JPS5821210A - Production of optical fiber sheet - Google Patents
Production of optical fiber sheetInfo
- Publication number
- JPS5821210A JPS5821210A JP56120374A JP12037481A JPS5821210A JP S5821210 A JPS5821210 A JP S5821210A JP 56120374 A JP56120374 A JP 56120374A JP 12037481 A JP12037481 A JP 12037481A JP S5821210 A JPS5821210 A JP S5821210A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- parallel
- group
- base material
- materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/028—Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/02—External structure or shape details
- C03B2203/04—Polygonal outer cross-section, e.g. triangular, square
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、光通信あるいは光情報処理の分野において複
数の光信号を並列伝送する光ファイバシートの製造方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an optical fiber sheet for transmitting a plurality of optical signals in parallel in the field of optical communication or optical information processing.
複数の発光源をアレー状に構成した発光器と受光器間を
連結して複数の光信号を並列処理するとか、またはファ
クVミリの原稿読取シ装置などに用いられる光ファイバ
F−)は、一般に多数本の光フアイバ素線を互いに平行
かつ密接するか、または所定間隔をもって並列した状態
で、例えば押出樹脂被覆法によって各光フアイバ素線の
長さ方向における両端の配置が互いに対応するように共
通の被覆層によってシート状に一体化されている。The optical fiber F-) is used for parallel processing of multiple optical signals by connecting a light emitting device with a light receiver configured in an array, or for Fac V mm document reading device, etc. In general, a large number of optical fibers are arranged in parallel and close together or in parallel at a predetermined interval, and the positions of both ends of each optical fiber in the length direction correspond to each other by, for example, an extrusion resin coating method. They are integrated into a sheet by a common covering layer.
ところが上述の如き従来の犬ファイバシートの製造方法
においては、細径の光フアイバ素線を複数本並列してV
−)状に形成することは容易でなく、製造コストも高廖
欠点があった。またシート状に一体化された各党ファイ
バ素線相互間の間隔精度のよいものが得られにくい不都
合があった。However, in the conventional manufacturing method of the dog fiber sheet as described above, a plurality of small diameter optical fibers are arranged in parallel and V
-) shape is not easy to form, and the manufacturing cost is high. Furthermore, there is a problem in that it is difficult to obtain a highly accurate spacing between the fiber strands of each party that are integrated into a sheet.
本発明の目的は、上記従来の欠点を解消するため、あら
かじめ成形された複数本の光7アイパ母材を並列し、該
並列母材群の両側に、前記並列母材群を挾む形KIIt
l紀母材の軟化温度よりも低い値の軟化温度を有する被
覆部材を添着した状態で同時に加熱一体化しながら延伸
することにより、V−ト状に一体化された各光フアイバ
素線相互間の間隔寸法精度のよい光ファイバV−)を効
率よく形成できる製造方法を提供することである。An object of the present invention is to solve the above-mentioned conventional drawbacks by arranging a plurality of pre-formed Hikari 7 Eyeper preforms in parallel, and sandwiching the parallel preform groups on both sides of the parallel preform group.
By drawing the optical fibers while simultaneously heating and integrating them with a coating member attached that has a softening temperature lower than that of the primary base material, the lines between each optical fiber strand integrated in a V-shaped shape are formed. It is an object of the present invention to provide a manufacturing method that can efficiently form an optical fiber V-) with good interval dimension accuracy.
以下図面を用いて本発明KgA2+製造方法の!l!篇
例について詳細に説明する。The KgA2+ manufacturing method of the present invention will be described below using the drawings! l! The examples will be explained in detail.
第1図は本発明に係る光ファイバV−)を連続的に製造
する方法の一実施例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an embodiment of a method for continuously manufacturing an optical fiber V-) according to the present invention.
