[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS582290A - Manufacturing apparatus for semiconductor crystal - Google Patents

Manufacturing apparatus for semiconductor crystal

Info

Publication number
JPS582290A
JPS582290A JP56100335A JP10033581A JPS582290A JP S582290 A JPS582290 A JP S582290A JP 56100335 A JP56100335 A JP 56100335A JP 10033581 A JP10033581 A JP 10033581A JP S582290 A JPS582290 A JP S582290A
Authority
JP
Japan
Prior art keywords
tube
temp
furnace
crystal
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56100335A
Other languages
Japanese (ja)
Inventor
Michiharu Ito
伊藤 道春
Mitsuo Yoshikawa
吉河 満男
Hiroshi Takigawa
宏 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56100335A priority Critical patent/JPS582290A/en
Publication of JPS582290A publication Critical patent/JPS582290A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To uniformly regulate a temp. distribution in a direction parallel to the interface between solid and liq. phases in a container for growing a crystal to be introduced into the core tube of a furnace and to obtain a fine single crystal by installing a heat absorbing member divisible into a plurality of parts on the wall of the core tube opposite to the container. CONSTITUTION:The core tube of a furnace is composed of inner and outer tubes 11, 12 made of quartz or the like, rectangular heat absorbing members 13A-13H having large heat capacity are installed on part of the wall, e.g., between the tubes 11, 12 in this case, and the members are lifted up and down by moving stoppers 14. When a single crystal of Hg1-xCdxTe is manufactured, a material for the crystal is packed into a quartz container 1, the container is evacuated, and one end is sealed. A heater 2 is regulated so as to provide a temp. gradient 4, the position of the furnace in the (x) direction where the temp. reaches a point M of the temp. distribution 4 corresponding to the interface between liq. and solid phases is detected beforehand, and the internal temp. of the tube 11 at the part is detected at several places in a direction perpendicular to the axis of the tube. Some of the members 13 is properly moved parallel to the axial direction of the tube 11 to make the internal temp. distribution of the tube 11 uniform in a direction perpendicular to the axis of the tube 11 at the position of the furnace in the (x) direction where the temp. reaches the point M.

Description

【発明の詳細な説明】 本発明は半導体結晶製造装置、特にプリツリマン結晶製
造装置O改良に関するもO′e番る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved semiconductor crystal manufacturing apparatus, particularly to an improved Pritzliman crystal manufacturing apparatus.

従来よ〉晶蒸発愉O水銀(Iff)等を含み、赤外線検
知素子の材料として用いられる水銀カド@ウム・テ〜A
/ (Jig 1−1(34xT・)O単結晶を製造す
る場合、ブリッジマン法が用いられていゐ。
Previously〉Mercury containing crystal evaporated mercury (Iff), etc., and used as a material for infrared sensing elements
/ (Jig 1-1) When manufacturing (34xT.)O single crystals, the Bridgman method is used.

こ01方法は第1mlに示すように、一端ムな鋼く紋っ
て宍端部を有すh1N萬春$1110内111K例えば
[11−104!・O半導体材料を充填し4九〇ち、該
石英賽器内を真空に一気して飽端部な封止す番。
As shown in the 1st ml, this method is a h1N Manshun $1110 111K with a rounded steel pattern at one end, for example [11-104!・After filling with the O semiconductor material, the inside of the quartz bowl is evacuated at once to seal the saturated portion.

そO後加熱に一#雪を肩囲に有する石英tic)P芯管
8内に挿入して屓*春−内O亭導体材料をII融させた
Oち前iSS石英−1を下降させながら40□ ようにll1ilI菖−I3が楓め凰會れ九加鵬デO温
度分布を付奎1せて*、ii*春−40一端ムから順次
“ −北門てl[gt−KO11X?I  O単結晶を
得ている。
Then, heat the quartz tic with a layer of snow on the shoulder circumference and insert it into the P core tube 8 to melt the conductor material.While lowering the iSS quartz 1, 40 □ As ll1ilI Iris-I3 Kaedeme 凰斡 9KaPengdeO temperature distribution *, ii*Spring-40 One End Mu "-North Gate [gt-KO11X?I O Obtaining a single crystal.

