |
US3664008A (en) | Method of producing elongated highly densified powdered metal articles | |
US2536689A (en) | Method of making small metal bodies | |
KR102000187B1 (en) | Frictional mechanical sintering apparatus and mathod | |
WO2016021362A1 (en) | Method for manufacturing composite sintered body | |
RU2101137C1 (en) | Method of manufacture of two-layer bushings | |
JPH11192597A (en) | Molding method of green compact | |
JP3763796B2 (en) | Manufacturing method of sintered member with inner hole with excellent coaxiality accuracy | |
SU1637959A1 (en) | Method and apparatus for fabricating workpieces with side beads from sintered powder | |
SU872028A1 (en) | Metallic powder pressing method | |
RU2313421C2 (en) | Powder article production method | |
JPH05171206A (en) | Method for forming second layer of green compact on cylindrical member and molding device | |
JPH09125103A (en) | Method and device for compacting tiranium alloy | |
JPH03126804A (en) | Dual forming method with sintered metal | |
JP3763797B2 (en) | Manufacturing method of sintered member with inner hole with excellent coaxial accuracy of inner and outer circumference |