[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5823294A - Pumping condition supervisory system - Google Patents

Pumping condition supervisory system

Info

Publication number
JPS5823294A
JPS5823294A JP12191181A JP12191181A JPS5823294A JP S5823294 A JPS5823294 A JP S5823294A JP 12191181 A JP12191181 A JP 12191181A JP 12191181 A JP12191181 A JP 12191181A JP S5823294 A JPS5823294 A JP S5823294A
Authority
JP
Japan
Prior art keywords
pump
value
limit value
flow rate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12191181A
Other languages
Japanese (ja)
Inventor
Kazutoshi Arai
新井 和敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP12191181A priority Critical patent/JPS5823294A/en
Publication of JPS5823294A publication Critical patent/JPS5823294A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To enable fine and highly efficient pumping in such a way that pumping operation is done by means of a microcomputer using suction pressure and discharge pressure, or detecting signals of the number of revolution and pumping characteristic curves. CONSTITUTION:In a constant-speed or variable-speed turbo pump 1, pressure detectors 3, 4 are provided on the suction side and on the discharge side of the pump. Besides, in the variable-speed pump, further a revolving number detector 5 is provided for detecting the suction pressure, discharge pressue, and the number of revolution of the pump. By using their detecting signals and pumping characteristic curves, a microcomputer 6 finds the present value, upper limit value, lower limit value, value in the maximum efficiency point of the flow rate, and the present value, upper limit value, lower limit value, value in the maximum efficiency point of the discharge pressure, and computes those values.

Description

【発明の詳細な説明】 本発明は、ポンプ運転状態監視方式に関する。[Detailed description of the invention] The present invention relates to a pump operating state monitoring system.

従来のポンプ運転状態監視方式は、検出器で直i検出し
うる状態量の表示を主体としておシ、ポンプ性能特性を
用いて導びくことのできる状態量の表示はほとんど行っ
ていなかった。たとえば、ポンプ吸込圧力、吐出し圧力
、回転数を検出すればポンプ特性から流量、ポンプ効率
、必要NP8H(ネット・ボジチイプ・サクション・ヘ
ット)すどポンプ運転に関する有用な情報が得られるが
従来の監視方式ではこれらの情報の出力は行っていなか
った。
Conventional pump operating state monitoring systems mainly display state quantities that can be directly detected by a detector, but rarely display state quantities that can be derived using pump performance characteristics. For example, by detecting pump suction pressure, discharge pressure, and rotational speed, useful information regarding pump operation such as flow rate, pump efficiency, and required NP8H (net positive suction head) can be obtained from pump characteristics, but conventional monitoring The method did not output this information.

また、ポンプが適正運転範囲内で運転されているか否か
を監視する場合、従来は次のいずれかの方法によってい
た。
Furthermore, when monitoring whether or not the pump is being operated within a proper operating range, conventionally one of the following methods has been used.

第1の方法は、流量もしくは圧力があらかじめ設定した
許容値を逸脱したか否かで判定する方法である。第2の
方法は第1図に示すように、キャビテーショ/限界や過
大書過小流量限界などから定まる限界線101および1
02、回転数上限に対応する限界線103、回転数下限
に対応する限界線104を監視装置に記憶させ、流量お
よび圧力が限界線101.102.103.104で囲
まれた領域内に存在するか否かで判定する方法である。
The first method is to determine whether the flow rate or pressure deviates from a preset tolerance value. The second method, as shown in FIG. 1, uses limit lines 101 and
02, the limit line 103 corresponding to the upper limit of rotation speed and the limit line 104 corresponding to the lower limit of rotation speed are stored in the monitoring device, and the flow rate and pressure exist within the area surrounded by limit lines 101, 102, 103, and 104. This is a method of determining whether or not.

第1図に示す限界線101.102.103.104を
第2図に示すように、回転数と流量の関係に変換して限
界線101′、102′、103′、104′を求め、
回転数および流量が限界線101/5102′、103
′、104′、で囲まれた領域内に存在するか否かで判
定する方法もあるが、この方法は、第1図を用いた第2
の方法と本質的には同等とみなせる。
As shown in FIG. 2, the limit lines 101, 102, 103, and 104 shown in FIG.
The rotation speed and flow rate are at the limit line 101/5102', 103
There is also a method of determining whether or not it exists within the area surrounded by ', 104', but this method is based on
This method can be considered essentially equivalent to the above method.

