JPS5825514A - Internal combustion engine with combustion chamber with multiple intake ports - Google Patents
Internal combustion engine with combustion chamber with multiple intake portsInfo
- Publication number
- JPS5825514A JPS5825514A JP56124142A JP12414281A JPS5825514A JP S5825514 A JPS5825514 A JP S5825514A JP 56124142 A JP56124142 A JP 56124142A JP 12414281 A JP12414281 A JP 12414281A JP S5825514 A JPS5825514 A JP S5825514A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- throttle valve
- negative pressure
- port
- combustion chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 19
- 239000000446 fuel Substances 0.000 claims description 29
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- JNUZADQZHYFJGW-JOCHJYFZSA-N (2R)-N-[3-[5-fluoro-2-(2-fluoro-3-methylsulfonylanilino)pyrimidin-4-yl]-1H-indol-7-yl]-3-methoxy-2-(4-methylpiperazin-1-yl)propanamide Chemical compound FC=1C(=NC(=NC=1)NC1=C(C(=CC=C1)S(=O)(=O)C)F)C1=CNC2=C(C=CC=C12)NC([C@@H](COC)N1CCN(CC1)C)=O JNUZADQZHYFJGW-JOCHJYFZSA-N 0.000 description 1
- 241000532784 Thelia <leafhopper> Species 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は複数個の吸気弁を具えた燃焼室を有する型の内
燃機関に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal combustion engine of the type having a combustion chamber with a plurality of intake valves.
従来、低燃費化技術の一つとして燃焼室の吸気ポートを
へりカルポートとして構成することによシ吸入新気に高
ススワールを与え燃焼させる方法があったが、特に高速
・高負荷域においてはそのヘリカル形状に起因する大き
な吸気抵抗が問題となり1充填効率が低下し出力、燃費
の悪化を招いていた。Conventionally, one of the technologies for improving fuel efficiency was to configure the intake port of the combustion chamber as a helical port to give high swirl to the fresh intake air and combust it. The large intake resistance caused by the helical shape became a problem, lowering the 1st filling efficiency and causing deterioration in output and fuel efficiency.
そこでこの欠点を補うためにこのへりカルポート(第1
吸気ポート)に加え第2の吸気ポートを設けて高速、高
負荷時の充填効率を確保する方法も提案されているが、
そうすると今度は逆に、中低速、中負荷域あるいは減速
時における吸入新気の流速が小さくなシ、有効なスワー
ルを発生させることが難しくなシ、この域での出力、燃
費の悪化を招いていた・
本発明は上述した問題を解消するためになされたもので
、高速、高負荷時における充填効率を確保しつつ中低速
、中低負荷域あるいは減速時には2次吸気ポートを遮断
することにょシアイドル時の燃焼安定性を向上せしめ、
減速時及びアイドル時のエミッション(%にHC)の改
善、燃費の向上を漬成せんとするものである。Therefore, in order to compensate for this drawback, this Heri Calport (first
A method has also been proposed in which a second intake port is provided in addition to the intake port (intake port) to ensure charging efficiency at high speeds and high loads.
If this happens, conversely, the flow velocity of the intake fresh air will be low at medium to low speeds, medium load ranges, or during deceleration, and it will be difficult to generate an effective swirl, leading to deterioration of output and fuel efficiency in this range. - The present invention was made to solve the above-mentioned problems, and it is designed to ensure charging efficiency at high speeds and high loads, while blocking the secondary intake port at medium to low speeds, medium to low load areas, or during deceleration. Improves combustion stability at idle,
The aim is to improve emissions (HC in %) during deceleration and idling, and to improve fuel efficiency.
本発明の目的はまた、2次吸気ポートの開閉制御により
使用可能な空燃比の範囲が変動する点に着目して、2次
吸気ポートの開閉信号を空燃比の制御信号として利用し
燃費あるいは運転性の上から最適空燃比を使用可能なら
しめることにもある。It is also an object of the present invention to focus on the fact that the usable air-fuel ratio range changes due to the opening/closing control of the secondary intake port, and to utilize the opening/closing signal of the secondary intake port as an air-fuel ratio control signal to improve fuel efficiency and driving performance. It is also possible to use the optimum air-fuel ratio from the viewpoint of performance.
以下、本発明の一実施例を図に従って説明する。An embodiment of the present invention will be described below with reference to the drawings.
