[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5824517B2 - Single-sided processing equipment for continuous coil alumite using DC electrolysis - Google Patents

Single-sided processing equipment for continuous coil alumite using DC electrolysis

Info

Publication number
JPS5824517B2
JPS5824517B2 JP55042947A JP4294780A JPS5824517B2 JP S5824517 B2 JPS5824517 B2 JP S5824517B2 JP 55042947 A JP55042947 A JP 55042947A JP 4294780 A JP4294780 A JP 4294780A JP S5824517 B2 JPS5824517 B2 JP S5824517B2
Authority
JP
Japan
Prior art keywords
electrolytic
current
processed
electrode
alumite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55042947A
Other languages
Japanese (ja)
Other versions
JPS56139697A (en
Inventor
富岡久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATSUKAWA KOGYO KK
Original Assignee
KATSUKAWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATSUKAWA KOGYO KK filed Critical KATSUKAWA KOGYO KK
Priority to JP55042947A priority Critical patent/JPS5824517B2/en
Publication of JPS56139697A publication Critical patent/JPS56139697A/en
Publication of JPS5824517B2 publication Critical patent/JPS5824517B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】 本発明は連続コイルアルマイトの片面だけを直流電解に
よって処理する片面専用処理装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single-sided processing apparatus that processes only one side of continuous coil alumite using DC electrolysis.

第1図Aにより従来の両面アルマイトの電解槽内におけ
る電流e′の流れ方と、被処理物(シート)S′に対す
る陽極酸化皮膜(アルマイト膜)H/の出来具合の説明
図である。
FIG. 1A is an explanatory diagram of the flow of current e' in the conventional double-sided alumite electrolytic cell and the formation of an anodized film (alumite film) H/ on the object (sheet) S'.

通常的に(1)に架電された被処理物S′を、電解液中
で(→架電の各電極F1間に挟設した状況では電流e′
が矢印のごとく流れるが、この場合端部に電流集中が生
じ生成被膜も端部が厚くなる。
Normally, the workpiece S' connected to (1) is placed in an electrolytic solution (→In the situation where it is sandwiched between each of the connected electrodes F1, the current e'
flows as shown by the arrow, but in this case, current concentration occurs at the ends and the produced coating also becomes thicker at the ends.

ただし、鍍金の場合は被処理物と電極との梨型々位(1
)、(→が入れ換った形となるが、電解現象は同様であ
る。
However, in the case of plating, the distance between the workpiece and the electrode should be pear-shaped (1
) and (→ are exchanged, but the electrolytic phenomenon is the same.

第1図Bは被処理物S′をH梨型電極F、と(イ)梨型
電極F2に挟んだ状況における電流e′の流れ方と被処
理物S′の表面に発生するアルマイト膜H′の説明図で
ある。
Figure 1B shows how the current e' flows when the workpiece S' is sandwiched between the H pear-shaped electrode F and (a) the pear-shaped electrode F2, and the alumite film H generated on the surface of the workpiece S'. ' is an explanatory diagram.

この場合は後記する本発明の電解槽内における電極配置
と共通であるが、マスクセパレーターやスリット板等に
よる対策がきられていない場合を示している。
This case is the same as the electrode arrangement in the electrolytic cell of the present invention, which will be described later, but shows a case where countermeasures such as mask separators and slit plates are not taken.

即ち(罰、(ハ)の電極間に発生する電流e′は被処理
物S′の周囲を迂回して電解液中を流れる部分(リーク
電流−ロス電流) e /が非常に大きく、電解効率は
極端に低くなり、被処理物表面の端面部における生成皮
膜は殆んど出来なくなる。
In other words, the current e' generated between the electrodes in (c) detours around the object to be treated S' and flows through the electrolytic solution (leak current - loss current) e / is very large, and the electrolytic efficiency is becomes extremely low, and almost no film is formed on the end face portion of the surface of the object to be treated.

この現象は電解液種による固有抵抗値と被処理物表面で
必要とされる分極電圧値との関係において決定的要因と
なる。
This phenomenon becomes a determining factor in the relationship between the specific resistance value depending on the type of electrolyte and the polarization voltage value required on the surface of the object to be treated.

アルマイト処理における電解液は導電性の良いものが多
く、ロス電流が発生し易いのが通常である。
Many of the electrolytes used in alumite treatment have good conductivity, and loss current is usually likely to occur.

第1図C1第1図りは第1図Bに示す極性配置の電解特
性に対して従来使用されて来たやり方で、被処理物の端
部に集中し易い電流に対して邪魔物を設けることにより
、電流密度を加減して皮膜生成のムラを排する場合の説
明図である。
Figure 1C1 The first diagram is a method that has been conventionally used for the electrolytic characteristics of the polar arrangement shown in Figure 1B, and it is a method to provide an obstruction to the current that tends to concentrate at the edge of the object to be treated. FIG. 2 is an explanatory diagram of the case where unevenness in film formation is eliminated by adjusting the current density.