ζζでX軸状加熱W−ZSが纒め込、會れえ加熱炉O履
−を示し、ysはIIL−1t)加熱温度を示し舅点は
Hl B 、10104xt融点を示す、セしてζ01
M点以下に石−審器一下典するとそ01部分から漣、融
緒晶が腸化すゐ、とヒるでζOように石英春−゛10一
端ムよ)順次■化1せて単結晶をIIjlllする場+
1端ムで形成shpLm4pな結^禎が順次成長して単
結晶と岸予#、ζζで単結晶となりた―椙とNi1−x
o纏i!−や鎮椙Oいわゆる固相と液相O界wsが平坦
になり1に−と良質を単結、晶が浄虞1れ−(多曽晶v
c**中す−F−七−喪輪一客確かめられている。
The X-axis heating W-ZS is summarized in ζζ, and ys indicates the heating temperature (IIL-1t), and the end point is HlB, 10104xt indicates the melting point, and ζ01
Below the M point, the stone is converted into a single crystal. A place to do IIjllll+
The shpLm4p bond formed at 1 end grew sequentially to become a single crystal, Kishiyo #, and ζζ - Sugi and Ni1-x
o mati! - and Chinsho O, the so-called solid phase and liquid phase O boundary ws becomes flat and becomes 1 -, and the high quality single crystal, crystal is pure - (Tasosho v
c**Nakasu-F-7-Moring ring confirmed.

このような固相と液相との界面を平坦にするには、界面
に平行な方向の温度分布を均一に保つ必要があるが、従
来上のように界面に平行な方向の温度分布を容易に均一
に調整するような半導体結晶の製造装置はなかつ友。
In order to flatten the interface between the solid phase and the liquid phase, it is necessary to maintain a uniform temperature distribution in the direction parallel to the interface. Semiconductor crystal manufacturing equipment that can uniformly adjust the temperature is a must.

本発明は上述した問題点を解決するような半導体結晶の
製造装置を厩供することを目的とするものである。
An object of the present invention is to provide a semiconductor crystal manufacturing apparatus that solves the above-mentioned problems.

かかる目的を達成するための半導体結晶の製造装置は、
外周に加熱ヒータをそなえ九炉芯管の内部に結晶成長さ
せるべき半導体材料を充填した結晶成長用容器を導入し
て結晶化処理を行う半導体結晶の製造装置において前記
結晶成長用容器に対向する炉芯管の壁面に当該炉芯管の
熱賽量をその円周方向において部分的に可変するための
複数分割された吸加熱部材を設置したことを特徴とする
ものである。
A semiconductor crystal manufacturing apparatus for achieving this purpose is:
A furnace facing the crystal growth container in a semiconductor crystal manufacturing apparatus that performs crystallization treatment by introducing a crystal growth container equipped with a heater on the outer periphery and filled with a semiconductor material to be crystal-grown into a nine-furnace core tube. It is characterized in that a plurality of divided heat absorbing members are installed on the wall surface of the core tube to partially vary the heat capacity of the furnace core tube in the circumferential direction.

以下図面を用いて本発明の一実施例につき詳細に説明す
る。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第意図は本発明の半導体結晶製造装置0縦断面図で第8
図は該装置の横断面図を示す。
The eighth intention is the vertical cross-sectional view of the semiconductor crystal manufacturing apparatus 0 of the present invention.
The figure shows a cross-sectional view of the device.

図示するように本発明の半導体結晶製造装置は、石英を
九はアlviす(ムjmOs)よ)なる内管11と外管
ls!とで炉芯管が構成され、そのssag+の一部、
すなわちこの場合は内外管の間に短冊状の熱1量の大き
い例えばカーボンよシなる吸熱部材18ム〜l旦が外管
1!O内壁に設けられた孔へ入るビン状のストッパー1
4によって支えられて設置されている。そしてこのyト
ラパーはピンを移動させることで上下に移動する。なお
吸熱部材18ム〜18Hは図では内管11と外管12と
の間に8個設置されていゐが、この数はもっと多く適宜
数設置して差し支えない。そして外管の外周には中はシ
ヒータ意が設置されている。前記吸熱部材18ム〜18
Hは上下方向に可動できるようになっておシこの吸熱部
材18ム〜18Hをそれぞれ別個に適宜上下に移動する
ことで炉芯管の熱容量が部分的に変化し、結果として容
器内に充填された半導体結晶の固液界面6に平行な温度
分布を均一にすることが可篩となる。こζで図OIIは
Hぎ1.zOdx’!’e”OII相で、16は液相で
あ為。
As shown in the figure, the semiconductor crystal manufacturing apparatus of the present invention has an inner tube 11 and an outer tube made of quartz. A furnace core tube is composed of, and a part of its ssag+,
That is, in this case, the outer tube 1 is a strip-shaped heat absorbing member made of carbon, for example, which has a large amount of heat and is placed between the inner and outer tubes. Bottle-shaped stopper 1 that fits into the hole provided in the inner wall of O
It is supported and installed by 4. This y trapper moves up and down by moving the pin. Although eight heat absorbing members 18M to 18H are installed between the inner tube 11 and the outer tube 12 in the figure, a larger number may be installed as appropriate. On the outer periphery of the outer tube, a shihita is installed inside. The heat absorbing member 18~18
H is movable in the vertical direction, and by moving the heat absorbing members 18mm to 18H of the cylinder up and down separately as appropriate, the heat capacity of the furnace core tube changes partially, and as a result, the heat capacity of the furnace core tube is changed, and as a result, the container is filled. Sieving is achieved by making the temperature distribution parallel to the solid-liquid interface 6 of the semiconductor crystal uniform. With this ζ, Figure OII is Hgi1. zOdx'! 'e' is the OII phase, and 16 is the liquid phase.