これらの従来の適正運転判定方法は、いずれも次のよう
な欠点をもっている。すなわち、ポンプの許容運転範囲
はポンプ吸込圧Ps  によって犬きく変化し、また可
変速ポンプの場合はポンプ回転数Nによって変化するに
もかかわらず、前述の第1の判定方法ではポンプ吸込圧
Ps  およびポンプ回転数Nの変化を考慮せずに許容
値を設定しており、また第2の判定方法でけポンプ吸込
圧PSの変化を考慮せずに限界線を定めていることであ
る。
All of these conventional methods for determining appropriate driving have the following drawbacks. That is, although the permissible operating range of the pump varies greatly depending on the pump suction pressure Ps, and also varies depending on the pump rotation speed N in the case of a variable speed pump, in the first determination method described above, the pump suction pressure Ps and The permissible value is set without considering the change in the pump rotational speed N, and the limit line is determined in the second determination method without considering the change in the pump suction pressure PS.

よって、第1の判定方法は定速ポンプで、かつ吸込圧P
sの変化の小さな場合にしか適用できず、また第2の判
定方法は吸込圧Psの変化の小さ寿場合にしか適用でき
ないことになる。
Therefore, the first determination method is for a constant speed pump and for suction pressure P.
This is applicable only when the change in s is small, and the second determination method is only applicable when the change in suction pressure Ps is small.

本発明は、従来のポンプ運転状態監視方式の前記欠点を
解消し、ポンプ吸込圧PSの変動がある場合でも適確な
監視が可能なポンプ運転状態監視方式を提供するために
なされたものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional pump operating state monitoring method and to provide a pump operating state monitoring method that can accurately monitor even when there are fluctuations in pump suction pressure PS. .

このため本発明のポンプ運転状態監視方式によれば、定
速もしくは可変速のターボ形ポンプにおいて、ポンプ吸
込み側および吐出し側に圧力検出器を設け、また可変速
ポンプに対してはさらに回転数検出器を設け、ポンプ吸
込圧Psと吐出し圧Pdおよび可変速ポンプの場合はポ
ンプ回転数Nを検出する。それらの検出信号およびポン
プ特性曲線を用い公知のマイクロコンピュータにより、
流量の現在値Qss上限値Q2、下限値Q11、最高効
率点における値Q4および吐出し圧力の現在値P11上
限値PtS下限値P3%最高効率点における値P4を求
め、それらの値を出力する。
Therefore, according to the pump operating state monitoring method of the present invention, pressure detectors are provided on the suction side and discharge side of the pump for constant speed or variable speed turbo pumps, and for variable speed pumps, pressure detectors are provided on the pump suction side and discharge side. A detector is provided to detect the pump suction pressure Ps, the discharge pressure Pd, and, in the case of a variable speed pump, the pump rotation speed N. A known microcomputer uses these detection signals and pump characteristic curves to
The current value Qss of the flow rate, the upper limit Q2, the lower limit Q11, the value Q4 at the highest efficiency point, the current value P11 of the discharge pressure, the upper limit PtS, the lower limit P3%, the value P4 at the highest efficiency point are determined, and these values are output.

また必要に応じて、前述の出力値より付随的に求まる積
算流量、全揚程、有効NPSH,必要NPSH,ポンプ
効率などの多くの情報をも出力する。
If necessary, it also outputs a lot of information, such as the cumulative flow rate, total head, effective NPSH, required NPSH, pump efficiency, etc., which can be obtained incidentally from the above-mentioned output values.

これによシそれらの出力値を用いたきめ細かな監視およ
び適正かつ高効率なポンプ運転操作を可能とするもので
ある。すなわち、ポンプ流量制御弁もしくはポンプ回転
数を操作し、現在値を上限と下限の範囲内に入れるよう
にすることにより、キャビテーションなどを生じさせな
い適正な運転が、また現在値を最高効率点における値に
近づけることによυ高効率な運転を行うことが可能とな
る。
This enables detailed monitoring and appropriate and highly efficient pump operation using these output values. In other words, by manipulating the pump flow rate control valve or the pump rotation speed to keep the current value within the upper and lower limits, proper operation that does not cause cavitation, etc. can be achieved, and the current value can be adjusted to the value at the highest efficiency point. By bringing the value close to υ, it becomes possible to perform highly efficient operation.

