[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5823155B2 - Pyrolin Sandometsuki Haisuino Shiyorihouhou - Google Patents

Pyrolin Sandometsuki Haisuino Shiyorihouhou

Info

Publication number
JPS5823155B2
JPS5823155B2 JP50100335A JP10033575A JPS5823155B2 JP S5823155 B2 JPS5823155 B2 JP S5823155B2 JP 50100335 A JP50100335 A JP 50100335A JP 10033575 A JP10033575 A JP 10033575A JP S5823155 B2 JPS5823155 B2 JP S5823155B2
Authority
JP
Japan
Prior art keywords
copper
basic anion
anion exchange
wastewater
copper ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50100335A
Other languages
Japanese (ja)
Other versions
JPS5223861A (en
Inventor
宮松徳久
原田博之
水上茂
赤塚金弥
筒井豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP50100335A priority Critical patent/JPS5823155B2/en
Publication of JPS5223861A publication Critical patent/JPS5223861A/en
Publication of JPS5823155B2 publication Critical patent/JPS5823155B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明はピロ燐酸銅メッキ廃水の処理方法に関する〇 一般にピロ燐酸銅メッキは、無シアンの銅メッキとして
硫酸銅メッキと共に広く使用されているが、排出される
メッキ廃水例えば水洗廃水には銅イオンが含まれている
ので放流前に銅イオン除去する必要がある。
Detailed Description of the Invention The present invention relates to a method for treating copper pyrophosphate plating wastewater. Generally, copper pyrophosphate plating is widely used together with copper sulfate plating as a cyanide-free copper plating. Washing wastewater contains copper ions, so it is necessary to remove copper ions before discharge.

かかるピロ燐酸銅メッキ廃水からの銅の除去方法の一つ
として塩基性アニオン交換樹脂を用いてピロ燐酸銅メッ
キ廃水の処理を行い、強塩基性アニオン交換樹脂を中性
塩で再生すると共に溶離液から銅を電解回収する方法が
特開昭48−68485号公報にて提案されている。
As one method for removing copper from such copper pyrophosphate plating wastewater, a basic anion exchange resin is used to treat the copper pyrophosphate plating wastewater, and the strongly basic anion exchange resin is regenerated with a neutral salt and an eluent is used. A method for electrolytically recovering copper from copper is proposed in Japanese Patent Application Laid-Open No. 48-68485.

しかしながら、この方法では強塩基性アニオン交換樹脂
を用いるものであるのでピロ燐酸銅イオンの吸着力が弱
く、カラム方式で空間速度(SV)が大きくすると銅イ
オンの漏洩が大きくなり、質流交換容量が小さくなり、
イオン交換塔の容量を太きくしなければならないので装
置の設置面積が大きくなり、且つ装置費が高価になるほ
か、通夜再生の操作が複雑になると共に溶離工程にて溶
離時間が長くなること、溶離液量が多くなるのでアニオ
ン交換樹脂の再生頻度数の増加に伴い溶離液からの銅の
電解回収に長時間を必要とする等実用上程々の問題があ
る。
However, since this method uses a strongly basic anion exchange resin, its adsorption power for copper pyrophosphate ions is weak, and when the space velocity (SV) is increased in the column method, leakage of copper ions increases, resulting in a reduction in mass exchange capacity. becomes smaller,
Since the capacity of the ion exchange column must be increased, the installation area of the equipment becomes larger and the cost of the equipment increases.In addition, the overnight regeneration operation becomes complicated, and the elution time in the elution process becomes longer. Since the amount of liquid increases, there are some practical problems, such as requiring a long time to electrolytically recover copper from the eluent as the frequency of regeneration of the anion exchange resin increases.

又一般にイオン交換樹脂は直径が約300〜1200μ
の球状粒子であり、球表面と内部とではイオンの拡散機
構が異なり、交換反応の速度分布が大きく、イオンの吸
着では通液速度の増加に伴い貫流交換容量が低下し処理
能力が低下する傾面があると共に一方溶離では溶離液量
が増加し、溶離時間が長(なるという問題がある。
Generally, ion exchange resin has a diameter of about 300 to 1200μ.
They are spherical particles, and the ion diffusion mechanism is different between the spherical surface and the inside, and the rate distribution of the exchange reaction is wide.In the case of ion adsorption, the through-flow exchange capacity decreases as the liquid passing rate increases, and the processing capacity tends to decrease. On the other hand, there are problems in that the amount of eluent increases and the elution time becomes longer.