即ち、第1図Cでは鍍金時における被処理物Spを挟ん
で(1)梨型の極F2を配置した場合、コ形M面の遮蔽
板M1 により電極F2面の有効作用面を加減すると共
に、被処理物Spの端部を囲むように蔽うことにより集
中現象(e /は発生電流の流れ)の緩和を計るもので
ある。
That is, in FIG. 1C, when (1) the pear-shaped pole F2 is arranged across the workpiece Sp during plating, the effective working surface of the electrode F2 is adjusted by the shielding plate M1 of the U-shaped M surface, and , the concentration phenomenon (e/ is the flow of generated current) is alleviated by covering the end of the object Sp to be processed.

第1図りでは遮蔽板M2の断面形状をY字状に替えたも
ので、前者M1 と同様な効果を目的としている。
In the first drawing, the cross-sectional shape of the shielding plate M2 is changed to a Y-shape, and the purpose is to achieve the same effect as the former M1.

このような程度のものを第1図Bのどとき極配置のもの
に適用した時、前述のe′を減らすためには被処理物S
pの端部と遮蔽板M1又はM2 とは殆んど摺接させな
ければ、隙間(遮蔽板と被処理物との隙間)から電流e
′が洩れ、その背中側(外側から槽壁までの間にも連続
して分割板が必要きなり、又連続コイルの進行前層方向
にもリーク電流が生じるため、この防止対策も追加の必
要がある。
When this kind of thing is applied to the pole arrangement shown in Fig. 1B, in order to reduce the above-mentioned e',
If there is almost no sliding contact between the end of p and the shielding plate M1 or M2, the current e will flow from the gap (the gap between the shielding plate and the object to be processed).
′ will leak, and a continuous dividing plate will be required on the back side (from the outside to the tank wall), and leakage current will also occur in the direction of the layer in front of the continuous coil, so additional preventive measures are required. be.

このため同一電解槽内に(l−)H両極を対向配設する
形式のものでは、高効率のものは得られない状況にあっ
た。
For this reason, high efficiency cannot be obtained with a type of electrolytic cell in which both (l-)H poles are disposed facing each other in the same electrolytic cell.

そのため第1図に示すような連続コイルの前層方向に給
電槽、電解槽を配設したものが従来の主体であった。
Therefore, the main conventional method has been to arrange a power supply tank and an electrolytic tank in the direction of the front layer of a continuous coil as shown in FIG.

第1図、第2図、第3図により現在使用の連続コイルア
ルマイト片面処理装置の欠点を説明する。
The disadvantages of the currently used continuous coil alumite single-sided processing apparatus will be explained with reference to FIGS. 1, 2, and 3.

同処理装置は給電槽A/(電解液1′が満されている)
、槽間槽B′電解槽C/(電解液2′が満されている)
からなり、3′はスリット板、4′は前記電解液1′中
に設置した両面給電々極、5′は電解液2′中に設置さ
れた2つの片面電解電極、S′はAl又はA1合金のコ
イルシートの被処理物で、同被処理物S′は一対の押込
ロール6′により前記給電々極4′間から槽間槽両側の
スリット板3′のスリットを経て、電解電極5′の下面
側を通って移送される。
The processing equipment is power supply tank A/(filled with electrolyte 1')
, inter-tank B' electrolytic tank C/ (filled with electrolyte 2')
3' is a slit plate, 4' is a double-sided power supply electrode installed in the electrolytic solution 1', 5' is two single-sided electrolytic electrodes installed in the electrolytic solution 2', and S' is Al or A1. The workpiece S' is an alloy coil sheet, and the workpiece S' is passed between the power supply electrodes 4' by a pair of push rolls 6' through the slits in the slit plates 3' on both sides of the tank, and then transferred to the electrolytic electrode 5'. It is transported through the underside of the .

f′は第1の電解電源で配線a′により給電々極4′と
初めの電解電極5′に接続し、■′は第2の電解電源で
配線b′により同じく給電々極4′と次の電解電極5′
に接続している。
f' is the first electrolytic power source, which is connected to the feeding terminal 4' and the first electrolytic electrode 5' by wiring a', and ■' is the second electrolytic power source, which is also connected to the feeding terminal 4' and the next electrolytic electrode by wiring b'. electrolytic electrode 5'
is connected to.

直流電解による陽極酸化皮膜処理(アルマイト処理)時
の電流の流れは、 電解電源I′、■′→配線a′、b′→給電々極(イ)
4′→電解液1′→給電槽A′内の被処理物S′→電解
槽C′内の被処理物S′→電解液2′→電解電極5′→
配線a′、b′→電解電源r/、n/と流れ、被処理物
S′は給電槽A′において電源I/、n/により(1)
に梨型されている給電々極4′間を通る間に(1)に梨
型され、それが槽間槽B′(通電中間部)を経て電解槽
C′に導入され、電解液2′中に設置の(→梨型の2つ
の片面電解電極5′の下面側を通過する間に、被処理物
S′の上面にのみアルマイト皮膜H/(第3図参照)を
形成しようとするものである。
The flow of current during anodic oxide film treatment (alumite treatment) by DC electrolysis is as follows: Electrolytic power supply I', ■' → Wiring a', b' → Power supply terminal (A)
4' → Electrolyte 1' → Processing object S' in power supply tank A' → Processing object S' in electrolytic tank C' → Electrolytic solution 2' → Electrolytic electrode 5' →
The flow goes from wiring a', b' to electrolytic power source r/, n/, and the processed material S' is connected to power source I/, n/ (1) in power supply tank A'.
While passing between the power supply electrodes 4', which are pear-shaped, the power is pear-shaped (1), and is introduced into the electrolytic cell C' through the inter-tank tank B' (current-carrying middle part), and the electrolytic solution 2' An alumite film H/ (see Fig. 3) is intended to be formed only on the upper surface of the object to be treated S' while passing through the lower surface side of two pear-shaped single-sided electrolytic electrodes 5' installed inside. It is.