また、本発明の監視方式によれば、吸込圧Paさらに可
変速ポンプの場合は回転数Nを考慮してポンプ許容運転
範囲の上下限値を定め、その値を用いて許容運転範囲か
らの逸脱を判定する。このため吸込圧psの変動がある
場合も適確な判定が可能となる。
Furthermore, according to the monitoring method of the present invention, the upper and lower limits of the pump's permissible operating range are determined by considering the suction pressure Pa and, in the case of a variable speed pump, the rotational speed N, and these values are used to detect deviations from the permissible operating range. Determine. Therefore, accurate determination is possible even when there are fluctuations in the suction pressure ps.

さらに、本発明の監視方式によれば、流量検出およびポ
ンプ特性曲線よシ得られた流量の現在値Q、とQ4との
偏差を求め、それが許容偏差以上となっているか否か判
定する。これによりポンプ内への異物や空気の混入、敏
ンプのライナリングの摩耗などに起因するポンプ性能劣
化要因の有無を監視することができる。
Further, according to the monitoring method of the present invention, the deviation between the current value Q of the flow rate obtained from the flow rate detection and the pump characteristic curve and Q4 is determined, and it is determined whether the deviation is greater than the allowable deviation. This makes it possible to monitor the presence or absence of factors that degrade pump performance, such as foreign matter or air getting into the pump, or wear on the pump liner ring.

以下に本発明のポンプ運転状態監視方式について詳述す
る。
The pump operating state monitoring system of the present invention will be described in detail below.

まず、本発明の監視方式で用いるポンプ特性曲線につい
て説明する。第3図に示す曲線111はポンプ揚程曲線
でちゃポンプ性能試験を行って得られたものである。ま
た曲線112はポンプ使用用途から考えこの曲線の右側
に流量と揚程が出ることはあり得ないことを示す過大流
量限界線であシ、曲線113はポンプのミニマムフロー
限界などから定まる過小流量限界線である。
First, the pump characteristic curve used in the monitoring method of the present invention will be explained. A curve 111 shown in FIG. 3 is a pump head curve obtained by performing a pump performance test. Curve 112 is an excessive flow limit line that indicates that it is impossible for the flow rate and head to be on the right side of this curve considering the purpose of use of the pump, and curve 113 is an under flow limit line determined from the minimum flow limit of the pump. It is.

第4図に示す曲線114はポンプの必要NPSH曲線で
あシ、各ポンプに対し一義的に定まる特性である。
A curve 114 shown in FIG. 4 is the required NPSH curve of the pump, and is a characteristic uniquely determined for each pump.

n = N / No         (1)とした
場合、各回転数比Rに対応するポンプ揚程曲線111と
曲線112との交点の流量を表わしている。同様に曲線
113′は各回転数比Rに対応するポンプ揚程曲線11
1と曲線113の交点の流量を表わしている。
When n = N / No (1), the flow rate at the intersection of the pump head curve 111 and the curve 112 corresponding to each rotational speed ratio R is represented. Similarly, the curve 113' is the pump head curve 11 corresponding to each rotational speed ratio R.
1 and the flow rate at the intersection of curve 113.

第6図に示す曲線115はポンプ軸動力曲線でありポン
プ性能試験を行って得られるものである。
A curve 115 shown in FIG. 6 is a pump shaft power curve obtained by conducting a pump performance test.

曲線111.112′、113′、114.115を流
量Q7、揚程H1必要NP SRM s  軸動力Wに
関する関数として表わすと次のようになる。
When the curves 111, 112', 113', and 114, 115 are expressed as functions regarding the flow rate Q7 and the head H1 required NP SRM s shaft power W, the following results are obtained.

H=  fH(Q)      (2)Q =  fu
 (R)      (3)Q =  fL (R) 
  ・   (4)1111=  、fR(Q)   
   (5)W =  fW (Q)      (6
)とれら関数および(2)式、(5)式の逆関数Q−バ
(町     (7) Q=f了(ha)      0(1 を近似関数もしくはテーブルの形でマイクロコンピュー
タ6(第8図)に記憶させておく。テーブルの形で投入
した場合も補間法などを用いることによりこれら連続関
数を容易に近似することができる。
H= fH(Q) (2)Q=fu
(R) (3) Q = fL (R)
・(4)1111= , fR(Q)
(5) W = fW (Q) (6
) and the inverse functions of equations (2) and (5) Q-ba(machi (7) ). Even when input in the form of a table, these continuous functions can be easily approximated by using an interpolation method or the like.