第1図、第2図において、1はエンジンのシリンダへ、
ド、2は燃焼室である。燃焼室2の点火栓4近傍に、高
スワール発生用のヘリカル[1次吸気ポート3が開口し
、その対向位置に排気ポート5が開口している。In Figures 1 and 2, 1 is to the cylinder of the engine;
2 is a combustion chamber. A helical primary intake port 3 for generating a high swirl is opened near the ignition plug 4 of the combustion chamber 2, and an exhaust port 5 is opened at the opposite position.
また、燃焼室2内の1次吸気ポート3の近傍には、好ま
しくは1次吸気ポート3と同一方向のスワールを発生さ
せる2次吸気/、l(偏心/−))6が設けられる。各
々のポー)3.6.5には、夫々のカムにより独立的に
作動せしめられる1次吸気バルブ71,2次吸気ノヤル
ブ8、および排気ノ9ルブ(図示せず)が配設される・
1次吸気ポート3は十分な高スワールが得られるように
へりカルポートとなっており、一方、2次吸気4−トロ
は吸気抵抗をできるだけ/J%さくできるように1次吸
気/−)よりも小径に形成され、且つ1次吸気ポート3
よ〕発生したスワールを適切に付勢す7るようシリンダ
壁に沿う偏?IItt−与える偏心/−)となっている
、2次吸気ポート6の上流には中高負荷域で開く流路制
御バルブ(副スロ、トパルブ)9が設けられる。この流
路制御ノ4ルブ9はエンジン負荷あるいは回転数に応じ
て作動する。Further, in the vicinity of the primary intake port 3 in the combustion chamber 2, a secondary intake air /, l(eccentricity/-)) 6 that preferably generates a swirl in the same direction as the primary intake port 3 is provided. Each port) 3.6.5 is provided with a primary intake valve 71, a secondary intake valve 8, and an exhaust valve 9 (not shown) which are independently operated by respective cams. The primary intake port 3 is a helical port to obtain a sufficiently high swirl, while the secondary intake port 4 is designed to reduce intake resistance by /J% as much as possible compared to the primary intake /-). The primary intake port 3 is formed to have a small diameter.
7. Is there an offset along the cylinder wall to properly energize the generated swirl? Upstream of the secondary intake port 6, the flow path control valve (auxiliary slot, top valve) 9, which opens in a medium to high load range, is provided. This flow path control knob 4 operates according to the engine load or rotation speed.
図示の実施例ではバルブ9は負圧作動式アクチーエータ
20によりエンジン負荷(II気負負荷に応じて開閉制
御せしめられる。その九めノ4ルプ9はリンク機構23
t−介してアクチェエータ20の作動口、ド25に連結
される。アクチェエータ20はダイヤフラム27によ〕
仕切られる負圧作動室31と大気圧に開放する室33と
を有し、口、P25はダイヤフラム27に連結されダイ
ヤプラムに連動する。負圧作動室31は管路37を介し
て吸気通路15の主スロツトルバルブ17の近傍に設け
られるパキ凰−ムセンシング/−)45に連結される。In the illustrated embodiment, the valve 9 is opened and closed by a negative pressure actuator 20 according to the engine load (II negative load).
It is connected to the actuating port 25 of the actuator 20 through the t. Actuator 20 is based on diaphragm 27]
It has a negative pressure working chamber 31 that is partitioned off and a chamber 33 that is open to atmospheric pressure, and the opening P25 is connected to and interlocks with the diaphragm 27. The negative pressure working chamber 31 is connected via a conduit 37 to a pump sensing valve 45 provided in the vicinity of the main throttle valve 17 of the intake passage 15.
尚、35はダイヤフラム27のリターンスプリングであ
る。吸気通路15からの吸気は分岐されて各1次吸気ポ
ート3及び2次吸気/−)6に送られる。パキ凰−ムセ
ンシング/ −ト45は主スロツトルバルブ17が全閉
位置からみて成る開度0、例えば吸気負圧が−350謳
珈となるときに相当する開度の直ぐ下流に設けられる。Note that 35 is a return spring for the diaphragm 27. Intake air from the intake passage 15 is branched and sent to each primary intake port 3 and secondary intake air/-) 6. The engine sensing valve 45 is provided immediately downstream of the opening degree of 0 when the main throttle valve 17 is viewed from the fully closed position, for example, the opening degree corresponding to when the intake negative pressure is -350 mm.