電解液2′中において被処理物S′が(1)、対極つま
り電解電極5′が(→に梨型されてアルマイト皮膜を形
成する点においては、アルマイト皮膜を形成する基本的
条件にン合致しているが、この場合片面処理(片面皮膜
)のため電解電極5′も片面側(この場合は上側)にの
み配置されて電解処理を行うもので、この時電流は第3
図に示す矢印e′の方向に流れているが、第2図にも示
す通り処理不要の裏面(下側)・からもf′で示すよう
に一部の電流がリーク電流として電解液中を迂回して流
れ、このため下面の1部にもH“のように電解処理がな
され、(a)結果的には部分的な両面処理(アルマイト
皮膜形成)がなされてしまう欠点があった。
The basic conditions for forming an alumite film are met in that the object to be treated S' is (1) in the electrolytic solution 2' and the counter electrode, that is, the electrolytic electrode 5' is pear-shaped (→) to form an alumite film. However, in this case, due to single-sided treatment (single-sided coating), the electrolytic electrode 5' is also placed only on one side (in this case, the upper side) to perform the electrolytic treatment, and at this time the current is applied to the third side.
The current flows in the direction of arrow e' shown in the figure, but as shown in Figure 2, some current also flows from the back side (lower side), which does not require treatment, into the electrolyte as a leak current, as shown by f'. Therefore, a part of the lower surface is also electrolytically treated as shown in H'', resulting in (a) partial double-sided treatment (formation of an alumite film).

又、第1図乃至第3図々示の現行装置においては、アル
マイト処理に必要な電流は被処理物S′中を縦方向(処
理ラインセンターに平行)に流れて電解槽C′中に至り
、同電解槽C′で皮膜が形成される。
Furthermore, in the current apparatus shown in FIGS. 1 to 3, the current necessary for alumite treatment flows through the object S' in the vertical direction (parallel to the center of the treatment line) and reaches the electrolytic cell C'. , a film is formed in the same electrolytic cell C'.

給電槽A′部分と電解槽07部分がタンデム配列となり
、両者A′、e′の分離にストリット板3′或は槽間槽
B′部分が設けられている。
The power supply tank A' portion and the electrolytic cell 07 portion are arranged in tandem, and a strip plate 3' or an inter-tank tank B' portion is provided to separate both A' and e'.

(b)即ち、現行装置は処理ライセンターに平行の縦方
向分割が基本となっているため、槽構造から言ってスペ
ースが大きくなる等の欠点があった。
(b) That is, since the current apparatus is basically vertically divided parallel to the processing center, there are drawbacks such as an increase in space due to the tank structure.

本発明は上記現行装置の欠点を除去することを目的とし
、電解槽内の電解液中に(1)給電々極と(→電解電極
を平行平面状に対極させ、同対極間を通過する連続帯状
被処理物の進行方向に対極に対してスリット板を近接さ
せて設けると共に、そのスリット部から連続して被処理
物の両側端耳部に並行接近した状態にマスクセパレータ
ーを平面状に配置して被処理物の表裏を別々に囲んで区
画し、マスクセパレーターの先端溝部と両側耳部との間
隙は約1nm程度、同区画を電気的に独立させることに
より被処理物内を流れる電解電流を表裏方向に流し、ス
リット板とマスクセパレーターによりリーク電流を防止
して、連続コイルアルマイトの片面のみを処理するよう
にしたものである。
The present invention aims to eliminate the above-mentioned drawbacks of the current device. A slit plate is provided in close proximity to the counter electrode in the traveling direction of the strip-shaped object to be processed, and a mask separator is arranged in a plane so as to be continuous from the slit and parallel to the edge portions on both sides of the object to be processed. The front and back sides of the object to be processed are separately surrounded and partitioned, and the gap between the groove at the tip of the mask separator and the ears on both sides is about 1 nm, and by making the partitions electrically independent, the electrolytic current flowing inside the object can be controlled. The current flows from front to back, and leakage current is prevented using a slit plate and a mask separator, so that only one side of the continuous coil alumite is processed.

以下、本発明を第4図乃至第9図に示された実施例に基
いて説明する。
The present invention will be explained below based on the embodiments shown in FIGS. 4 to 9.

第1の実施例(第4図乃至第1図参照) 第4図は本発明装置の概略縦断正面図、第5図は第4図
のY−Y線に沿った矢視方向側断面図で給電槽と電解槽
は同居している形(槽間槽が無いになっており、1つの
電解槽C中に電解液10が満たされている。
First Embodiment (See FIGS. 4 to 1) FIG. 4 is a schematic vertical sectional front view of the device of the present invention, and FIG. 5 is a side sectional view taken along the Y-Y line in FIG. The power supply tank and the electrolytic tank coexist (there is no inter-tank tank, and one electrolytic tank C is filled with electrolyte 10.

