[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS582474A - Automatically adjusting sail wing - Google Patents

Automatically adjusting sail wing

Info

Publication number
JPS582474A
JPS582474A JP56101019A JP10101981A JPS582474A JP S582474 A JPS582474 A JP S582474A JP 56101019 A JP56101019 A JP 56101019A JP 10101981 A JP10101981 A JP 10101981A JP S582474 A JPS582474 A JP S582474A
Authority
JP
Japan
Prior art keywords
wing
attack
angle
sail
sail wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56101019A
Other languages
Japanese (ja)
Inventor
Hitoshi Murai
村井 等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENGIYOUSHIYA KIKAI SEISAKUSHO KK
Dengyosha Machine Works Ltd
Original Assignee
DENGIYOUSHIYA KIKAI SEISAKUSHO KK
Dengyosha Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENGIYOUSHIYA KIKAI SEISAKUSHO KK, Dengyosha Machine Works Ltd filed Critical DENGIYOUSHIYA KIKAI SEISAKUSHO KK
Priority to JP56101019A priority Critical patent/JPS582474A/en
Publication of JPS582474A publication Critical patent/JPS582474A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/30Inorganic materials not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6001Fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6001Fabrics
    • F05B2280/6002Woven fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/02Fabric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/02Fabric
    • F05C2253/025Fabric woven
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To provide the sufficient strength and the rigidity and to improve the hydrodynamic performance by employing the automatically adjustable sail wing. CONSTITUTION:Upon the application of the hydrodynamic force the wing board at the front edge section will rotate around the wing beam shaft 2 thus to change the direction automatically in accordance to the change of the speed or the direction of the flow. In other word when the angle of attack of the flow against the sail wing will vary by same degree in + or - direction the shape of the wing board 3 is made symmetrical up and down, while when the flow is in one direction and only the angle of attack will vary the wing board is made asymmetrical up and down. Consequently in any case the excellent hydrodynamic performance can be exhibited in the full range in accordance to the varying range of the angle of attack.

Description

【発明の詳細な説明】 本発明は、帆船や風車などに利用できるセイルウィング
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sail wing that can be used for sailing ships, windmills, and the like.

帆船や風車などに利用できるセイルウィングとしては従
来種々のものがあるが、この種の翼としては411tで
あると共に十分な強度および剛性をもち、かつ流力性能
が優れた、さらに風向、風速の変化に対して効率良く対
応できることが望まれている。
There are various types of sail wings that can be used for sailboats and windmills, but this type of wing has a weight of 411 tons, has sufficient strength and rigidity, has excellent hydrodynamic performance, and is also capable of controlling wind direction and speed. It is desirable to be able to respond efficiently to changes.

本発明はこのような要望を満足させるためになされたも
のでセイルウィングを自動調整形にすることにより、軽
量でありながら十分なIiI度および剛性を有し、かつ
風向、風速の変化に効率よく対応できる流力性能のすぐ
れたセイルウィングを提供することを目的とするもので
ある。
The present invention was made to satisfy these demands, and by making the sail wing into a self-adjusting type, it is lightweight yet has sufficient IiI degree and rigidity, and can efficiently respond to changes in wind direction and speed. The purpose of this project is to provide a sail wing with excellent hydrodynamic performance that can respond to these demands.

以下図面について本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

本実施例においては第1r!!JK示すように、翼弦長
にほげ等しい長さの板状体からなる二枚の翼端リプlを
翼の両趨位@にそれぞに配置し、これら各J[llJブ
lの前縁部を貫通する翼桁軸λを回転自在に設け、ゴム
等の可撓材によって形成した複数個(本実施例では3個
)の翼形板JttM紀翼桁軸コに適当間隔おきに分布し
て取り付け、これら各翼形板Jの外周を布、フィルムあ
るいは薄金属板等の可撓膜参により覆って翼の前縁部を
形成する。
In this example, the first r! ! As shown in JK, two wing tip lips made of plate-shaped bodies with a length equal to the chord length are placed on both sides of the wing, and the leading edge of each of these J[ll A wing spar axis λ is rotatably provided and is distributed at appropriate intervals on a plurality of (three in this embodiment) airfoil plates JttM blade spar axes formed of a flexible material such as rubber. The outer periphery of each of these airfoil plates J is covered with a flexible membrane such as cloth, film, or thin metal plate to form the leading edge of the wing.

また前記翼端リプlの後端部/a間に鋼線等の張線jを
張り渡し、この張線!と前記前轍部な形成する可撓膜参
の後端縁ηaとの間に同じく可撓膜参を張り渡して自動
−整形セイルウィングを構成する。
In addition, a tension wire j such as a steel wire is stretched between the rear end portion /a of the wing tip lip l, and this tension wire! A self-shaping sail wing is constructed by extending the same flexible membrane between the front rut and the trailing edge ηa of the flexible membrane forming the front rut.