即チ、パキ凰−ムセ′ンシングボー)45ハ911えば
一350mlHgの吸気負圧を検知するものである。45-911 is for detecting negative intake pressure of, for example, 350 mlHg.
今、第1図に示す如く、主スロッ(ルバルプ17のアイ
ドル位置を(a)、定常走行位置t (b)、全開加速
位置t(e)とすれば、位置(b)はパキ凰−ムセンシ
ングポート45がオン(負圧感知)からオフ(大気圧)
あるいはオフからオンに切り替わる位置である。従って
図示の実施例で紘定常走行を位置(b)を境界として2
つに分け、位置(a)から(b)の範囲t−第1定常走
行位置、(b)から(c)の範囲を第2定常走行位置と
呼ぶととKする0通常の加速位置は第2定常走行位置、
即ち(b)と(c)の間に含まれる。Now, as shown in Fig. 1, if the idle position of the main slot valve 17 is (a), the steady running position t (b), and the fully open acceleration position t (e), position (b) is the Sensing port 45 changes from on (negative pressure sensing) to off (atmospheric pressure)
Or it is the position where it switches from off to on. Therefore, in the illustrated embodiment, the stationary running is performed at position (b) as a boundary at 2
The range t from position (a) to (b) is called the first steady running position, and the range from (b) to (c) is called the second steady running position. 2 steady running position,
That is, it is included between (b) and (c).
斯くシて主スロツトルパルプ17がパキ凰−ムセンシン
グポート45の上流側に位置するときはパキ、−ムセン
シングポート45には吸気負圧が作用し、アクチェエー
タ20を作動せしめ副スロ。Thus, when the main throttle pulp 17 is located on the upstream side of the gas sensing port 45, negative intake pressure acts on the gas sensing port 45, actuating the actuator 20 to activate the sub-throttle.
トルバルブ9を閉じる。またこれとは逆に主スロツトル
バルブ17がパキ為−ムセンシングホード45の下流側
に位置するときはパキ^−ムセンシング/’−) 45
には大気圧が作用することになるのでアクチェエータ2
0は不作動位置を占め、副スロ、トルバルブ9を開放せ
しめる。従って、副スロ、トルパルプの開閉制御は吸気
負圧(即ち、負荷)Kよってのみなされる。Close the tor valve 9. On the other hand, when the main throttle valve 17 is located on the downstream side of the brake sensor housing 45, the brake sensor is activated.
Since atmospheric pressure will act on actuator 2,
0 occupies a non-operating position and opens the sub-throttle and tor valve 9. Therefore, the opening/closing control of the auxiliary slot and the torpulp is performed only by the intake negative pressure (ie, the load) K.
吸気通路15には主スロツトルバルブ17のアイドル位
置(全閉位置)及び全開位置を検知するアイドルスイッ
チ41及び/4ワースイッチ42が夫々設けられる。ア
イドルスイッチ41及びパワースイッチ42は共に例え
ば主スロットルバルブ170全閉位置及び全開位置にお
いて主スロツトルバルブ17に接触する電気的なリオ、
トスイッチでよい、アクチ為エータ20は吸気負圧が作
用し九ときのみ副スロツトルバルブ9を閉じ、2次数−
/−)6からの吸気をカットする6上述した構成を有す
るエンジンでは、アイドル時、急減速時あるいは嬉1定
常走行時等のスロ。The intake passage 15 is provided with an idle switch 41 and a /4 power switch 42 for detecting the idle position (fully closed position) and fully open position of the main throttle valve 17, respectively. Both the idle switch 41 and the power switch 42 are electrical switches that contact the main throttle valve 17 in the fully closed and fully open positions of the main throttle valve 170, for example.
The actuator 20, which may be a switch, closes the sub-throttle valve 9 only when the intake negative pressure is applied, and the secondary throttle valve 9 is closed.
/-) Cutting the intake air from 6 In an engine having the above-mentioned configuration, the intake air is cut off during idling, sudden deceleration, or steady driving.
トル全閉時ないしは所定開度0以下において、流路制御
バルブ9は前述の如く閉じている。従って、新混合気は
1次吸気ポート3のみから燃焼室2内に吸入されること
になるので、十分に大きな流速が得られ高スワールが発
生する。その結果特にアイドル時における層状燃焼が可
能となり、高出力。When the torque is fully closed or at a predetermined opening degree of 0 or less, the flow path control valve 9 is closed as described above. Therefore, the new air-fuel mixture is taken into the combustion chamber 2 only through the primary intake port 3, so that a sufficiently large flow velocity is obtained and a high swirl is generated. As a result, stratified combustion is possible, especially at idle, resulting in high output.