SはA[又はA1合金コイルシートなる被処理物、11
,12は同被処理物Sの押込ロール、13はスリット板
、14a、14bは上記スリット板13とマスクセパレ
ーター2021で夫々隔離されて電解液10中に浸漬設
置した給電々極(1)、15a、15bは前記給電々極
と同様に隔離設置された電解電極(→であり、上記給電
々極14aと電解電極15a及び給電々極14bと電解
電極15bは夫々対極をなし、上記スリット板13のス
リット部と対極間を被処理物Sが通過する。
S is A [or A1 alloy coil sheet, 11
, 12 is a push roll for the object to be processed S, 13 is a slit plate, and 14a and 14b are power supply electrodes (1) and 15a that are separated by the slit plate 13 and the mask separator 2021 and immersed in the electrolytic solution 10. , 15b are electrolytic electrodes (→) installed in isolation in the same way as the feeding electrodes, and the feeding electrodes 14a and the electrolytic electrodes 15a and the feeding electrodes 14b and the electrolytic electrodes 15b are opposite electrodes, respectively, and the slit plate 13 is The object to be processed S passes between the slit portion and the counter electrode.

前記対極に対して設けられたスリット板13は、そのス
リット部と被処理物Sとの間隙を数mm以内にきわめて
近接させて設置すると共に、上記スリット部から連続し
て被処理物Sの両側端耳部に並行接近した状態で、マス
クセパレーター20.21(槽壁まで平面状に延長され
ている)を配置している。
The slit plate 13 provided for the counter electrode is installed very close to the slit part and the object S to be processed, with a gap of several mm or less, and continuously extends from the slit part to both sides of the object S to be processed. A mask separator 20, 21 (extending in a planar manner to the tank wall) is arranged parallel to and close to the end ear.

そして両側端耳部と被処理物の厚さ方向の間隙を約1m
m程度、かつ耳部への嵌り込みの深さを通板機能の精度
と関連して数mm以内として、上記マスクセパレータ2
0.21を平面状に配置して被処理物Sの表裏を別々に
各電極の電場を囲んで区画しており、同区画を電気的に
独立させることにより被処理物S内を流れる電解電流を
表裏方向に流し、被処理物Sの両側端耳部分(左右の横
方向)から洩れる(第5図にして示す部分)リーク電流
の流れを上記被処理物へ近接設置したスリット板13と
、同じく両側端耳部へ近接設置したマスクセパレーター
20.21により防止するようになっている。
The gap between the edges on both sides and the thickness of the object to be processed is approximately 1 m.
The above mask separator 2
0.21 are arranged in a planar manner, and the front and back sides of the object to be processed S are divided separately surrounding the electric field of each electrode, and by making the sections electrically independent, the electrolytic current flowing inside the object to be processed S can be reduced. a slit plate 13 installed close to the object to be processed, which allows leakage current to flow in the front and back directions, and leaks from both end edge portions (left and right lateral directions) of the object to be processed (portions shown in FIG. 5); This is also prevented by mask separators 20 and 21 installed close to the ears on both sides.

■は第1の電解電源、■は第2の電解電源で、同電源I
、lは配線イ22ロ、ハ介して給電々極14a、14b
に接続し、又配線イ、二、ホを介して電解電極15a、
15bに接続されている。
■ is the first electrolytic power source, ■ is the second electrolytic power source, and the same power source I
, l are power supply terminals 14a and 14b via wiring A22B and C.
and the electrolytic electrodes 15a,
15b.

直流電解による陽極酸化皮膜を形成するための通電順序
は、 電解電源1、l→配線イ2口、ハ→(1)給電々極14
a、14b→電解液10→被処理物Sの下面給電側→被
処理物S内(上面電解側に向って)→電解液io−+=
電解電極15a、15b−+配線二。
The order of energization to form an anodized film by DC electrolysis is as follows: Electrolytic power source 1, L → Wiring A 2 ports, C → (1) Power supply terminal 14
a, 14b → Electrolytic solution 10 → Lower surface power supply side of the processed object S → Inside the processed object S (towards the upper electrolytic side) → Electrolytic solution io−+=
Electrolytic electrodes 15a, 15b-+wiring 2.

ホ、イ→電解電源■、H となる。E, I → Electrolytic power supply ■, H becomes.

即ち、最初の押込ロール11により電解槽Cの電解液1
0中に入った被処理物Sは、同電解液10中に設置され
た最初の下側(イ)給電々極14aと上側の(→電解電
極15a間を通過する時、下側の(イ)給電々極14a
によって(イ)に梨型(電流は矢印e方向に流れる)さ
れ、その(1)被処理物Sと上側の(→電解電極15a
によって初期電解処理され、第6図のように被処理物S
の上面側にアルマイト皮膜Hが形成され、続いて次の(
イ)給電々極14bど(へ)電解電極15b間を通過す
る間に、上記同様の給電電解作用によるアルマイト皮膜
Hは次第に厚さを増してゆく。
That is, the electrolyte 1 of the electrolytic cell C is removed by the first push roll 11.
When the workpiece S that has entered the electrolytic solution 10 passes between the first lower (a) power supply electrode 14a installed in the same electrolytic solution 10 and the upper (→electrolytic electrode 15a), the workpiece S enters the lower (i) ) Power supply pole 14a
(A) Pear-shaped (current flows in the direction of arrow e)
The object to be treated S is subjected to initial electrolytic treatment as shown in FIG.
An alumite film H is formed on the upper surface side of (
b) While passing between the power supply electrodes 14b and the electrolytic electrodes 15b, the alumite film H gradually increases in thickness due to the same power supply electrolytic action as described above.