本発明者等はピロ燐酸銅メッキ廃水をイオン交換樹脂を
用いて処理する方法について検討し、繊維状で且つ弱塩
基性のアニオン交換体を用いるならば前述の如き欠点を
解決しうろことを見い出し本発明に到達したものである
The present inventors investigated a method of treating copper pyrophosphate plating wastewater using an ion exchange resin, and found that the above-mentioned drawbacks could be overcome if a fibrous and weakly basic anion exchanger was used. This has led to the present invention.

すなわち本発明はピロ燐酸銅メッキ工程から排出される
廃水をポリエチレンポリアミノ基を有する弱塩基性アニ
オン交換繊維で処理して弱塩基性アニオン交換繊維に銅
イオンを吸着させる工程、銅イオンを吸着した弱塩基性
アニオン交換繊維を溶離剤で処理して銅イオンを溶離さ
せる工程、または更に溶離液中の銅イオンを不溶性陽極
及び陰極を用いて電解回収する工程からなるピロ燐酸銅
メッキ廃水の処理方法にある。
That is, the present invention involves a process in which wastewater discharged from a copper pyrophosphate plating process is treated with weakly basic anion exchange fibers having polyethylene polyamino groups to adsorb copper ions to the weakly basic anion exchange fibers, A method for treating copper pyrophosphate plating wastewater comprising a step of treating basic anion exchange fibers with an eluent to elute copper ions, or a step of electrolytically recovering copper ions in the eluent using an insoluble anode and a cathode. be.

本発明において用いられるポリエチレンポリアミノ基を
有する弱塩基性アニオン交換繊維としては、ポリスチレ
ン繊維を架橋処理後クロルメチル化し、ポリエチレンポ
リアミ7基を導入する、ノボラック繊維をホルマリン架
橋処理後クロルメチル化しポリエチレンポリアミノ基を
導入する、塩化ビニル、塩化ビニリデン繊維にポリエチ
レンポリアミ7基を導入する、塩化ビニル−アクリロニ
トリル共重合体からのアクリル繊維にポリエチレンポリ
アミノ基を導入する等の方法により得られる。
The weakly basic anion exchange fibers having polyethylene polyamino groups used in the present invention are obtained by crosslinking polystyrene fibers and then chloromethylating them to introduce polyethylene polyamide 7 groups.Novolak fibers are crosslinking with formalin and then chloromethylating them to introduce polyethylene polyamino groups. It can be obtained by methods such as introducing polyethylene polyamide 7 groups into vinyl chloride or vinylidene chloride fibers, or introducing polyethylene polyamino groups into acrylic fibers made from a vinyl chloride-acrylonitrile copolymer.

導入されるポリエチレンポリアミノ基としては。As for the polyethylene polyamino group to be introduced.

一般式−N H(CH2CH2N H) nHで示され
nは1〜8好ましくは2〜5であり、nが9を越えると
純粋のポリエチレンポリアミノ基が得られ難へ且つ高粘
度になり取扱い上問題がある。
General formula -NH (CH2CH2NH) It is represented by nH, and n is 1 to 8, preferably 2 to 5. If n exceeds 9, it becomes difficult to obtain a pure polyethylene polyamino group and the viscosity becomes high, causing problems in handling. There is.

本発明の弱塩基性アニオン交換繊維の単繊維直:径は5
〜150μ好ましくは20〜100μであり、5μ未満
では流動抵抗が増加し、通液性が低下する欠点があり、
150μを越えるイオン交換樹脂の粒子の如く繊維表面
と内部とではイオン交換反応の速度分布が大きくなり、
イオンの吸着及=び溶離の分布が拡がり好ましくない。
The single fiber diameter of the weakly basic anion exchange fiber of the present invention is 5
-150μ Preferably 20-100μ, if it is less than 5μ, there is a disadvantage that flow resistance increases and liquid permeability decreases.
As with particles of ion exchange resin exceeding 150μ, the rate distribution of ion exchange reactions becomes large between the fiber surface and inside.
The distribution of ion adsorption and elution is broadened, which is undesirable.