また、第7図に示すようにポンプ1の吸込側に吸込圧力
検出器3を、また吐出し側に吐出し圧力検出器4を設け
、ポンプ軸心から吸込圧力検出器3までの測点高差Zs
および吐出し圧力検出器4壕での測点高圧Zc+、吸込
圧力検出点の管断面積Asおよび吐出し圧力検出点の管
断面8jAdをマイクロコンピュータ6に記憶させてお
く。
In addition, as shown in FIG. 7, a suction pressure detector 3 is provided on the suction side of the pump 1, and a discharge pressure detector 4 is provided on the discharge side, and the measuring point height from the pump axis to the suction pressure detector 3 is Difference Zs
The measurement point high pressure Zc+ at the four discharge pressure detector trenches, the pipe cross-sectional area As of the suction pressure detection point, and the pipe cross-section 8jAd of the discharge pressure detection point are stored in the microcomputer 6.

さらに、大気圧PR,ポンプの取扱い液の比重量γおよ
び蒸気圧Pvの平均値、ポンプの定格回転数No1ポン
プの最高効率点における流量Q。と揚程FLをマイクロ
コンピュータ6に記憶させておく。
Further, the atmospheric pressure PR, the average value of the specific weight γ of the liquid handled by the pump and the vapor pressure Pv, and the flow rate Q at the highest efficiency point of the pump at the rated rotation speed No. 1 of the pump. and lifting height FL are stored in the microcomputer 6.

次に第8図に示す装置にしたがい監視手順を説明する。Next, a monitoring procedure will be explained according to the apparatus shown in FIG.

まず、吸込圧力検出器3および吐出し圧力検出器4の検
出信号をマイクロコンピュータ6に入力し吸込圧力Ps
 1吐出し圧力Pdを得る。また可変速ポンプを対象と
している場合は駆動機2に回転数検出器5を設け、回転
数検出器5の検出信号をマイクロコンピュータ6に入力
しポンプ回転数Nを得て、(1)式を用いて回転数比几
を求める。定速ポンプの場合は回転数比を常に1として
おく。
First, the detection signals of the suction pressure detector 3 and the discharge pressure detector 4 are input to the microcomputer 6, and the suction pressure Ps
1 to obtain a discharge pressure Pd. In addition, when a variable speed pump is targeted, a rotation speed detector 5 is provided in the drive machine 2, and the detection signal of the rotation speed detector 5 is inputted to the microcomputer 6 to obtain the pump rotation speed N, and formula (1) is calculated. Use this to find the rotation speed ratio. In the case of a constant speed pump, the rotation speed ratio is always set to 1.

また、 を求めておく。ここでgは重力加速度であシ、またQ、
は1時点前に後述のαつ式を用いて求めた流量である。
Also, find . Here, g is the gravitational acceleration, and Q,
is the flow rate obtained one time before using the α formula described below.

以上のデータを用い次の00)式と00式よりポンプ全
揚程H,および有効NPSHhsを求める。
Using the above data, calculate the pump total head H and effective NPSHhs from the following equations 00) and 00.

)(、=(P、+−Ps)/r+D         
 QO)hs=(Pa−Pv+Ps)/r+Zs+Ql
v′(2gAs”)(11)また、02式とθ■式よシ
流量の現在値Q、および最高効率点における値気を求め
る。
)(,=(P,+-Ps)/r+D
QO)hs=(Pa-Pv+Ps)/r+Zs+Ql
v'(2gAs'') (11) Also, calculate the current value Q of the flow rate and the value at the highest efficiency point using the 02 formula and the θ■ formula.

QI=R”f;(HIAL”)         az
Q4= RQO(13) また、04)式と05)式より吐出し圧の現在値P1お
よび最高効率点における値P4を求める。
QI=R”f; (HIAL”) az
Q4=RQO (13) Also, the current value P1 of the discharge pressure and the value P4 at the highest efficiency point are determined from equations 04) and 05).

P、= Pd                α(イ
)P、=Ps+γ(几2HO−D)         
    (15)次に第4図に示す必要NP8H曲線1
14と有効NPSHhsの交点に対応する上限流量Qu
と下限流量qLをαω式より求める。
P, = Pd α (I) P, = Ps + γ (几2HO-D)
(15) Next, the required NP8H curve 1 shown in Figure 4
The upper limit flow rate Qu corresponding to the intersection of 14 and effective NPSHhs
and the lower limit flow rate qL are determined from the αω formula.