上記の状態が持続すると、前に現在装置について述べた
ように被処理物Sの処理不要の裏面(下側)から一部の
電流がリーク電流として流れると、第3図のH“が加わ
り部分的な両面処理(アルマイト皮膜形成)がなされて
しまうが、本発明においては被処理物の左右横方向に対
しては第5図、第7図のごとく電解槽C内において押込
ロール11から押込ロール12側へ押込まれる被処理物
Sの左右両側端耳部に僅かの間隔をおいて対接し夫々そ
の耳部分を囲むようにマスクセパレーター20.21を
配設しており、又前層長手方向には第4図に示すごとく
被処理物Sの進行方向に配置した15a、15b、14
a、14bの各電極の前后夫々を電気的に独立させるよ
うに囲んだ状態(電解液を通じて相互に導通してしまわ
ない状態)にマスクセパレーターによりセパレートして
いるので、被処理物Sの裏面から前厄左右の端部を通っ
て上面側へ洩れ出ようとするリーク電流を防止でき、被
処理物Sの上面のみにアルマイト皮膜が形成されること
になる。
If the above state continues, and as described above regarding the current device, some current flows as a leakage current from the back side (lower side) of the object S that does not need to be processed, and H'' in Fig. 3 is added to the part. However, in the present invention, in the left and right directions of the object to be treated, as shown in FIG. 5 and FIG. Mask separators 20 and 21 are arranged so as to be in contact with the right and left end ears of the workpiece S to be pushed into the 12 side at a slight interval and to surround the respective ears, and also in the longitudinal direction of the front layer. As shown in FIG.
Since the front and rear electrodes of a and 14b are separated by a mask separator in a state where they are surrounded so as to be electrically independent (a state where they are not mutually conductive through the electrolyte), it is possible to separate them from the back surface of the object S. It is possible to prevent leakage current from leaking to the upper surface side through the left and right ends, and an alumite film is formed only on the upper surface of the object S.

第2の実施例(第8図、第9図参照) この実施例は給電槽と電解槽が同居した形式である事は
第1実施例と同じであるが、前例において被処理物を水
平方向に移送してアルマイト処理したものを、縦方向に
繰返し曲折蛇行させてアルマイト処理を行うものである
Second Embodiment (See Figures 8 and 9) This embodiment is the same as the first embodiment in that the power supply tank and the electrolytic tank are co-located. The alumite treatment is carried out by repeatedly bending and meandering in the vertical direction.

1つの電解槽C内の電解液10中には相互等間隔の4本
の給電々極14a、14b、14c、14dが縦方向に
並列して浸漬されており、同各給電々極は配線を介して
第1、第2の電解電源I、■か6(−1−)の電気が架
電される。
Four power supply terminals 14a, 14b, 14c, and 14d are immersed in the electrolytic solution 10 in one electrolytic cell C in parallel in the vertical direction at equal intervals, and each power supply terminal is connected to a wire. Electricity from the first and second electrolytic power sources I, 1 or 6 (-1-) is connected through the power source.

文旦いに隣接する給電々極14aと14b及び14bと
14c及び14cと14dの中間には夫々電解電極15
a、15b、15cが図示のごとく挿入設置され、前記
各電解電源I。
Electrolytic electrodes 15 are provided between the power supply electrodes 14a and 14b, 14b and 14c, and 14c and 14d adjacent to the pomelo, respectively.
a, 15b, and 15c are inserted and installed as shown in the figure, and each of the electrolytic power sources I.

■から(→の電気が架電される。■Electricity from (→) is called.

被処理物Sは押込ロール11により上記各給電々極と電
解電極で形成する各対極間を通過移送される。
The object to be processed S is transferred by the push roll 11 between the counter electrodes formed by the power supply electrodes and the electrolytic electrodes.

通電順序、アルマイト処理作用並びにスリット板13と
被処理物Sの関係、両側端耳部とマスクセパレーターの
関係、スリット板13とマスクセパレーター2021に
よりリーク電流の流れを防止する点は第1実施例の場合
と同じである。
The order of energization, the alumite treatment action, the relationship between the slit plate 13 and the object to be processed S, the relationship between both end edges and the mask separator, and the prevention of leakage current by the slit plate 13 and the mask separator 2021 are the same as in the first embodiment. Same as in case.