まず周知の化学気相堆積法(CVD法)等によりコア層
とその周囲にクツラド層を有する光フアイバ母材を複数
本製作し、該母材を本実施例では加熱延伸して外径が約
8鱈程度の細棒状母材IK成形する。かかる細棒状母材
1の複数本(この場合8本)を互いに平行かつ密接させ
て並配列し、該並列母材群jlの並列方向に沿う両側に
、前記並列母材群11を挾む形に、前記細棒状母材lの
軟化a膚よりも低い軟化温度を有し、かつ熱膨張係数値
が近似して加工性のよい被覆部材、例えば一般にバイコ
ールガラスとも呼ばれている高珪酸ガフスからなる約g
、’swの厚さのガラス板2.2′を図示のように添着
する。この時、前記並列母材群11の両端部ではそれぞ
れ挾着せるガラス板2゜、、:1
2′の端部が溶着されている。次いで前記したガラス板
2.2が挾着された並列母材群11の一端部を図示しな
い送に装置で支持し、その池端部を加熱炉8内K11l
l起送り装置によって順次送1込み。First, a plurality of optical fiber preforms each having a core layer and a cuturad layer around it are manufactured by a well-known chemical vapor deposition method (CVD method), and in this example, the preforms are heated and stretched to have an outer diameter of approximately IK mold a thin rod-shaped base material of about 8 cod. A plurality of such thin bar-shaped base materials 1 (eight in this case) are arranged parallel to each other and in close contact with each other, and the parallel base material group 11 is sandwiched on both sides of the parallel base material group jl along the parallel direction. In addition, a covering member having a softening temperature lower than that of the softening skin of the thin rod-shaped base material l, and having a thermal expansion coefficient close to that of the material and having good workability, such as a high silicate gaff, which is generally also called Vycor glass, is used. About g
, 'sw' thick glass plate 2.2' is attached as shown. At this time, at both ends of the parallel base material group 11, the ends of the glass plates 2°, . Next, one end of the parallel base material group 11 to which the glass plates 2.2 described above are clamped is supported by a feeding device (not shown), and the pond end is placed in the heating furnace 8 K11l.
1 Sequential feeding is included using the raising device.
加熱一体化しながら所定の引出し速度で連続的に延伸す
れば、第2図に示すように例えば厚さが約460pm、
幅が約1,6Wにして各コア層ta〜th相互間の間隔
幅が200μmと、間隔精度のよい長尺の光フアイバシ
ート4を容易かつ安価に得ることが可能となる。If it is continuously stretched at a predetermined drawing speed while being heated and integrated, the thickness will be about 460 pm, for example, as shown in FIG.
With a width of about 1.6 W and a spacing width of 200 μm between the core layers ta to th, it is possible to easily and inexpensively obtain a long optical fiber sheet 4 with good spacing accuracy.
なお上述した実施例では並列母材群11の並列方向に沿
う両側にガラス板からなる被覆部材2゜2′を添着した
場合の例で説明したが、本発明はこのような被覆部材の
形状に限定されるものではなく、例えば第8図に示すよ
うに並列母材群11の両側に高珪酸ガラス等からなる適
当な外径を有する細棒状の被覆部材22を図示のように
複数本添着するようにしてもよい、また前お並列母材群
11の最両側にある細棒母材1がシート化する工程にお
いて変形する恐れがある場合には、該両側の細棒母材1
の外側にも前記細棒状の被覆部材からなる補填細棒28
を図示のように添着することによって有効部の変形を解
消で訃る。さらに光ファイバF−)における各コア層相
互間の間隔幅を変える場合には、主要部材である光フア
イバ母材のコア径対外径の比を変えるか、あるいは細棒
母材を複数本並配列する際に、各細棒母材の間に、前記
母□材のクツラド層と同材質の所定の厚さ、または外径
を有する間隔調整薄板2間隔調整細棒等を介在させるこ
とによ抄目的を達成することができる。In addition, in the above-mentioned embodiment, an example was explained in which the covering members 2゜2' made of glass plates were attached to both sides of the parallel base material group 11 along the parallel direction, but the present invention is applicable to the shape of such covering members. For example, without limitation, as shown in FIG. 8, a plurality of thin rod-shaped covering members 22 made of high silicate glass or the like and having an appropriate outer diameter are attached to both sides of the parallel base material group 11 as shown in the figure. In addition, if there is a risk that the thin bar base materials 1 on the most sides of the parallel base material group 11 may be deformed during the sheet forming process, the thin bar base materials 1 on both sides may be
There is also a supplementary thin rod 28 made of the thin rod-shaped covering member on the outside of the
By attaching it as shown in the figure, the deformation of the effective part can be eliminated. Furthermore, when changing the interval width between each core layer in the optical fiber F-), it is necessary to change the ratio of the core diameter to the outer diameter of the optical fiber base material, which is the main component, or to arrange multiple thin rod base materials in parallel. In this process, two spacing adjusting thin plates, etc., made of the same material as the cuturad layer of the base material and having a predetermined thickness or outer diameter are interposed between each thin bar base material. Able to achieve purpose.