QuまたはqL=R−f ”(hs/R”)     
 aQまた、第5図に示す曲線112′と曲線113′
から定まる下限流量Qu’と下限流量qL′を07+式
と0梯式より求める。
Qu or qL=R-f”(hs/R”)
aQ Also, curve 112' and curve 113' shown in FIG.
The lower limit flow rate Qu' and the lower limit flow rate qL' determined from the above are obtained from the 07+ formula and the 0-kage formula.

qu’= fu (R)     ’        
 (lηqL′−ft(R)            
  (国そして、qllとqu′のうち小さい方の値を
流量上限値Q、とし、またqLとqL’のうち大きい方
を流量下限値Q3とする。すなわち、 Q2 = MIN(qu+qu’)         
     01Qs = MAX (q r、 + q
 L ’)          翰次に、ポンプ吐出し
圧の上限値P2と下限値Pse(21)式と(慢式よシ
求める。
qu'=fu(R)'
(lηqL'-ft(R)
(The smaller of qll and qu' is the upper flow rate Q, and the larger of qL and qL' is the lower flow rate Q3. That is, Q2 = MIN (qu + qu')
01Qs = MAX (q r, + q
Next, the upper limit value P2 and the lower limit value Pse of the pump discharge pressure are determined using the equation (21) and the equation (21).

P2=Ps+γ(R”fu(Qs/R) D)    
 (21)Ps=Ps+r (R2・fu(Qt/R)
−D)      (23以上得られたQ、 、 Q、
 、 Q、 、 Q、および”I rPt + P3y
P4をマイクロコンピュータ6から出方装置7に出力す
る。
P2=Ps+γ(R”fu(Qs/R) D)
(21) Ps=Ps+r (R2・fu(Qt/R)
-D) (Q obtained 23 or more, , Q,
, Q, , Q, and “I rPt + P3y
P4 is output from the microcomputer 6 to the output device 7.

また、(至)式もしくはI24)式が満足されているが
否か判定し、その結果を出力装置7に出力する。
It also determines whether or not equation (to) or equation I24 is satisfied, and outputs the result to the output device 7.

Q、<Q、<Q、            23)Ps
 < Pt < Pt            (財)
(ハ)式もしくは(24)式が満足されている場合は、
ポンプが許容運転範囲内で運転されていることになる0 さらに、(ホ)式や(イ)式より必要NP8Hhr<や
ポンプ効率ηを求め出力装置7に出方することも可能で
ある。
Q, <Q, <Q, 23) Ps
< Pt < Pt (goods)
If formula (c) or formula (24) is satisfied,
This means that the pump is being operated within the permissible operating range.Furthermore, it is also possible to obtain the required NP8Hhr< and pump efficiency η from equations (e) and (a) and output them to the output device 7.

hR= ”’fn(Qt外)        (ハ)η
= 0.163QIH+/(R″−fL(Q4))  
  @以上の手順をくりかえずことにょシ時々刻々の状
態量を得てポンプ運転状態監視を行うことができる。ま
た流量Q、を時間に関してマイクロコンピュータ6で数
値積分することにより積算流量を求め出力することがで
きる。
hR= ”'fn (outside Qt) (c) η
= 0.163QIH+/(R″-fL(Q4))
@It is possible to monitor the pump operating state by obtaining the state quantities from time to time without repeating the above procedure. Further, by numerically integrating the flow rate Q with respect to time using the microcomputer 6, the integrated flow rate can be determined and output.

また、流量Q、は、本来ポンプが有すべき性能曲線より
算出されるので、ポンプ性能が変化しないかぎシ流量計
で計測した流星Q:と一致するはずである。Q、とQl
の偏差が大きい場合は、ポンプ内への異物や空気の流入
、羽根車やライチリングの摩耗などに起因するポンプ性
能劣化が起っている可能性がある。
Further, since the flow rate Q is calculated from the performance curve that the pump should originally have, it should match the meteor Q: measured by the hook flowmeter, which does not change the pump performance. Q, and Ql
If the deviation is large, there is a possibility that the pump performance has deteriorated due to foreign matter or air entering the pump, wear of the impeller or lychee ring, etc.

