JPS58214606A - Two fluid cycle - Google Patents
Two fluid cycleInfo
- Publication number
- JPS58214606A JPS58214606A JP9649482A JP9649482A JPS58214606A JP S58214606 A JPS58214606 A JP S58214606A JP 9649482 A JP9649482 A JP 9649482A JP 9649482 A JP9649482 A JP 9649482A JP S58214606 A JPS58214606 A JP S58214606A
- Authority
- JP
- Japan
- Prior art keywords
- cycle
- water
- heat source
- turbine
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、水サイクルと有機媒体サイクルとを組み合わ
せて、ボイラ、プロセスなどの排ガスエネルギーを有効
に回収し、ランキンサイクルの熱効率を高めた二流体サ
イクルに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-fluid cycle that combines a water cycle and an organic medium cycle to effectively recover exhaust gas energy from boilers, processes, etc., and improves the thermal efficiency of the Rankine cycle.
ボイラ効率を上げるためにボイラ排ガス温度を下げるこ
とは有効である。従来のボイラでは蒸気条件(圧力)の
関係でボイラ本体では充分に排ガス温度を下げることが
できず、節炭器や空気予熱器を設けて排ガス温度を下げ
る対策を構じているが、なお150〜200℃程度の排
ガス温度が残つている。Lowering the boiler exhaust gas temperature is effective in increasing boiler efficiency. In conventional boilers, due to the steam conditions (pressure), the boiler itself cannot sufficiently lower the exhaust gas temperature, and countermeasures have been taken to lower the exhaust gas temperature by installing energy savers and air preheaters. Exhaust gas temperature of about ~200°C remains.
壕だ、プロセス排ガスを利用した廃熱ボイラ等では、通
常、入口側のガス温度が500℃程度と低いため、ボイ
ラにおいてこの排ガス温度を低温オで下げてその保有熱
量をいかに有効に利用するかに苦慮している実情にある
。In waste heat boilers that use process exhaust gas, the gas temperature at the inlet side is usually as low as 500°C, so the question is how to lower the temperature of this exhaust gas in the boiler with a low-temperature oven and effectively utilize its retained heat. The reality is that people are struggling with this.
このようなボイラ排ガス温度を低温まで下げて保有熱量
を有効に回収する方法としてフロンなどの有機媒体を使
用する単流体ランキンサイクルは既に実現しており、水
サイクルに比べ排ガス温度を低くでき、それなりの効果
をあげている。しかしこれらの媒体は、媒体自身の温度
に上限があり、ある温度以上になると熱分解を起こすな
どの欠点があるので、媒体のランキンサイクルを考える
とき、折角のガス側の高温部を有効に生かせないなどの
問題がある。The single-fluid Rankine cycle, which uses an organic medium such as fluorocarbons, has already been realized as a method of lowering the boiler exhaust gas temperature to a low temperature and effectively recovering the retained heat, and it can lower the exhaust gas temperature compared to the water cycle and has a certain level of efficiency. It has been effective. However, these media have drawbacks such as an upper limit to the temperature of the medium itself, and thermal decomposition occurs when the temperature exceeds a certain temperature, so when considering the Rankine cycle of the medium, it is important to take advantage of the high temperature part on the gas side. There are problems such as not having one.
すなわち、通常の水サイクルでは、サイクル効率を高め
るために蒸気の圧力、温度を熱源の′高温側の条件に見
合うまで上げることはできるが、熱源の排ガスの温度を
充分低温まで下げることはできず、ランキンサイクルと
しては効率を高めることはできるが、熱源の低温側の熱
回収量が減り、排ガスのエネルギーを無駄に捨てること
と寿り、動力回収鰯sは少なくなる。一方、有機媒体を
使用する単流体サイクルでは、熱源の低温側の熱回収を
充分性なうことはできるが、有機媒体自身の熱分解の点
からM:高i1!INが規制され(約300℃程度)、
それ以上の温度では使用できないため、媒体のランキン
サイクル効率はこの媒体の温度によって制約され、低水
準を余儀なくされる。In other words, in a normal water cycle, the pressure and temperature of steam can be raised to match the high temperature conditions of the heat source in order to increase cycle efficiency, but the temperature of the exhaust gas from the heat source cannot be lowered to a sufficiently low temperature. Although it is possible to increase the efficiency of the Rankine cycle, the amount of heat recovered from the low temperature side of the heat source is reduced, resulting in wasteful waste of exhaust gas energy, and the amount of power recovered is reduced. On the other hand, in a single-fluid cycle using an organic medium, heat recovery from the low-temperature side of the heat source can be made sufficient, but from the viewpoint of thermal decomposition of the organic medium itself, M: high i1! IN is regulated (approximately 300℃),
Since it cannot be used at higher temperatures, the Rankine cycle efficiency of the medium is limited by the temperature of this medium and is forced to a low level.