要するに本発明は電解液が満たされている電解槽内にお
いて(1)の電気を架電する給電電極と、(へ)の電気
が架電される電解電極を平行平面状に対極させ、同対極
間を通過する連続帯状の被処理物の進行方向に、上記対
極に対して夫々スリット板を、そのスリット部と被処理
物との間隙を数mm以内に近接配設して仕切ると共に、
上記スリット部から連続して被処理物の両側端耳部に、
先端溝部を上記耳部と被処理物の厚さ方向の間隙は約1
關程度、かつ耳部への嵌り込みの深さは通板機能の精度
と関:連して数mvt以内にしてマスクセパレーターを
平面状に配置して被処理物の表裏を別々に各電極の電場
を囲むように区画せしめ、同区画部を電気的に独立させ
ることにより上記被処理物内を流れる電解電流を表裏方
向に流すことを特徴とする直流電解による連続コイルア
ルマイトの片面専用処理装置である。
In short, in the present invention, in an electrolytic cell filled with an electrolytic solution, a power supply electrode for supplying electricity (1) and an electrolytic electrode for supplying electricity (to) are arranged as opposite poles in parallel planes, and the same opposite electrodes are provided. A slit plate is disposed close to each of the counter electrodes in the direction of movement of a continuous band-shaped object passing through the gap, and the gap between the slit portion and the object to be processed is within several mm, and partitioning is performed.
Continuously from the slit section to the edges on both sides of the object to be processed,
The gap between the tip groove part and the ear part in the thickness direction of the workpiece is approximately 1
The degree of the gap and the depth of fitting into the ear part are related to the accuracy of the threading function.The mask separator is arranged in a flat shape and the front and back of the workpiece are separately connected to each electrode. A single-sided processing device for continuous coil alumite using direct current electrolysis, characterized in that the electric field is divided to surround it, and the divided sections are made electrically independent so that the electrolytic current flowing inside the object to be treated flows in the front and back directions. be.

即ち、本発明にあっては(1)現行装置に比し、給電槽
と電解槽は同居しており、被処理物を挟んだ形で両者が
電気的に分離される形となっており、電流は被処理物の
裏から表へ(横方向)流れる。
That is, in the present invention, (1) compared to the current device, the power supply tank and the electrolytic tank coexist and are electrically separated from each other with the object to be treated sandwiched between them; Current flows from the back side of the object to the front side (in the lateral direction).

つまり被処理物内を通過する電流は横方向(裏から表)
であるから、通電距離が最短であり、従つ。
In other words, the current passing through the object to be processed is in the horizontal direction (from the back to the front).
Therefore, the current conduction distance is the shortest and follows.

て電気抵抗によるロス分が最少である。Therefore, the loss due to electrical resistance is minimized.

(11)電気は被処理物中を縦方向(処理ラインセンタ
ーに平行)に流れないので、大電流を容易に支障なく通
電させられる。
(11) Since electricity does not flow vertically (parallel to the center of the processing line) through the object to be processed, a large current can be passed easily and without any trouble.

即ち、高速電解が容易となる。That is, high-speed electrolysis becomes easy.

(iii)上記のごとく、給電槽と電解槽は同居してい
る、つまり給電槽部分と電解槽部分が重なった形となっ
ているので、槽構造スペースが少くなる。
(iii) As mentioned above, since the power supply tank and the electrolytic cell are located together, that is, the power supply tank portion and the electrolytic cell portion are overlapped, the tank structure space is reduced.