本発明においては、ピロ燐酸銅メッキ工程からの廃水に
ポリエチレンポリアミノ基を有する弱塩基性アニオン交
換繊維を適宜形状にて接触させて処理し、銅イオンを弱
塩基性アニオン交換繊維に。
In the present invention, waste water from a copper pyrophosphate plating process is treated by contacting weakly basic anion exchange fibers having polyethylene polyamino groups in an appropriate shape to convert copper ions into weakly basic anion exchange fibers.

吸着させる。Let it absorb.

かかる処理により弱塩基性アニオン交換繊維には銅イオ
ンが〔Cu(P20□) 2 ) 6−とじて吸着され
るほかに銅イオンがキレ−1・的に吸着される。
By this treatment, copper ions are adsorbed not only as [Cu(P20□) 2 ) 6-] but also as clear 1-1 on the weakly basic anion exchange fiber.

処理方法としては綿状にして廃水中に投入する、カラム
に詰めて通水する、適尚な支持。
Treatment methods include turning it into cotton and putting it into wastewater, packing it into a column and passing water through it, or using appropriate support.

体にプレコートしたフィルグー或は布帛状のフィルター
にして通水する、布帛状にして連続的に浸漬するなど任
意の方法が用いられる。
Any method can be used, such as using a filter pre-coated on the body, passing water through a fabric-like filter, or continuously immersing the body in a fabric-like filter.

処理された流出液はそのまま放流してもよいし又水洗水
として再使用することもできる。
The treated effluent may be discharged as is or may be reused as washing water.

銅イオンが吸着された弱塩基性アニオン交換繊維は塩酸
、硫酸、アンモニア水等の溶離剤で処理することにより
銅イオンを溶離させ再生する。
The weakly basic anion exchange fiber with copper ions adsorbed thereon is treated with an eluent such as hydrochloric acid, sulfuric acid, or aqueous ammonia to elute the copper ions and regenerate it.

必要に応じ、更に溶離液は不溶性陽極として白金、チタ
ン、過酸化鉛等を使用し、又不溶性陰極として白金、ア
ルミニウム、ステンレススチール等を使用し電解反応を
行わせて銅を回収する。
If necessary, an electrolytic reaction is performed using an eluent such as platinum, titanium, lead peroxide, etc. as an insoluble anode and platinum, aluminum, stainless steel, etc. as an insoluble cathode to recover copper.

本発明によれば、粒状の強塩基性アニオン交換樹脂とは
異なり、使用するアニオン交換体が単繊維直径が150
μ以下のポリエチレンポリアミノ基を有する繊維状の弱
塩基性アニオン交換体であるので繊維表面と内部のイオ
ン交換反応の速度分布が無視し得る程度僅少であり、銅
イオンの吸着及び溶離が迅速に行われる。
According to the present invention, unlike a granular strongly basic anion exchange resin, the anion exchanger used has a single fiber diameter of 150 mm.
Since it is a fibrous weakly basic anion exchanger with polyethylene polyamino groups of less than μ, the rate distribution of the ion exchange reaction on the fiber surface and inside the fiber is negligible, and copper ions can be adsorbed and eluted quickly. be exposed.

又溶離液からの銅の電解回収においても、強塩基性アニ
オン交換樹脂を用いる方法では溶離工程における溶離時
間が長く溶離液中の銅イオン濃度が低くなるので、電解
に長時間を必要とするのに対し、本発明では短時間で溶
離が可能であるので溶離と同時に電解回収も可能であり
効率よく電解反応が行われうる。
In addition, in the electrolytic recovery of copper from the eluent, the method using a strongly basic anion exchange resin requires a long time for electrolysis because the elution time in the elution process is long and the concentration of copper ions in the eluent is low. On the other hand, in the present invention, elution can be performed in a short time, so that electrolytic recovery can be performed at the same time as elution, and the electrolytic reaction can be carried out efficiently.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 □ 次の処方にてピロ燐酸銅メッキ液を調整し、これを
蒸溜水で100倍に希釈し鍋イオン300ppmの人工
廃水とした。
Example □ A copper pyrophosphate plating solution was prepared according to the following formulation and diluted 100 times with distilled water to obtain artificial wastewater containing 300 ppm of pot ions.

ピロ燐酸銅 83゜8f/A(Cuとして30 f
?/IJ )ピロ燐酸カリウム 3
47 ?/1アンモニア水(28%)
1ml/1一方、弱塩基性アニオン交換繊
維は、次の如く製造した。
Copper pyrophosphate 83°8f/A (30f as Cu
? /IJ) Potassium pyrophosphate 3
47? /1 ammonia water (28%)
1 ml/1 On the other hand, a weakly basic anion exchange fiber was produced as follows.