なお第コー〜第1図中の≠bは張線!から前縁部の後縁
eaまで張り渡した可撓膜ダを延長して翼形板3の中心
部に挾み込んだもので、tは翼形板Jの前部に設けた補
強板である。
In addition, ≠b in Figures 1 to 1 is a tension wire! t is a reinforcing plate provided at the front of the airfoil plate J. be.

またセイルウィングに対する流体の流れの迎え角αがF
aJ図iblに示すように+(E)成りは−(負)の各
方向に同相Ifに変化する場合には、第3図fa)に示
す通り翼形板Jの形状を上下対称なものとし、流れが一
方向(例えば士方向)のみで迎え角αの大きさのみ異る
場合(第一図fbl参照)、あるいは迎え角αが士に変
化しても、それぞれの方向で大きさの異る場合には、t
a−図1a)に示すように翼形板Jを上下非灼称にする
のがよい。
Also, the angle of attack α of the fluid flow relative to the sail wing is F
If the + (E) component changes to the same phase If in each of the − (negative) directions as shown in Figure 3 (a), the shape of the airfoil plate J should be vertically symmetrical as shown in Figure 3 (fa). , when the flow is only in one direction (for example, the direction) and only the magnitude of the attack angle α differs (see Figure 1 fbl), or even if the attack angle α changes to the direction, there is a difference in magnitude in each direction. If t
As shown in a-FIG. 1a), it is preferable for the airfoil J to be vertically asymmetric.

つぎに上述のように構成した本発明の自動調整形セイル
ウィングの作用を説明□する。
Next, the operation of the self-adjusting sail wing of the present invention constructed as described above will be explained.

このセイルウィングに流体力が作用しない非荷重の状態
では、第2図に示す断面形状をしているが、流体力が作
用した時には前縁部の翼形板3が翼桁軸コを中心として
回転できるから、流れの速さあるいは方向の変化に応じ
てその向きを自動的に変え、第3図(alあるいは第弘
図ら)に示すような形状になり、いかなる場合上も優れ
た流体力学的性能を発揮するようになっている。
In an unloaded state where no fluid force acts on this sail wing, it has the cross-sectional shape shown in Figure 2, but when fluid force acts on it, the airfoil plate 3 at the leading edge moves around the wing spar axis. Since it can rotate, it automatically changes its direction according to changes in the speed or direction of the flow, resulting in the shape shown in Figure 3 (Al or Dai-Hirozu et al.), which is excellent in hydrodynamics in any case. It is designed to demonstrate its performance.

すなわち、セイルウィングに対する流体の流れ゛の迎え
角αが十或いは一方向に同程度VCf化する場合には第
3図(atに示すようになり、また流れが一方向(例え
ば十方向)のみで迎え角αの大きさのみ異る場合は;I
Xg図(at K示すように変化すること釦よって、い
ずれの場合でも迎え角αが変化する範囲に応じてその全
範囲で優れた流体力学的性能を発揮することができる。
In other words, if the angle of attack α of the fluid flow relative to the sail wing changes to VCf to the same extent in ten directions or in one direction, it will become as shown in FIG. If only the angle of attack α differs; I
By changing the button as shown in the Xg diagram (at K), in any case, excellent hydrodynamic performance can be exhibited over the entire range according to the range in which the angle of attack α changes.

さらに前縁部のdk熾1iaから可撓膜−に接続する部
分は上記の迎え角が変化する範囲にわたって清らかに接
続する影でカプスを形成して性能を高めることができる
Furthermore, the portion of the leading edge connecting the dk 1ia to the flexible membrane forms a cup with a clear connection over the range where the angle of attack changes, thereby improving performance.

本発明はセイルウィングを上記のような構造圧したから
、本発明のセイルウィングは軽量で十分な強度と剛性を
有し、しかも流れの速さあるいは方向の変化に応じて自
動的に適当な断面形状となり、優れた流体力学的性能を
発揮することができるというすぐれた効果を有している
Since the present invention has the above-mentioned structural pressure on the sail wing, the sail wing of the present invention is lightweight, has sufficient strength and rigidity, and also automatically adjusts to an appropriate cross-section according to changes in flow speed or direction. It has the excellent effect of being able to exhibit excellent hydrodynamic performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るセイルウィングの斜視図、第2図
はその翼の流れの方向の縦断側面図、Mj図1a)は対
称前縁を有するセイルウィングの翼形変化図、同図1b
l・はその迎え角の変化図、第一図mlは非対称の前縁
な有するセイルウィングのjIl形変化図、同図Tbl
はその迎え角の変化図である。 l・・・翼端リブ、−・・・翼桁軸、3・・・翼形板、
弘・・・可撓膜、!・・・張線、6・・・補強板。
Fig. 1 is a perspective view of a sail wing according to the present invention, Fig. 2 is a longitudinal cross-sectional side view of the wing in the direction of flow, Mj Fig. 1a) is a diagram of a change in airfoil shape of a sail wing with a symmetrical leading edge, Fig. 1b
1 is a diagram of the change in the angle of attack, Figure 1 ml is a diagram of the shape of the sail wing with an asymmetric leading edge, and Tbl is the diagram of the shape of the sail wing with an asymmetric leading edge.
is a diagram of changes in the angle of attack. l... Wing tip rib, -... Wing spar axis, 3... Airfoil plate,
Hiro...flexible membrane! ...Tension wire, 6...Reinforcement plate.