以上の説明から明らかなように本発明の製造方法によれ
ば、細棒状の光フアイバ母材を複数本並配列し九並列母
材群の両側に被覆部材を添着した状頗でその一端部から
順次加熱延・伸して連続的に光ファイバV−卜を形成す
ることにより共通の被覆層内に構成された各コア部相互
間の間隔精度のすぐれた長尺の光フアイバシートを効率
よく容易に得ることが可能となり、製造工数も低減され
るので安価となる利点を有し、光通信システムあるいは
光情報処理システム等において複数の光信号を並列伝送
処理する各種光ファイバシート尋の製造に適用して極め
て有利である。As is clear from the above description, according to the manufacturing method of the present invention, a plurality of thin rod-shaped optical fiber preforms are arranged in parallel, and a covering member is attached to both sides of a group of nine parallel preforms. By successively heating and drawing to form an optical fiber V-fold, it is possible to efficiently and easily produce a long optical fiber sheet with excellent spacing accuracy between each core part configured in a common coating layer. It has the advantage of being inexpensive as it reduces manufacturing man-hours and is applicable to the manufacturing of various optical fiber sheets that process multiple optical signals in parallel in optical communication systems, optical information processing systems, etc. This is extremely advantageous.
なお本発明の製造方法によって形成された光ファイバV
−)を樹脂被覆する場合には、本製造工程に連続して容
易に樹脂被覆を施すことも可能である。Note that the optical fiber V formed by the manufacturing method of the present invention
-), it is also possible to easily apply the resin coating following the main manufacturing process.
第1図は本発明に係る光フアイバシートの製造方法の一
実施例を説明する概略斜視図、第2図は本発明に係る光
ファイバV−)・を説明する概略図、第8図は本発明に
係る光ファイバV−)のIIl!造方法の池の実施例を
説明する概略斜視図である。
図において、lは細棒状光フアイバ母材、ta〜1hは
光ファイバV−)中のコア層、2.2’。
22は被覆部材、8は加熱炉、4け光ファイバV−1・
、11は並列母材群、2Bは補填細棒を示す。
第1図
第2図
第3図
1FIG. 1 is a schematic perspective view illustrating an embodiment of the method for manufacturing an optical fiber sheet according to the present invention, FIG. 2 is a schematic diagram illustrating an optical fiber V-) according to the present invention, and FIG. IIl of the optical fiber V-) according to the invention! FIG. 2 is a schematic perspective view illustrating an example of a pond construction method. In the figure, 1 is a thin rod-shaped optical fiber preform, ta to 1h are core layers in the optical fiber V-), and 2.2'. 22 is a coating member, 8 is a heating furnace, and 4-wire optical fiber V-1.