塩化ビニル52重量係、アクリロニトリル48重量係の
共重合体からなる単繊維直径50μのアクリル繊維をト
リエチレンテトラミンの溶液中にて、加熱処理し、水洗
し、2mm長に切断してトリエチレンテトラミノ基を有
するCI形の弱塩基性アニオン交換繊維WAFを得た。
A single acrylic fiber with a diameter of 50μ made of a copolymer of 52% by weight of vinyl chloride and 48% by weight of acrylonitrile was heated in a solution of triethylenetetramine, washed with water, and cut into 2mm lengths to obtain triethylenetetramino groups. A weakly basic anion exchange fiber WAF of CI type was obtained.

このWAFのアニオン交換容量はOH形で6.1 me
q/、? (dry・fiber)であった。
The anion exchange capacity of this WAF is 6.1 me in OH type.
q/,? (dry fiber).

このWAF 31.2 & (OH形でdry fi
ber換算)を内径2cm、長さ80cIrLのアクリ
ル樹脂型カラムに充填密度0.24,9/l717!!
で充填し、前記のピロリン酸銅メツキ廃水を空間速度5
V20にて;通液し、流出液の銅イオンを検出し、貫流
量及び質流交換容量を求めた。
This WAF 31.2 & (dry fi in OH type)
ber conversion) into an acrylic resin column with an inner diameter of 2 cm and a length of 80 cIrL at a packing density of 0.24,9/l717! !
and the above-mentioned copper pyrophosphate plating wastewater at a space velocity of 5
At V20, the liquid was passed through, copper ions in the effluent were detected, and the flow rate and mass exchange capacity were determined.

このWAFと比較のため、市販のイオン交換樹脂及びキ
レート樹脂を用いて同様に通液し、貫流量、貫流交換容
量を求めた。
For comparison with this WAF, commercially available ion exchange resins and chelate resins were passed in the same manner, and the flow rate and flow exchange capacity were determined.

これらの結果は、第1表の通りである。These results are shown in Table 1.

第1表に示す結果から、WAFは極めて効率よく銅イオ
ンを吸着し、最も性能がすぐれていることが明かである
From the results shown in Table 1, it is clear that WAF adsorbs copper ions extremely efficiently and has the best performance.

このWAFに吸着された銅イオンをlO%硫酸水溶液1
00m1で溶離し、銅イオン濃度20.09/lの溶離
液を得た。
The copper ions adsorbed on this WAF were removed using a 10% sulfuric acid aqueous solution.
00ml to obtain an eluent with a copper ion concentration of 20.09/l.

この溶離液を307711のビーカーに入れ白金板(3
0miX30mm×0.3 mm)を陰陽両極とし、電
流密度2人/drri”、液温25℃にて電解し銅i9
9.99%回収した。
Pour this eluent into a beaker of 307711 and place it on a platinum plate (3
0mi x 30mm x 0.3 mm) were used as negative and positive poles, and electrolyzed at a current density of 2 people/drri'' and a liquid temperature of 25°C to form copper i9.
9.99% recovery was achieved.

電流効率は銅の回収率80係までは95係であった。The current efficiency was 95% up to a copper recovery rate of 80%.

−力強塩基性アニオン交換樹脂に吸着された銅イオンは
同様にlO係硫酸アンモン水溶液350m1で溶離し、
銅イオン濃度2.59/lの溶離液を得た。
- Copper ions adsorbed on the strongly basic anion exchange resin were similarly eluted with 350 ml of 1O ammonium sulfate aqueous solution,
An eluent with a copper ion concentration of 2.59/l was obtained.

この溶離液t500mAのビーカーに入れ、白金板を電
極として電流密度IA/di”、液温25℃にて電解し
、銅i99.99%回収した。
This eluent was placed in a beaker with 500 mA of t, and electrolyzed with a platinum plate as an electrode at a current density of IA/di'' and a liquid temperature of 25° C., and 99.99% of copper i was recovered.

電流効率は銅の回収率80%まで90%であった。The current efficiency was 90% up to 80% copper recovery.