そしてマイクルコンピー−タロに流量検出器の検出信号
を追加入力して計測流flQζを得てQ、との偏差を求
め、それがマイクロコンピー−タロにあらかじめ設定し
た許容偏差以上になっているか否か判定し、その結果を
マイクロコンピュータ6より出力装置7に出力すること
によシボンブの性能劣化の有無を知ることが可能である
Then, by additionally inputting the detection signal of the flow rate detector to the Microcomputero, we obtain the measured flow flQζ, find the deviation from Q, and check whether it exceeds the allowable deviation preset in the Microcomputero. By making a determination and outputting the result from the microcomputer 6 to the output device 7, it is possible to know whether or not the performance of the bomb has deteriorated.

以上説明したように、本発明のポンプ運転状態監視方式
は、多くの情報に基づきポンプ監視およびポンプ運転操
作を行うものであるので、きめの細かなポンプ監視およ
び適正かつ高効率なポンプ運転操作が可能となる。特に
、本発明のポンプ運転状態監視方式は、吸込圧を考慮し
てポンプ監視および許容運転範囲からの逸脱判定を行う
ものであるので、吸込圧の変動があった場合でも適確な
監視および判定を行うことができる。
As explained above, the pump operation status monitoring method of the present invention monitors the pump and performs pump operation based on a large amount of information, so it is possible to perform detailed pump monitoring and appropriate and highly efficient pump operation. It becomes possible. In particular, the pump operating state monitoring method of the present invention takes suction pressure into consideration when monitoring the pump and determining deviation from the allowable operating range, so even if there are fluctuations in suction pressure, accurate monitoring and determination can be performed. It can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の判定方式による場合の流量
−圧力および回転数−流量の限界線図である。第3図な
いし第6図は本発明の監視方式で用いるポンプ特性曲線
を示し、第3図は流量−揚程、第4図は流量−NPSH
,第5図は回転数比−流量、第6図は流量−軸動力の各
曲線を示す図である。第7図はポンプ軸心から吸込圧力
検出器および吐出し圧力検出器までの測点高差、吸込圧
力検出点および吐出し圧力検出点の管断面積を示す説明
図である。第8図は本発明の監視方式を示すブロック図
である。 1 ポンプ、2・・駆動機、3・・・吸込圧力検出器、
4・・・吐出し圧力検出器、5・・・回転数検出器、6
・・・マイクロコンピーータ、7・・・出力装置特許出
願人  株式会社荏原製作所 代理人 弁理士  高 橋 敏 忠 流i量 回転葱0ヒ 第6図 :、糺1
FIGS. 1 and 2 are limit diagrams of flow rate-pressure and rotation speed-flow rate in the case of a conventional determination method. Figures 3 to 6 show pump characteristic curves used in the monitoring system of the present invention, where Figure 3 shows the flow rate vs. head, and Figure 4 shows the flow rate vs. NPSH.
, FIG. 5 shows the rotational speed ratio-flow rate curve, and FIG. 6 shows the flow rate-shaft power curve. FIG. 7 is an explanatory diagram showing the difference in measurement point height from the pump axis to the suction pressure detector and the discharge pressure detector, and the pipe cross-sectional area at the suction pressure detection point and the discharge pressure detection point. FIG. 8 is a block diagram showing the monitoring system of the present invention. 1 pump, 2...driver, 3...suction pressure detector,
4...Discharge pressure detector, 5...Rotation speed detector, 6
...Microcomputer, 7...Output device Patent applicant Ebara Corporation Representative Patent attorney Satoshi Takahashi

Claims (2)