Claims (1)

【特許請求の範囲】[Claims] 1 翼の両端部にそれぞれ翼端リプを設け、これら各翼
端リプの前縁部を貫通する翼桁軸を回転自在に設け、可
撓材によって形成した複数個の翼形板を前記翼桁軸に分
布して取り付け、これら各翼形板の外周な可撓膜により
覆って諷の前縁部を形成し、前記翼端リプの後海部關に
張線を張り渡し、この張線と前縁部な形成する可撓膜の
後端縁との間に可撓膜を張り渡してなる自動調整形セイ
ルウィング。
1 A wing tip lip is provided at each end of the wing, a wing spar shaft is rotatably provided that passes through the leading edge of each of these wing tip lips, and a plurality of airfoil plates formed of flexible material are attached to the wing spar. These airfoil plates are attached distributed on the shaft and covered with a flexible membrane on the outer periphery of each airfoil plate to form the leading edge of the wing. A self-adjusting sail wing with a flexible membrane stretched between the edge and the trailing edge of the flexible membrane.
JP56101019A 1981-06-29 1981-06-29 Automatically adjusting sail wing Pending JPS582474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56101019A JPS582474A (en) 1981-06-29 1981-06-29 Automatically adjusting sail wing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56101019A JPS582474A (en) 1981-06-29 1981-06-29 Automatically adjusting sail wing

Publications (1)

Publication Number Publication Date
JPS582474A true JPS582474A (en) 1983-01-08

Family

ID=14289486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56101019A Pending JPS582474A (en) 1981-06-29 1981-06-29 Automatically adjusting sail wing

Country Status (1)

Country Link
JP (1) JPS582474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262688A (en) * 1984-06-12 1985-12-26 Sono Kogyo Kk Screen plate for printing on object having locally projected surface
CN103930669A (en) * 2011-10-31 2014-07-16 阿卡蒂斯有限公司 Multi-megawatt ocean current energy extraction device
WO2024209197A1 (en) * 2023-04-04 2024-10-10 The University Court Of The University Of Edinburgh Turbine blade

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262688A (en) * 1984-06-12 1985-12-26 Sono Kogyo Kk Screen plate for printing on object having locally projected surface
CN103930669A (en) * 2011-10-31 2014-07-16 阿卡蒂斯有限公司 Multi-megawatt ocean current energy extraction device
WO2024209197A1 (en) * 2023-04-04 2024-10-10 The University Court Of The University Of Edinburgh Turbine blade

Similar Documents

Publication Publication Date Title
US5088665A (en) Serrated trailing edges for improving lift and drag characteristics of lifting surfaces
US5367970A (en) Controllable camber fin
US5181678A (en) Flexible tailored elastic airfoil section
US5868092A (en) Wing sail and method of use
US20190360510A1 (en) Fluid foil
US10035579B2 (en) Device for simultaneously and progressively varying the camber and the angle of attack of hydrodynamic and aerodynamic wings
US5252381A (en) Airfoil with thick trailing edge
US7114685B1 (en) Wing for an aircraft or spacecraft
EP3272635B1 (en) Foil hinge system
US4848258A (en) Airfoil sailing system
EP0208742B1 (en) Arrangement and method for achieving an aerodynamic mast profile for sailcraft
US1924871A (en) Boat keel
US4538539A (en) Deformable shrouded water foil
US9199709B2 (en) Frame device for a profiled sail device, and profiled sail device comprising at least one frame device
JPS582474A (en) Automatically adjusting sail wing
US4131390A (en) Circulation controlled rotor blade
GB2308836A (en) Reversible and finitely variable cambered lifting section
US4996935A (en) Stable racing catamaran with hydrofoil qualities
CA1062091A (en) Under-water appendages for vessels
GB2037686A (en) Sailboat masts
JPS5815765A (en) Automatically adjusted sail wing
US10974801B2 (en) Straightening effect sail
GB1567395A (en) Hydrofoils for vessels
US5575233A (en) Monoplane and low thrust wingsail arrangements
US4327659A (en) Minimum drag fluid reaction element and fluid control methods