低燃費が達成できる。即ち、このような状態では燃費向
上の九めに突然比をリーンにすることができる。この関
係をlia図に示す。第3図に示す如く副スロツトルバ
ルブ9が全開のときは吸気の十分な流速とスワールが得
られるので従来使用していた空燃比A/y′p範囲に対
し、リーン側の空燃比(例えばJv′F−19〜21位
まで)t−使用し得ることが判明した。そこで本発明は
この点に着目し副スロツトルバルブの閉鎖時にはり一ン
空燃比を使用することを提案するものである。(但し、
アイドル時には失火してしまうため従来通り、例えばル
↑、、14.5〜14.7位の理論空燃比にすることが
必要である。)
そのため、本発明によれば第1図に示す如く負圧信号3
.、/4ワースイ、チ42からの信号S3゜アイドルス
イッチ41からの信号8$及び/又はエンジン回転数信
号8aがコンビ轟−タユニット50に入力されそれらの
信号に応じて燃料の増減をフ為エルインジェクタ60に
指令するようになっている。一般に、排気浄化装置とし
て3元触媒(図示せず)を使用する場合には02センサ
53により排気ガスの空燃比を検出しコンビ凰−タユニ
、ト50により設定突然比(例えば、理論突然比)とな
るべくフィードバック(クローズドルーグ)制御するこ
とが行われている。そこで本発明では必要なときのみフ
ィードパ、りを解除し空燃比をリーン(あるいはリッチ
)にするものである。Low fuel consumption can be achieved. That is, in such a state, the ratio can be suddenly made lean in order to improve fuel efficiency. This relationship is shown in the lia diagram. As shown in FIG. 3, when the sub-throttle valve 9 is fully open, sufficient flow velocity and swirl of intake air can be obtained. Jv'F-19 to 21) was found to be usable. Therefore, the present invention focuses on this point and proposes to use a high air-fuel ratio when closing the auxiliary throttle valve. (however,
Since a misfire occurs when the engine is idling, it is necessary to set the stoichiometric air-fuel ratio to, for example, 14.5 to 14.7, as usual. ) Therefore, according to the present invention, the negative pressure signal 3 as shown in FIG.
.. The signal S3 from the idle switch 41 and/or the engine rotational speed signal 8a is input to the combination rotor unit 50 to increase or decrease the fuel according to these signals. A command is given to the L injector 60. Generally, when a three-way catalyst (not shown) is used as an exhaust purification device, the air-fuel ratio of the exhaust gas is detected by the 02 sensor 53, and the sudden ratio (for example, the theoretical sudden ratio) is set by the combination sensor 50. Feedback (closed loop) control is being used as much as possible. Therefore, in the present invention, the feed pressure is canceled and the air-fuel ratio is made lean (or rich) only when necessary.
負圧管路37の負圧信号はバキュームスイッチ51によ
シ検出される。パキ為−ムスイッチ51はそれ自体公知
の、例えばダイヤフラム式の電気的なON −OFFス
イ、チでよく、負圧管路37′に所定の負圧(例えば−
35,Owsk )が作用したときのみオンになり、負
圧信号81をコンビ鳳−タユニ、)(CPU)50に入
力する。また%02センサ53からのフィードパ、り信
号Ssもコンピュータユニツ)50に送られる。尚、減
速時には一般に燃料を力、トするかあるいはり−ンにす
ることができるので、設定空燃比に保持する必要のある
アイドル時と区別するのが好ましい。しかしながら、減
速時とアイドル時は共に主スロツトルバルブ17は全閉
位置にあるのでアイドル信号Ssのみでは減速時と区別
できない、そのため、好ましくはタコメータ52等のエ
ンジン回転数信号S4を利用する(減蓮時の回転数はア
イドル時の回転数よりはるかに大きい)・吸気マニホル
ド3に設ケラれるフ為エルインジェクタ60はCPU5
0からの信号に応じて噴射燃料量を加減する。A negative pressure signal in the negative pressure line 37 is detected by a vacuum switch 51. The pump switch 51 may be a known diaphragm type electrical ON-OFF switch, for example, and may be used to maintain a predetermined negative pressure (for example -
35, Owsk) is activated, and inputs a negative pressure signal 81 to the combination CPU 50. Further, the feed signal Ss from the %02 sensor 53 is also sent to the computer unit 50. Incidentally, during deceleration, the fuel can generally be turned on or off, so it is preferable to distinguish this from the idling period, when the air-fuel ratio must be maintained at the set air-fuel ratio. However, since the main throttle valve 17 is in the fully closed position during both deceleration and idling, it is impossible to distinguish from deceleration using only the idle signal Ss. Therefore, it is preferable to use the engine speed signal S4 from the tachometer 52 or the like (The number of revolutions at idle is much higher than the number of revolutions at idle) - The fuel injector 60 installed in the intake manifold 3 is connected to the CPU 5.