6v)+’−1−)給電電極とH電解電極の対極に対し
て配設されるスリット板のスリット部と、被処理物との
間隙を数rnrIt以内に近接配設して仕切ると共に、
被処理物両側端耳部に配設されるマスクセパレーターは
、その先端溝部を上記両側端耳部と被処理物の厚さ方向
の間隙は約1mm程度、かつ耳部への嵌り込みの深さは
数龍以内として設け、被処理物の表面側と裏面側が夫々
異なる電位の場((−+−)側、(へ)側)にセパレー
ト板によりセパレートされるため、処理不要の裏面(下
側)から一部の電流がリーク電流として電解液中に迂回
して流れることを防止し得て、(1)なる電位の場(被
処理物の裏面)には絶対的に皮膜が形成されることなく
、片面の表面にのみ皮膜処理がなされることになる。
6v) +'-1-) The slit part of the slit plate disposed for the counter electrode of the power supply electrode and the H electrolytic electrode and the object to be processed are disposed close to each other within several rnrIt to partition the gap, and
The mask separator disposed on both side edges of the workpiece has a gap between its tip grooves and the both side ears of the workpiece in the thickness direction of about 1 mm, and a depth of fitting into the ears. The front side and the back side of the object to be treated are separated by separate plates in different potential fields ((-+-) side, (to) side), so the back side (lower side) which does not require treatment is separated by a separate plate. ), a part of the current can be prevented from flowing in a detour into the electrolyte as a leak current, and a film is absolutely formed at the potential field (back side of the object to be treated) of (1). Instead, the coating will be applied to only one surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは両面アルマイトの電解槽内における電流の流
れ方と被処理物に対するアルマイト膜の出来具合を示す
説明図、第1図Bは被処理物の(ハ)梨型電極d田架電
電極間に挟設した状況における電流の流れ方々被処理物
の表面に発生するアルマイトIIIの説明図、第1図C
及び第1図りは夫々第1図Bに示す極性配置の電解特性
に対して従来利用されて来た方法で、被処理物の端部に
遮蔽板を設けて、皮膜生成のムラを除去する場合の説明
図である。 第1図乃至第3図;ま現行の片面専用アルマイト処理装
置を示し、第1図は概略縦断正面図、第2図は第1図の
X−X線に沿った矢視方向側断面図、第3図は第1図の
部分拡大をした電流の流れ方向とアルマイト皮膜の形成
を示す縦断説明図である。 第4図乃至第7図は本発明の第1実施例を示し、第4図
は概略縦断正面図、第5図は第4図のY−Y線に沿った
矢視方向側断面図、第6図は第4図の部分拡大をした本
発明における電流の流れ方向とアルマイト皮膜の成長状
況を示す説明図、第7図は第5図の部分拡大をした本発
明のリーク電流防止部材を設置した場合の電流の流れ方
向とアルマイト皮膜形成状態を説明するための図面であ
る。 第8図、第9図は本発明の第2の実施例を示し、第8図
は概略縦断正面図、第9図は第8図のZ−Z線に沿って
切断し矢視方向に見た断面図である。 図において、S・・・被処理物、C・・・電解槽、10
・・・電解液、14a、14b、14c、 14ct−
給電々極、15a、15b、15cm電解電極、13・
・・スリット板、20,21・・・マスクセパレーター
で、上記スリット板13と協同してリーク電 流を防
止する。
Figure 1A is an explanatory diagram showing how current flows in the electrolytic cell of double-sided alumite and the condition of the alumite film on the object to be treated, and Figure 1B is the (c) pear-shaped electrode d field electrical connection of the object to be treated. An explanatory diagram of alumite III generated on the surface of the workpiece, Figure 1C
Figure 1 and Figure 1 are methods that have been conventionally used for the electrolytic characteristics of the polar arrangement shown in Figure 1B, respectively, when a shielding plate is provided at the end of the object to be treated to eliminate unevenness in film formation. FIG. Figures 1 to 3 show the current single-sided alumite treatment equipment, with Figure 1 being a schematic longitudinal sectional front view, Figure 2 being a side sectional view taken along line X-X in Figure 1 in the direction of arrows; FIG. 3 is a partially enlarged longitudinal cross-sectional view of FIG. 1 showing the direction of current flow and the formation of an alumite film. 4 to 7 show a first embodiment of the present invention, FIG. 4 is a schematic longitudinal sectional front view, FIG. 5 is a side sectional view taken along the Y-Y line in FIG. 4, and FIG. Figure 6 is an explanatory diagram showing the direction of current flow and the growth status of the alumite film in the present invention, which is a partial enlargement of Figure 4. Figure 7 is an enlarged partial view of Figure 5, showing the installation of the leakage current prevention member of the present invention. It is a drawing for explaining the current flow direction and the alumite film formation state in the case. 8 and 9 show a second embodiment of the present invention, FIG. 8 is a schematic longitudinal sectional front view, and FIG. 9 is a diagram cut along the Z-Z line in FIG. 8 and viewed in the direction of the arrow. FIG. In the figure, S: object to be treated, C: electrolytic cell, 10
... Electrolyte, 14a, 14b, 14c, 14ct-
Power supply electrodes, 15a, 15b, 15cm electrolytic electrodes, 13.
...Slit plates, 20, 21...Mask separators that work together with the slit plate 13 to prevent leakage current.

Claims (1)

【特許請求の範囲】[Claims] 1 電解液が満たされている電解槽内において(ト)の
電気を架電する給電電極と、(→の電気が架電される電
解電極を平行平面状に対極させ、同対極間を通過する連
続帯状の被処理物の進行方向に、上記対極に対して夫々
スリット板をそのスリット部と被処理物との間隙を数量
以内に近接配設して仕切るさ共に、上記スリット部から
連続して被処理物の両側端耳部に、先端溝部を上記耳部
と被処理物の厚さ方向の間隙を約1mvt程度、かつ端
耳部への嵌り込みの深さを通板機能の精度と関連して数
朋以内にしてマスクセパレーク−を平面状に配置して被
処理物の表裏を別々に各電極の電場を囲むように区画せ
しめ、同区画部を電気的に独立させることにより上記被
処理物内を流れる電解電流を表裏方向に流すことを特徴
とする直流電解による連続コイルアルマイトの片面専用
処理装置。
1 In an electrolytic tank filled with electrolyte solution, the power supply electrode (g) that carries electricity and the electrolytic electrode that carries electricity (→) are placed as opposite poles in parallel planes, and the electrodes pass between the opposite electrodes. In the traveling direction of the continuous strip-shaped object to be processed, a slit plate is disposed close to each of the opposite electrodes so that the gap between the slit portion and the object to be processed is within the quantity, and a partition is provided continuously from the slit portion. Place the tip grooves on both side edges of the workpiece so that the gap between the ears and the thickness of the workpiece is approximately 1 mvt, and the depth of fitting into the end ears is related to the accuracy of the threading function. By arranging mask separators in a planar manner and dividing the front and back sides of the object to be treated so as to surround the electric field of each electrode, and making the divided sections electrically independent, A single-sided processing device for continuous coil alumite using direct current electrolysis, characterized in that the electrolytic current that flows through the processed material flows in the front and back directions.
JP55042947A 1980-04-02 1980-04-02 Single-sided processing equipment for continuous coil alumite using DC electrolysis Expired JPS5824517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55042947A JPS5824517B2 (en) 1980-04-02 1980-04-02 Single-sided processing equipment for continuous coil alumite using DC electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55042947A JPS5824517B2 (en) 1980-04-02 1980-04-02 Single-sided processing equipment for continuous coil alumite using DC electrolysis