こOような装置を用いてHg1.xOsl宜!・の単結
晶を製造する場合、前記石英春lIl内KHIIs−x
O(!IT・の材料を充填したのち、′春−内を真!I
K排気してから一端を封止す1゜ そして第1−64に示すよう造温度勾配を付与するよう
にヒータIO温度を諌ヒーpO加熱電圧′  を調節す
為ζ1讐関鯵讐為、□ζこで一度分布4の−輩ム゛(液
相固相*wi>h*h’is熱炉□X方崗O位置をiも
かしめ検知してそon分め内管内0温度を数個所内管O
管軸に賞して喬直方内に熱電対等□を用いて検知する。
Hg1. xOsl yi!・When producing a single crystal of KHIIs-x in the quartz spring lIl
After filling the material of O (! IT
After exhausting K and sealing one end, adjust the heater IO temperature to give a temperature gradient as shown in No. 1-64, and adjust the heater pO heating voltage. ζ Once the distribution 4 - ゛ (liquid phase solid phase * wi > h * h'is thermal furnace □ Inner pipe O
It is detected by using a thermocouple or the like in the direction of the tube axis.

+0−前記吸熱部材11A〜18■のうち、いずれ門を
内管O管軸方−に’Fffに適宜移動さ讐る。”このよ
うkして前liiIM点と1に為加熱−〇X方肉の位置
KQいて、内管O管軸ecjtして膳直方内の内管内O
a度分布を絢−Vclせる。
+0- Among the heat absorbing members 11A to 18, the gates are appropriately moved in the axial direction of the inner tube O to 'Fff. ``In this way, heat to the front liiIM point and 1 - 〇
Set the a degree distribution to Aya-Vcl.

ζt)*5KLfTh6*1I11ft−x’Odx?
* #充ゞ槙され九石英春−を順−内管内へ二重O一度
で下降書せる。
ζt)*5KLfTh6*1I11ft-x'Odx?
* #Hideharu Kuishi is written down into the inner tube with a double O once.

ζOよSKすれば前胆舅点とtk為加熱炉OK方崗O位
置で−tIR1#lIが*C,ζO部分で昼間に平行1
に一度分書が絢−となって%/%番九め固液界面が平坦
と傘)鳥好亀Has−go4寡!・ OII曽晶が得b
hる。
If you do SK for ζO, it will be the front point and tk, so the heating furnace will be OK. At the position O, -tIR1#lI will be *C, and parallel 1 in the daytime at the ζO part.
Once the book is ayan, the solid-liquid interface is flat and the umbrella) Toriyuki Kame Has-go4 is low!・OII Sosaki wins b
hru.

宜え以上OII施例で紘%I&かじめ内管内の温度を調
節してかも、肩婁魯−1を挿入した#IζO他前配内管
内OI!虞を前games替l$ム〜■舅を夢INせて
内管内oamtm箇し傘がb生部体材料を充填した石英
ll器1を挿入して下降書せてもよい6重大前記甑鵬部
材としてはカーボンO飽にアμst番るいはvμ=、纂
ア(1■0・)を用いても羞し火見ない、罵gH6B、
104xt* 材料以外に墨iui懺O半導体曽晶#肴
よ)単結晶を得る場合に適MN箇で参為。
Even if the temperature in the inner tube of Hiro% I & Kajime was adjusted in the OII example above, #IζO and other OI in the front tube with the insertion of Shoulder Ro-1! The fear is that the previous games can be changed to l$m ~■ Let the father-in-law dream in and insert the quartz vessel 1 filled with living body material into the inner tube and lower it. As for the parts, I don't feel shy even if I use carbon O, a μst number, or vμ=, wire (1■0・), abusing gH6B,
104xt* In addition to the materials, please refer to the suitable MN items when obtaining a single crystal.

以上述べ九ように本1sle牟導悴曽晶O調造鋏置をM
%Aれば賽易に単結晶O亭導悴鎗晶が得られ結晶製造o
**nが陶土すゐ利点を生ずる。
As mentioned above, this book 1sle Mudo Ye Zengjing O cutting scissors set M
If you use %A, you can easily obtain single crystal crystals and manufacture crystals.
**n gives rise to the advantage of china clay.