The amount of fuel injected is adjusted according to the signal from 0.
本発明を用いて3元触媒使用時における使用空燃比ル1
の制御態様の一例を示せば次表の通りである。尚、この
表において信号センサは0NK9るセンサのみについて
記載し、従って記載されていないセンナはOFFである
。Using the present invention, the air-fuel ratio used when using a three-way catalyst is 1.
An example of the control mode is shown in the following table. In this table, only the signal sensor 0NK9 is described, and therefore the sensors not listed are OFF.
以下余白
上表から理解される如く、アイドル時を除き副スロツト
ルプ9が全閉のときは1フイ一ドバツク回路をオープン
回路としてリーン混合気を用いているのが大きな特徴で
ある。また、全開加速時には従来同様り、チ混合気が用
いられる。As can be understood from the table above, the major feature is that when the sub-throttle 9 is fully closed, except when idling, the 1 feedback circuit is opened and a lean mixture is used. Also, during full throttle acceleration, the chi-air mixture is used, as in the past.
また、中高速、中高負荷時に社、1次吸気ポート3内の
流速も上が9十分な高スワールが得られるものの吸気抵
抗が大とな夛、1次吸気ポート3だけでの吸入空気量で
は不足するが、この場合にはパキ瓢−ムセンシングポー
ト45が大気に開放されるのでアクチェエータ20に作
用する負圧が解除され、2次吸気/−トロ@O流路制御
ノ4ルブ9が開き不足分の断湿合気が吸入される。この
場合、1次吸気/−)31mの流速が若干低下しスワー
ルが弱まるものの2次吸気/−トロ側のシリンダ壁に沿
う偏流によシそのスワールが付勢され、結果的には十分
なスワールが得られることにな広アイドル時におけるの
と同様の良好な層状燃焼が可能となる。従って中高速、
中高負荷時においても高出力、低燃費が達成できること
になる。なお、1次吸気ポート3は好ましくは2次吸気
ポート6より大きい断面を有するが、それは小径では十
分なスワールが発生しないこと、及び、−次吸気ポート
3のみから2次吸気デー)6が追加される継ぎの部分が
常用使用域にあう喪場合、ドライバビリティの悪化をで
きるだけ少なくするためである。In addition, at medium-high speeds and medium-high loads, the flow velocity in the primary intake port 3 can be increased.Although a sufficiently high swirl can be obtained, the intake resistance is large, and the amount of air intake by the primary intake port 3 alone is insufficient. However, in this case, the pressure sensing port 45 is opened to the atmosphere, so the negative pressure acting on the actuator 20 is released, and the secondary intake/flow passage control knob 4 opens. The missing amount of moisture is inhaled. In this case, although the flow velocity of the primary intake (-)31m decreases slightly and the swirl weakens, the swirl is energized by the drift along the cylinder wall on the secondary intake/-toro side, and as a result, sufficient swirl is generated. This makes it possible to achieve good stratified combustion similar to that at wide idle. Therefore, medium to high speed,
This means that high output and low fuel consumption can be achieved even under medium to high loads. Note that the primary intake port 3 preferably has a larger cross section than the secondary intake port 6, but this is because a small diameter does not generate enough swirl, and the secondary intake port 6 is added only from the secondary intake port 3. This is to minimize the deterioration of drivability when the joint is in a commonly used area.
尚、副スロツトルバルブの開閉を漸進的に行うために好
ましくは負圧管路37の途中圧は絞り39等の遅延手段
が設けられる。In order to gradually open and close the auxiliary throttle valve, a pressure delay means such as a throttle 39 is preferably provided in the middle of the negative pressure line 37.