【特許請求の範囲】[Claims] (1)定速もしくは可変速のターボ形ポンプにおいて、
ポンプ吸込み側および吐出し側に圧力検出器を設け、ま
た可変速ターボ形ポンプに対してはさらに回転数検出器
を設け、それら検出器の検出信号およびポンプ特性曲線
を用いマイクロコンピュータによシ、流量の現在値Q1
、上限値Q2、下限値Q3、最高効率点における値吠、
および吐出し圧力の現在値P1、上限値P2、下限値P
Ss最高効率点における値P4を求め、それらの値を出
力するとともに、現在値が上限値と下限値の間にあるか
否か判定し、判定結果を出力するととを特徴とするポン
プ運転状態監視方式。
(1) In constant speed or variable speed turbo pumps,
Pressure detectors are provided on the suction side and discharge side of the pump, and a rotation speed detector is also provided for variable speed turbo pumps, and the detection signals of these detectors and the pump characteristic curve are used to create a microcomputer. Current value of flow rate Q1
, upper limit value Q2, lower limit value Q3, value at the highest efficiency point,
and current value P1, upper limit value P2, lower limit value P of discharge pressure
A pump operating state monitor characterized by determining a value P4 at the Ss maximum efficiency point, outputting those values, determining whether the current value is between an upper limit value and a lower limit value, and outputting a determination result. method.
(2)流量検出器を設け、その検出器の検出信号を追加
入力して計測流iQりを求め、QことQ、との偏差があ
らかじめマイクロコンピュータに設定した許容偏差以内
になっているか否か判定し、判定結果を出力することを
特徴とする特許請求の範囲第1項記載のポンプ運転状態
監視方式。
(2) Install a flow rate detector and additionally input the detection signal of the detector to obtain the measured flow iQ, and check whether the deviation from Q is within the tolerance set in advance in the microcomputer. A pump operating state monitoring system according to claim 1, characterized in that the system makes a determination and outputs the determination result.
JP12191181A 1981-08-05 1981-08-05 Pumping condition supervisory system Pending JPS5823294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12191181A JPS5823294A (en) 1981-08-05 1981-08-05 Pumping condition supervisory system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12191181A JPS5823294A (en) 1981-08-05 1981-08-05 Pumping condition supervisory system

Publications (1)

Publication Number Publication Date
JPS5823294A true JPS5823294A (en) 1983-02-10

Family

ID=14822953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12191181A Pending JPS5823294A (en) 1981-08-05 1981-08-05 Pumping condition supervisory system

Country Status (1)

Country Link
JP (1) JPS5823294A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165597A (en) * 1986-01-16 1987-07-22 Toshiba Corp Flow rate detecting method for variable-speed pump
US5007521A (en) * 1986-07-24 1991-04-16 Kao Corporation Method for merging goods and apparatus therefor
WO2000057063A1 (en) * 1999-03-24 2000-09-28 Itt Manufacturing Enterprises Apparatus and method for controlling a pump system
EP1072795A1 (en) * 1998-04-03 2001-01-31 Ebara Corporation Diagnosing system for fluid machinery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165597A (en) * 1986-01-16 1987-07-22 Toshiba Corp Flow rate detecting method for variable-speed pump
US5007521A (en) * 1986-07-24 1991-04-16 Kao Corporation Method for merging goods and apparatus therefor
EP1072795A1 (en) * 1998-04-03 2001-01-31 Ebara Corporation Diagnosing system for fluid machinery
EP1072795A4 (en) * 1998-04-03 2006-10-18 Ebara Corp Diagnosing system for fluid machinery
WO2000057063A1 (en) * 1999-03-24 2000-09-28 Itt Manufacturing Enterprises Apparatus and method for controlling a pump system
US6464464B2 (en) 1999-03-24 2002-10-15 Itt Manufacturing Enterprises, Inc. Apparatus and method for controlling a pump system

Similar Documents

Publication Publication Date Title
US4831535A (en) Method of controlling the surge limit of turbocompressors
US7112037B2 (en) Centrifugal pump performance degradation detection
US6663349B1 (en) System and method for controlling pump cavitation and blockage
EP0761981A2 (en) Turbomachinery with variable-angle flow guiding vanes
US20030091443A1 (en) Apparatus and method for controlling a pump system
US9176023B2 (en) Turbomachine
US11841027B2 (en) Pump system control
AU2016348649B2 (en) Pump protection method and system
CN109458355A (en) The surge controlling method of compressor and the surge control system of compressor
EP0652374A1 (en) System for controlling operation of turbo type fluid machinery
JPS5823294A (en) Pumping condition supervisory system
KR20190132241A (en) Compressor and method for controlling the flow rate
JPS63639B2 (en)
TW202242259A (en) Control of liquid ring pump
JPH05118280A (en) Operation control system for variable speed water supply device
JPH11311195A (en) Motor-driven compressor
JP3720011B2 (en) Variable speed water supply device
GB2430496A (en) Measuring input power and flow rate in a pipline for determining a leakage or blockage condition
JP3637997B2 (en) Pump device
EP4191866A1 (en) A method of setting up an electrical motor speed control in a fluidic system
JPS63140692A (en) Operating condition detection of variable speed driving of rotary load machine
JP2948421B2 (en) Compressor control device
JP2000199495A (en) Method and apparatus for predicting surge of turbo refrigerator
JPH0541840B2 (en)
RU2210006C2 (en) Compressor shop process control method