本発明は、熱源の高温部は、排ガス温度に見合った従来
の水ランキンサイクルによって熱回収し、一方、熱源の
低温部は、低温排ガスエネルギーを効率よく回収するこ
とのできる有機媒体ランキンサイクルによって熱回収し
、この両サイクルを組み合わせることによって、熱源の
熱量を充分低温まで回収すると同時に、それぞれのサイ
クル熱効率を熱源温度の許す限り極限まで高め、熱源の
エネルギーを充分に有効利用し、省エネルギーを図るこ
とを目的とする。In the present invention, heat is recovered from the high-temperature part of the heat source by a conventional water Rankine cycle commensurate with the exhaust gas temperature, while heat is recovered from the low-temperature part of the heat source by an organic medium Rankine cycle that can efficiently recover low-temperature exhaust gas energy. By combining these two cycles, the heat amount of the heat source can be recovered to a sufficiently low temperature, and at the same time, the thermal efficiency of each cycle can be increased to the maximum that the heat source temperature allows, and the energy of the heat source can be used effectively to save energy. With the goal.
本発明の要旨とするところは、熱源の高温部を水ランキ
ンサイクルで処理し、熱源の低温部を有機媒体ランキン
サイクルで処理すると共に、水サイクルの給水を有機媒
体サイクルのタービン排気により加熱することを特徴と
する二流体サイクルにある。The gist of the present invention is to treat the high temperature part of the heat source with the water Rankine cycle, treat the low temperature part of the heat source with the organic medium Rankine cycle, and heat the feed water of the water cycle with the turbine exhaust of the organic medium cycle. It is a two-fluid cycle characterized by
以下、図面によって本発明を説明する。第1図は本発明
の実施例の系統図を示す。本実施例では有機媒体として
フロリノール85(以下F−85と記す)を使用した。The present invention will be explained below with reference to the drawings. FIG. 1 shows a system diagram of an embodiment of the present invention. In this example, Florinol 85 (hereinafter referred to as F-85) was used as the organic medium.
以下の説明ではF−85を例として説明するが、本発明
は有機媒体として、F−85に限定されるものではない
。In the following explanation, F-85 will be used as an example, but the present invention is not limited to F-85 as an organic medium.
第1図において、1は熱源の高温部に設置されたボイラ
で、通常の水サイクル用のボイラ、2は熱源の低温部に
設置されたボイラで、F−85ボイラである。水ボイラ
1で発生した蒸気は、主蒸気管14を経てタービン3へ
導かれる。タービン3で仕事をした蒸気は排気管15を
通って復水器5へ導かれ、ここで復水に変えられる。復
水け、復水管16を通り、復水ポンプ6で昇圧され、給
(3)
水加熱器7へ導かれる。この給水加熱器7は、F−85
タービンの1.11気蒸気を加熱源としている。In FIG. 1, 1 is a boiler installed in the high temperature part of the heat source, which is a normal water cycle boiler, and 2 is a boiler installed in the low temperature part of the heat source, which is an F-85 boiler. Steam generated in the water boiler 1 is guided to the turbine 3 via the main steam pipe 14. The steam that has done work in the turbine 3 is led to the condenser 5 through the exhaust pipe 15, where it is converted into condensate. The water passes through the condensate drain and condensate pipe 16, is pressurized by the condensate pump 6, and is led to the water supply (3) water heater 7. This feed water heater 7 is F-85
The heating source is 1.11 steam from the turbine.
給水加熱器7で劉濡された復水は、復水管16を通って
脱気器8へ導かれる。脱気器8へは復水な加熱するため
の加熱用蒸気としてタービン3の抽気が抽気管23を通
って流入する。脱気器8で加熱・脱気された復水は給水
となって給水ポンプ9によって封圧され、給水管17を
経てボイラ1へ循環する。以上が水サイクルである。The condensate wetted by the feed water heater 7 is led to the deaerator 8 through the condensate pipe 16. Bleed air from the turbine 3 flows into the deaerator 8 through a bleed pipe 23 as heating steam for heating condensate. The condensate heated and degassed in the deaerator 8 becomes feed water, which is sealed under pressure by the water feed pump 9 and circulated to the boiler 1 via the water feed pipe 17. The above is the water cycle.