以上説明したことから明らかな如く、本発明によれば2
次吸気ポートにエンジン負荷に応じて閉鎖する流路制御
弁(副スロツトルバルブ)f:設けることにより、中高
速、中高負荷領域における十分なスワールと充填効率を
確保しつつ、アイドル時あるいは減速時の高スワールの
確保と燃焼性の向上を達成することができるのみならず
、副スロ、トルバルブ全閉時において必要に応じて空燃
比番リーンにすることによル燃費の向上を計ることがで
きる。As is clear from the above explanation, according to the present invention, two
By providing a flow path control valve (auxiliary throttle valve) f in the secondary intake port that closes depending on the engine load, it is possible to ensure sufficient swirl and filling efficiency in medium-high speed and medium-high load regions, while also ensuring sufficient swirl and filling efficiency during idling or deceleration. In addition to ensuring high swirl and improving combustibility, it is also possible to improve fuel efficiency by making the air-fuel ratio leaner as necessary when the sub-throttle and torque valves are fully closed. .
第1図は本発明の一実施例を示す内燃機関の燃焼室まわ
シの要部を図解的に示す図、第2図は第1図の■−■線
断面図、第3図は本発明における使用空燃比範囲を従来
技術との比較において示す図・
2・・・燃焼室、4・・・点火栓、3・・・1次吸気ポ
ート、6・・・2次吸気ポート、9・・・副スロツトル
バルブ、17・・・主スロ、トルパルプ、20・・・ア
クチェエータ、41・・・アイドルスイッチ、42・・
・ノやワースイ、チ、45・・・パキ為−ムセンシング
ポート、60・・・フェエルインノエクタ。
特許出願人
トヨタ自動車工業株式会社
特許出願代理人
弁理士前r木 朗
弁理士西舘和之
弁理士吉田正行
弁理士山口昭之
第1図
第2図Fig. 1 is a diagram schematically showing the main parts of a combustion chamber casing of an internal combustion engine showing an embodiment of the present invention, Fig. 2 is a sectional view taken along the line ■-■ of Fig. 1, and Fig. 3 is a diagram showing the present invention. 2... Combustion chamber, 4... Spark plug, 3... Primary intake port, 6... Secondary intake port, 9...・Sub-throttle valve, 17...Main throttle, Torpulp, 20...Actuator, 41...Idle switch, 42...
・Noyawasui,chi,45...Pakitame-musensingport,60...Feelinnoekta. Patent Applicant Toyota Motor Corporation Patent Application Agent Patent Attorney Akira Maeki Patent Attorney Kazuyuki Nishidate Patent Attorney Masayuki Yoshida Patent Attorney Akiyuki Yamaguchi Figure 1 Figure 2
Claims (1)
ポートと主スロツトルバルブを有する吸気通路内の吸気
負圧に応動するアクチーエータにより作動せしめられる
副スロツトルバルブを具えた2次吸気ポートとを設けた
燃焼室を有するフュエルインジェクタ付き内燃機関にお
いて、上記アクチュエータの作動負圧回路を吸気通路の
主スロツトルバルブの設定開度位置に応じて負圧を感知
するバキュームセンシングポートに連結して副スロ、ト
ルバルブを機関負荷に応じて開閉制御し得るようにする
と共に、上記負圧回路の負圧をバキュームスイッチによ
シ感知してその信号に基き副スロツトルバルブの全閉時
に必要に応じてフュエルインジェクタかVらの燃料噴射
量を制御してリーン空燃比となし得るようにしたことを
特徴とする複数吸気ポート付燃焼室を有する内燃機関。A primary intake port for generating a high swirl in the form of a helical port and a secondary intake port equipped with a secondary throttle valve operated by an actuator responsive to negative intake pressure in an intake passage having a main throttle valve are provided. In an internal combustion engine with a fuel injector having a combustion chamber, the operating negative pressure circuit of the actuator is connected to a vacuum sensing port that senses negative pressure according to the set opening position of the main throttle valve in the intake passage. The throttle valve can be controlled to open and close according to the engine load, and the negative pressure in the negative pressure circuit is sensed by a vacuum switch, and based on the signal, the fuel injector is activated as necessary when the sub-throttle valve is fully closed. An internal combustion engine having a combustion chamber with a plurality of intake ports, characterized in that a lean air-fuel ratio can be achieved by controlling the amount of fuel injected from the engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56124142A JPS5825514A (en) | 1981-08-10 | 1981-08-10 | Internal combustion engine with combustion chamber with multiple intake ports |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56124142A JPS5825514A (en) | 1981-08-10 | 1981-08-10 | Internal combustion engine with combustion chamber with multiple intake ports |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5825514A true JPS5825514A (en) | 1983-02-15 |