【図面の簡単な説明】[Brief explanation of drawings]

stmm従imo亭導悴曽晶0調造111jlI@I4
1#閤、嬉1lIlは本傭明O半導悴紬aosn*置〇
−爽施例ea*−一、鯵l■は十e横請買叫を示す。 11Kかいて1唸2m審−1露は加熱””ps@は石英
管、4は温度骨書園、易は界面、11は内管、11線外
管、1畠ム〜1sI紘啜鴎郁材、14はスレツバ−1t
Sは液相、l@はIN$1111ムは端部、MalkA
、xa$111FOIill、yはaFe*i。 第1f’21 第2図
stmm subordinate imo tei guide yue so crystal 0 preparation 111jlI@I4
1 # 閤, happy 1lIl is this mercenary O semi-guide tsumugi aosn * 〇 - refreshing example ea * - 1, 鯵 l■ indicates the 10 e horizontal purchase cry. 11K, 1 roar 2m trial - 1 dew is heating ""ps@ is a quartz tube, 4 is a temperature bone book, easy is an interface, 11 is an inner tube, 11 is an outer tube, 1 field ~ 1sI 紘啜鴎铁material, 14 is thread bar 1t
S is liquid phase, l@ is IN$1111m is edge, MalkA
, xa$111FOIill, y is aFe*i. 1f'21 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 外周に加熱と一タをそなえた炉芯管の内部に紬晶威長さ
せるぺ電率導体材料を充填した結晶成長用審器を導入し
て鎗晶化熱聰を行う半導体結晶O製造装置において、前
記結晶成長用審INK対肉する炉芯管の壁面に一蒙炉芯
管O熱審量をそ0円周 ・方向において′部分的に可変
するため0**分割された吸熱部材を設置したことを特
徴とする半導体結晶の製造装置。
In a semiconductor crystal O production device that performs crystallization by introducing a crystal growth device filled with a conductive material with high conductivity to increase crystallization into the inside of a furnace core tube equipped with a heating element on the outer periphery. , A heat absorbing member divided into 0** is installed on the wall surface of the furnace core tube to be used for crystal growth in order to partially vary the heat amount of the furnace core tube in the 0 circumferential direction. A semiconductor crystal manufacturing device characterized by:
JP56100335A 1981-06-26 1981-06-26 Manufacturing apparatus for semiconductor crystal Pending JPS582290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56100335A JPS582290A (en) 1981-06-26 1981-06-26 Manufacturing apparatus for semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56100335A JPS582290A (en) 1981-06-26 1981-06-26 Manufacturing apparatus for semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS582290A true JPS582290A (en) 1983-01-07

Family

ID=14271266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56100335A Pending JPS582290A (en) 1981-06-26 1981-06-26 Manufacturing apparatus for semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS582290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2614322A1 (en) * 1987-04-27 1988-10-28 Europ Propulsion GRADIENT OVEN FOR ORIENTED SOLIDIFICATION, IN PARTICULAR BY THE BRIDGMANN METHOD.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2614322A1 (en) * 1987-04-27 1988-10-28 Europ Propulsion GRADIENT OVEN FOR ORIENTED SOLIDIFICATION, IN PARTICULAR BY THE BRIDGMANN METHOD.

Similar Documents

Publication Publication Date Title
LaBelle Jr EFG, the invention and application to sapphire growth
JP5269384B2 (en) Semiconductor single crystal manufacturing method using Czochralski method
KR930003044B1 (en) Method and apparatus for manufacturing silicon single crystal
JPS582290A (en) Manufacturing apparatus for semiconductor crystal
JP2946935B2 (en) Single crystal pulling apparatus and pulling method thereof
JPH07277869A (en) Apparatus and process for producing single crystal
KR101987637B1 (en) Apparatus for increasing the purity of the low melting metal
JPH0259494A (en) Production of silicon single crystal and apparatus
JPH0253377B2 (en)
Kurlov et al. Growth of shaped lithium tantalate crystals
JPS5815472B2 (en) crystal growth equipment
JPS61132585A (en) Apparatus for adding dopant
JPH02172885A (en) Production of silicon single crystal
KR100808217B1 (en) Apparatus for growth of single crystal using Liquid-Encapsulated Czochralski method
JPH0312389A (en) Crystal growing device
JPH01301579A (en) Production of silicon single crystal and apparatus therefor
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPH0316989A (en) Production device of silicon single crystal
Liu et al. Numerical simulations and experimental investigations on lead iodide single crystals growth
JPH0442887A (en) Method for growing crystal by bridgman method
JPH05139884A (en) Production of single crystal
JPH02212395A (en) Production of compound semiconductor crystal and producing device
JPS62226885A (en) Device for growing cdte crystal
JP2004338960A (en) METHOD FOR MANUFACTURING InP SINGLE CRYSTAL
KR20180134185A (en) Improved Bridgman method to suppress sublimation