F−85ボイラ2で作られたF−85蒸気は、主蒸気管
18を通ってl−1−85タービン10へ導かれる。F
−85タービン10で仕事をしたF−85蒸気はF−8
5タービン排気管19を通って給水加熱器7へ導かれ、
水サイクルの復水を加熱する。給水加熱器で熱を奪われ
たF−85排気蒸気は蒸気管20を通って凝縮器12へ
導かれ、復液する。復液は復液管21、給液管22を通
って、復液兼給液ポンプ13によって昇圧され、F−8
5ボイラ2へ循猿する。以上がF−85サイクルである
。F-85 steam produced by the F-85 boiler 2 is guided to the l-1-85 turbine 10 through the main steam pipe 18. F
The F-85 steam that worked in -85 turbine 10 is F-8
5 is led to the feed water heater 7 through the turbine exhaust pipe 19,
Heating the condensate of the water cycle. The F-85 exhaust steam from which heat has been removed by the feedwater heater is led to the condenser 12 through the steam pipe 20 and condensed. The condensate passes through the condensate pipe 21 and the liquid supply pipe 22, is pressurized by the condensate and liquid supply pump 13, and is then transferred to F-8.
5 Circulate to boiler 2. The above is the F-85 cycle.
(4)
本発明は上記二流体サイクルを組み合わせるので、熱源
の高温部と低温部とをそれぞれ最も適切な使用条件に区
分することができる。すなわち、熱源の高温部に設けら
れた水ボイラ1は、熱源の温度に見合う蒸気条件を採用
でき、熱源低温部における熱回収に考慮を払う必要がな
く、高温熱源の条件の許す範囲で高温高圧の蒸気を発生
するように設計し、サイクル効率を高めることができる
。(4) Since the present invention combines the above-mentioned two-fluid cycle, the high-temperature part and the low-temperature part of the heat source can be divided into the most appropriate usage conditions. In other words, the water boiler 1 installed in the high-temperature part of the heat source can adopt steam conditions that match the temperature of the heat source, and there is no need to consider heat recovery in the low-temperature part of the heat source. of steam, increasing cycle efficiency.
通常、30atg、350℃以上の蒸気条件を採用すれ
ば、F−85サイクルより熱効率は高くなる。Normally, if steam conditions of 30 atg and 350° C. or higher are adopted, the thermal efficiency will be higher than that of the F-85 cycle.
一方、F−85ボイラ2は低熱源に設けられたボイラで
あり、F−85の特性から定められる最高使用条件以下
において熱源の低温部の熱回収を充分に図るようにする
。On the other hand, the F-85 boiler 2 is a boiler installed at a low heat source, and is designed to sufficiently recover heat from the low temperature portion of the heat source under the maximum usage conditions determined from the characteristics of F-85.
F−85は、トリフルオロエタノール(CFsCH20
H)を主成分とする有機媒体であって、中低温領域にお
いて他の媒体例えばフロン等に比し高圧の蒸気を発生す
ることができ、蒸発潜熱が小さいので、媒体温度を熱源
温度降下曲線に近接させることができ、また熱源温度降
下を大きくとることができるので、高い動力回収が可能
である。F-85 is trifluoroethanol (CFsCH20
It is an organic medium whose main component is H), which can generate high-pressure steam in the medium to low temperature range compared to other media such as chlorofluorocarbons, and has a small latent heat of vaporization, so the medium temperature can be adjusted to the heat source temperature drop curve. Since they can be placed close to each other and the temperature of the heat source can be significantly lowered, high power recovery is possible.
I’−85の最高使用条件は50atg、300℃程度
であり、実際便用においてけ、余裕を見て、49atg
、283℃までが採用される。The maximum operating conditions for I'-85 are 50atg and 300℃, and for practical use, with a margin of 49atg.
, up to 283°C.