JPH0236772B2 JPH0236772B2 (en) | 1990-08-20 |
Family
ID=14877959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56124142A Granted JPS5825514A (en) | 1981-08-10 | 1981-08-10 | Internal combustion engine with combustion chamber with multiple intake ports |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5825514A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59196931A (en) * | 1983-04-22 | 1984-11-08 | Toyota Motor Corp | Fuel injection controlling method for internal-combustion engine |
JPS6018227U (en) * | 1983-07-15 | 1985-02-07 | 本田技研工業株式会社 | Two-valve intake internal combustion engine |
US4548175A (en) * | 1983-12-05 | 1985-10-22 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine with two intake valves |
US5443050A (en) * | 1992-01-31 | 1995-08-22 | Mazda Motor Corporation | Engine control system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52156204A (en) * | 1976-06-21 | 1977-12-26 | Mitsubishi Motors Corp | Internal combustion engine |
JPS538407A (en) * | 1976-07-09 | 1978-01-25 | Mitsubishi Motors Corp | Engine |
JPS5554526U (en) * | 1978-10-09 | 1980-04-12 |
-
1981
- 1981-08-10 JP JP56124142A patent/JPS5825514A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52156204A (en) * | 1976-06-21 | 1977-12-26 | Mitsubishi Motors Corp | Internal combustion engine |
JPS538407A (en) * | 1976-07-09 | 1978-01-25 | Mitsubishi Motors Corp | Engine |
JPS5554526U (en) * | 1978-10-09 | 1980-04-12 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59196931A (en) * | 1983-04-22 | 1984-11-08 | Toyota Motor Corp | Fuel injection controlling method for internal-combustion engine |
JPS6018227U (en) * | 1983-07-15 | 1985-02-07 | 本田技研工業株式会社 | Two-valve intake internal combustion engine |
JPH0232826Y2 (en) * | 1983-07-15 | 1990-09-05 | ||
US4548175A (en) * | 1983-12-05 | 1985-10-22 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine with two intake valves |
US5443050A (en) * | 1992-01-31 | 1995-08-22 | Mazda Motor Corporation | Engine control system |
Also Published As
Publication number | Publication date |
---|---|
JPH0236772B2 (en) | 1990-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0348333B2 (en) | ||
JPS5825514A (en) | Internal combustion engine with combustion chamber with multiple intake ports | |
JP3273174B2 (en) | Engine control device | |
JPS5943922A (en) | Suction device of 2-suction valve type internal- combustion engine | |
US4084549A (en) | Rotary piston engine exhaust gas recycling means | |
JPS6039856B2 (en) | Internal combustion engine with combustion chamber with multiple intake ports | |
JPS62165537A (en) | Air intake device for spark-assist diesel engine | |
JPS63143349A (en) | Suction device for engine | |
JPH0557411B2 (en) | ||
JPS62225745A (en) | Air-fuel ratio control device for engine | |
JP2006242109A (en) | Control device for spark ignition type internal combustion engine | |
JPS6161918A (en) | Air intake device of internal-combustion engine | |
JP3026881B2 (en) | Carburetor air bleed control | |
JPH06108894A (en) | Intake device for engine | |
JPS61268845A (en) | Control method for air-fuel ratio in internal-combustion engine | |
JPH0551061B2 (en) | ||
JPS6337476Y2 (en) | ||
JPS60116834A (en) | Controller of fuel supply of double-suction path type internal-combustion engine | |
JPS6312846A (en) | Air-fuel ratio control device for internal combustion engine | |
JPS60111037A (en) | Idle controller of engine | |
JPH07103036A (en) | Air fuel ratio controller of engine | |
JPH073176B2 (en) | Intake device for 4-cycle internal combustion engine | |
JPS63239330A (en) | Fuel supply shutdown device for internal combustion engine | |
JPS595789B2 (en) | Vacuum advance angle control device for gasoline engine with air governor | |
JPS5828591A (en) | Internal combustion engine ignition timing control device |