Publications (2)

Publication Number Publication Date
JPS56139697A JPS56139697A (en) 1981-10-31
JPS5824517B2 true JPS5824517B2 (en) 1983-05-21

Family

ID=12650200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55042947A Expired JPS5824517B2 (en) 1980-04-02 1980-04-02 Single-sided processing equipment for continuous coil alumite using DC electrolysis

Country Status (1)

Country Link
JP (1) JPS5824517B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
EP2100677A1 (en) 2008-03-06 2009-09-16 Fujifilm Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate obtained thereby and lithographic printing plate support
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011037005A1 (en) 2009-09-24 2011-03-31 富士フイルム株式会社 Lithographic printing original plate
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
EP2420869A2 (en) 2010-08-16 2012-02-22 Fujifilm Corporation Radiation reflection plate for LED
WO2013005717A1 (en) 2011-07-04 2013-01-10 富士フイルム株式会社 Insulating reflective substrate and method for producing same
EP2586621A1 (en) 2011-10-28 2013-05-01 Fujifilm Corporation Manufacturing method and manufacturing apparatus of support for planographic printing plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646042B2 (en) * 1991-03-07 1997-08-25 富士写真フイルム株式会社 Continuous electrolytic treatment equipment for aluminum products
AU2006340223C1 (en) * 2006-03-14 2011-05-12 Yanmar Power Technology Co., Ltd Submersible cleaning robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825619A (en) * 1971-08-06 1973-04-03
JPS4866042A (en) * 1971-12-13 1973-09-11
JPS4925544A (en) * 1972-06-30 1974-03-07
JPS5332825B2 (en) * 1975-02-17 1978-09-11
JPS5442668A (en) * 1977-09-12 1979-04-04 Hitachi Ltd Disconnecting terminal stand
JPS5482337A (en) * 1977-12-14 1979-06-30 Nippon Light Metal Co Treatment such as anodizing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528769Y2 (en) * 1976-08-30 1980-07-09

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825619A (en) * 1971-08-06 1973-04-03
JPS4866042A (en) * 1971-12-13 1973-09-11
JPS4925544A (en) * 1972-06-30 1974-03-07
JPS5332825B2 (en) * 1975-02-17 1978-09-11
JPS5442668A (en) * 1977-09-12 1979-04-04 Hitachi Ltd Disconnecting terminal stand
JPS5482337A (en) * 1977-12-14 1979-06-30 Nippon Light Metal Co Treatment such as anodizing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
EP2100677A1 (en) 2008-03-06 2009-09-16 Fujifilm Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate obtained thereby and lithographic printing plate support
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011037005A1 (en) 2009-09-24 2011-03-31 富士フイルム株式会社 Lithographic printing original plate
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
EP2420869A2 (en) 2010-08-16 2012-02-22 Fujifilm Corporation Radiation reflection plate for LED
WO2013005717A1 (en) 2011-07-04 2013-01-10 富士フイルム株式会社 Insulating reflective substrate and method for producing same
EP2586621A1 (en) 2011-10-28 2013-05-01 Fujifilm Corporation Manufacturing method and manufacturing apparatus of support for planographic printing plate

Also Published As

Publication number Publication date
JPS56139697A (en) 1981-10-31

Similar Documents

Publication Publication Date Title
SU1284465A3 (en) Battery of metal-halogen bipolar cells
JPS5824517B2 (en) Single-sided processing equipment for continuous coil alumite using DC electrolysis
JPH04263096A (en) Method and device for surface treatment of metal foil
JP2005007348A (en) Electric deionizer
KR20020047236A (en) Method and device for the electrolytic treatment of electrically conducting structures which are insulated from each other and positioned on the surface of electrically insulating film materials and use of the method
JPS6125800B2 (en)
JPS6056099A (en) Method and device for electrolytic treatment
US4434040A (en) Vertical-pass electrotreating cell
US4305806A (en) Electrolysis device
KR102228562B1 (en) Hydrogen generating device
JPH07228992A (en) Plating method and device therefor
KR20190135070A (en) Hydrogen generating device
US3969211A (en) Continuous apparatus for electrolytic treatment on a long structure of aluminum or its alloys
JPH04107296A (en) Apparatus for continuously electroplating steel strip
CN209702364U (en) A kind of electro-desalting component
JP2540023Y2 (en) Vertical electrolytic plating equipment
KR102146234B1 (en) Brown gas generating device
KR840007608A (en) Monopolar, Bipolar, and / or Hybrid Membrane Electrolytes
JPH0126771Y2 (en)
US2806077A (en) Core wound battery
JPH0313320B2 (en)
JP3267875B2 (en) Continuous electroplating method for steel sheet
KR102188770B1 (en) Brown gas generating device
BRPI0607387A2 (en) electrical circuit to reduce electromagnetic fields in the vicinity of an electrolyser, and method for reducing electromagnetic fields in the vicinity of an electrical circuit
JPS6212318B2 (en)