このように、本発明で用いる弱塩基性アニオン交換繊維
は、通常のイオン交換樹脂、キレート樹脂に比較して遥
かに銅イオンの吸着溶離がすぐれており、明らかに繊維
の機能がよく発揮されていることが判る。
As described above, the weakly basic anion exchange fiber used in the present invention has far superior adsorption and elution of copper ions compared to ordinary ion exchange resins and chelate resins, and it is clear that the fiber functions are well exhibited. I know that there is.

Claims (1)

【特許請求の範囲】[Claims] 1 ピロ燐酸銅メッキ工程から排出される廃水をポリエ
チレンポリアミノ基を有する弱塩基性アニオン交換繊維
で処理して廃水中の銅イオンを吸着除去する工程および
鋪イオンを吸着した弱塩基性アニオン交換繊維を溶離剤
で処理した銅イオンを溶離させる工程からなるピロ燐酸
銅メッキ廃水の処理方法。
1 Process of treating the wastewater discharged from the copper pyrophosphate plating process with a weakly basic anion exchange fiber having a polyethylene polyamino group to adsorb and remove copper ions in the wastewater, and a process of adsorbing and removing the copper ions in the wastewater. A method for treating copper pyrophosphate plating wastewater, which comprises a step of eluting copper ions treated with an eluent.
JP50100335A 1975-08-19 1975-08-19 Pyrolin Sandometsuki Haisuino Shiyorihouhou Expired JPS5823155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50100335A JPS5823155B2 (en) 1975-08-19 1975-08-19 Pyrolin Sandometsuki Haisuino Shiyorihouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50100335A JPS5823155B2 (en) 1975-08-19 1975-08-19 Pyrolin Sandometsuki Haisuino Shiyorihouhou

Publications (2)

Publication Number Publication Date
JPS5223861A JPS5223861A (en) 1977-02-23
JPS5823155B2 true JPS5823155B2 (en) 1983-05-13

Family

ID=14271260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50100335A Expired JPS5823155B2 (en) 1975-08-19 1975-08-19 Pyrolin Sandometsuki Haisuino Shiyorihouhou

Country Status (1)

Country Link
JP (1) JPS5823155B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556865B (en) 2011-04-27 2016-11-11 Kaneka Corp Ion exchange fiber and its manufacturing method, removal of chemical substances in water, adsorption method and removal of chemical substances in water, adsorption device

Also Published As

Publication number Publication date
JPS5223861A (en) 1977-02-23

Similar Documents

Publication Publication Date Title
Lalmi et al. Removal of lead from polluted waters using ion exchange resin with Ca (NO3) 2 for elution
RU2244687C2 (en) Water treatment process
CN108911102A (en) A kind of method that high-efficiency electrochemical restores uranium in enriching and recovering uranium-containing waste water and underground water
JPH05212382A (en) Method for removing heavy metal ion from waste liquid stream
US3656893A (en) Ion exchange removal of cyanide values
JP3312319B2 (en) Method for treating wastewater containing fluorine and arsenic
JP2012250198A (en) Method for removing/adsorbing iodate ion
JP2016163864A (en) Reactivation method of activated carbon and recovery method of gold
JPH0320447B2 (en)
JPS5823155B2 (en) Pyrolin Sandometsuki Haisuino Shiyorihouhou
JP2002028401A (en) Elution and recovery of metal from metal collecting material and regenerating method of eluting solution
JPS5823154B2 (en) Metsuki Haisu Inoshiyorihouhou
JP3279403B2 (en) Nickel plating wastewater treatment method
JPS6111156A (en) Reduction of necessary amount of washing water of weak basictype anion exchanger
JP2004351288A (en) Method for treating heavy-metal containing water or heavy-metal-containing soil
SU1766848A1 (en) Method of pentavalent arsenic extraction from acid arsenic-containing flow
JP2000313925A (en) Method for eluting and recovering metal from metal capturing member
JPH0724764B2 (en) Composite adsorbent and method for producing the same
Mahendra et al. Investigation of bivalve molluscan seashells for the removal of cadmium, lead and zinc Metal ions from wastewater streams
CN109621488A (en) A method of using ion chelating resin purification copper electrolyte
JP2008200651A (en) Method for recovering harmful ion
SU1028607A1 (en) Method for purifying effluents from thiourea eluates
CN114505060B (en) Composite adsorbent and preparation method and application thereof
CN113480056B (en) Method for treating high-concentration fluorine-containing wastewater by two-stage iron-carbon adsorption-complexation-synergistic co-precipitation process
RU2006107860A (en) HALOGEN EXTRACTION METHOD