, 11 indicates a group of parallel base materials, and 2B indicates a complementary thin rod. Figure 1 Figure 2 Figure 3 Figure 1
Claims (1)
、該並列母材群の両側に!tllli3並列母材群を挾
む形に被覆部材を添着した状態で同時に加熱一体化しな
がら延伸して光フアイバシーFとすることを特徴とする
光ファイバV−トの製造方法。A plurality of pre-formed optical fiber base materials are arranged in parallel, and on both sides of the parallel base material group! tllli3 A method for manufacturing an optical fiber V-t, which is characterized in that a group of parallel base materials is attached with a covering member sandwiched therebetween and simultaneously heated and stretched to form an optical fiber sheet F.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56120374A JPS5821210A (en) | 1981-07-30 | 1981-07-30 | Production of optical fiber sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56120374A JPS5821210A (en) | 1981-07-30 | 1981-07-30 | Production of optical fiber sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5821210A true JPS5821210A (en) | 1983-02-08 |
Family
ID=14784619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56120374A Pending JPS5821210A (en) | 1981-07-30 | 1981-07-30 | Production of optical fiber sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5821210A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60142303A (en) * | 1983-12-29 | 1985-07-27 | Sumitomo Electric Ind Ltd | Multicore fiber for optical transmission and its manufacture |
JPS62184440U (en) * | 1986-05-13 | 1987-11-24 | ||
JPH01136432U (en) * | 1988-03-11 | 1989-09-19 | ||
WO2015076668A1 (en) * | 2013-11-21 | 2015-05-28 | Universiti Malaya | Apparatus and method of fabricating flat microstructured fiber |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3272063A (en) * | 1962-08-13 | 1966-09-13 | Composite supported fiber optic strip |
-
1981
- 1981-07-30 JP JP56120374A patent/JPS5821210A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3272063A (en) * | 1962-08-13 | 1966-09-13 | Composite supported fiber optic strip |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60142303A (en) * | 1983-12-29 | 1985-07-27 | Sumitomo Electric Ind Ltd | Multicore fiber for optical transmission and its manufacture |
JPS62184440U (en) * | 1986-05-13 | 1987-11-24 | ||
JPH01136432U (en) * | 1988-03-11 | 1989-09-19 | ||
WO2015076668A1 (en) * | 2013-11-21 | 2015-05-28 | Universiti Malaya | Apparatus and method of fabricating flat microstructured fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4026693A (en) | Method for producing an image dissector | |
US4090902A (en) | Optical fiber cable and manufacture thereof | |
US3969016A (en) | Low dispersion optical fiber wave guiding structures with periodically deformed waveguide axis | |
WO2002056071A3 (en) | Method for fabrication of plastic fiber optic blocks and large flat panel displays | |
US5171502A (en) | Method and apparatus for fabricating a rubberized wire sheet | |
KR910005165B1 (en) | A polymeric optical waveguide a method and an apparatus for the preparation there of by coextrusion | |
JP2556050B2 (en) | Glass capillary tube and method of manufacturing the same | |
JPS5821210A (en) | Production of optical fiber sheet | |
US4271104A (en) | Hot rolling and extrusion of optical fiber ribbon cable | |
US3291584A (en) | Fiber glass orifice | |
JPS6126005A (en) | Production for image fiber | |
US3196738A (en) | Fiber optical components | |
JPS58211713A (en) | Taped optical fiber core unit | |
US3620703A (en) | Method of fabricating glass orifice plates | |
CN218020274U (en) | Compound molding equipment for one-step compounding multi-layer glass fiber hollow plastic template | |
JPS60154205A (en) | Manufacture of optical fiber sheet | |
CN218020260U (en) | Continuous glass fiber hollow plastic template composite forming equipment | |
JPH041522Y2 (en) | ||
JP3142930B2 (en) | Image reading sensor | |
JPH06258532A (en) | Image reading and recording module using fiber array plate | |
JPS6146415B2 (en) | ||
JPS6132644B2 (en) | ||
JPS60189717A (en) | Coupled optical fiber and manufacture thereof | |
JPS60142303A (en) | Multicore fiber for optical transmission and its manufacture | |
JPS5913450B2 (en) | Precision glass capillary manufacturing method |