F−85サイクルレ1、例えげ、復液温度30℃とすれ
ば、これケ、1通常の1・” −85ザイクルでは真空
度をかなり深く採つI、一時の値となるが、タービン排
気圧力は0.126ataである。主蒸気条件を48a
ta、283℃と(2タービン効率85チとすれば、タ
ービン出「1でl:i I” −85の特性から、ター
ビン排気は湿り領域で1」なく過熱領域にあり、温度7
6℃、エンタルピー140 K cag /kl!が残
っている。この排気温度76℃は、水サイクルの復水に
十分熱を伝える能力を有している。例えば、水サイクセ
の復水温度も同じく30℃(飽和圧力0.043 at
a )とすれば、充分熱伝達可能である。F-85 cycle 1. For example, if the condensate temperature is 30℃, this is 1. In the -85 cycle, the degree of vacuum is quite deep. Although it is a temporary value, the turbine exhaust The pressure is 0.126 ata.The main steam condition is 48a.
ta, 283℃ (2 If the turbine efficiency is 85chi, then from the characteristics of the turbine output "l:i I" -85, the turbine exhaust is not in the humid region and is in the overheating region, and the temperature is 7.
6℃, enthalpy 140K cag/kl! remains. This exhaust temperature of 76° C. has the ability to sufficiently transfer heat to the condensate of the water cycle. For example, the condensate temperature of water cycle is also 30℃ (saturation pressure 0.043 at
a), sufficient heat transfer is possible.
F−85液は、水に比し比重が大きいので、タービンブ
1ノードのエロージョン防止の観点からF−85タービ
ン排気は乾き蒸気となるように計画される。F−85の
特性から、通常の排気圧力(Q、1ata以上)ではタ
ービン排気は完全な過熱蒸気となっており、水ランキン
サイクルと全く異なる点である。Since the F-85 liquid has a higher specific gravity than water, the F-85 turbine exhaust is planned to be dry steam in order to prevent erosion of the turbine node. Due to the characteristics of F-85, the turbine exhaust becomes completely superheated steam at normal exhaust pressure (Q, 1 ata or more), which is completely different from the water Rankine cycle.
以上のようにF−85ザイクルは、水サイクルの復水加
熱に利用した熱量を有効に回収でき、凝縮器で冷却水へ
捨てる熱量が減少するので、二流体ザイクル全体でサイ
クル熱効率を上げることができる。As mentioned above, the F-85 cycle can effectively recover the amount of heat used for condensate heating in the water cycle, and the amount of heat discarded to the cooling water in the condenser is reduced, so it is possible to increase the cycle thermal efficiency of the entire two-fluid cycle. can.
なり、F−85は、タービン膨張後の体積が水に比し大
幅に小さく、かつ、膨張後もなお過熱領域にあるため、
タービンの小形化が可能であり、また、安全性・信頼性
も高い。Therefore, the volume of F-85 after turbine expansion is significantly smaller than that of water, and even after expansion it is still in the overheating region.
It is possible to downsize the turbine, and it is also highly safe and reliable.
第1図では、水サイクルとF−85サイクルとのタービ
ンおよび発電機をそれぞれ別々に表示しであるが、蒸気
タービン3とF−85タービン10とを結合し、発電機
4と11とを1台にまとめることはもちろん可能であり
、スペース的にも有利である。In FIG. 1, the turbines and generators for the water cycle and the F-85 cycle are shown separately, but the steam turbine 3 and the F-85 turbine 10 are combined, and the generators 4 and 11 are It is of course possible to put them together on a stand, which is advantageous in terms of space.
本発明は以上のように構成されているので、熱源の高温
部を効率の高い水ランキンサイクルで回(7)
収し、有機媒体サイクルで熱源熱量を十分低温まで回収
し、かつ両ザイクルを組み合わせ、大きな省エネルギー
効果を得ることができる。Since the present invention is configured as described above, the high temperature part of the heat source is recovered by the highly efficient water Rankine cycle (7), the heat source heat is recovered to a sufficiently low temperature by the organic medium cycle, and both cycles are combined. , a large energy saving effect can be obtained.
第1図は本発明の二流体ザイクルの実施例の系統図であ
る。
1・・・高温側ボイラ、2・・・低温側ボイラ、3・・
・蒸気タービン、4・・・発電機、5−・復水器、6・
・・復水ポンプ、7・・・給水加熱器、8・・・脱気器
、9・・・給水ポンプ、10・・・F−85タービン、
11・−・発電機、12・・・凝縮器、13・−・復液
兼給液ボン19.20・・・F−85排気管、21−・
・復液管、22・・・給液管、23・・・脱気器加熱蒸
気管−7?
1 8 )
(FIG. 1 is a system diagram of an embodiment of the two-fluid cycle of the present invention. 1...High temperature side boiler, 2...Low temperature side boiler, 3...
・Steam turbine, 4--generator, 5--condenser, 6-
... Condensate pump, 7... Feed water heater, 8... Deaerator, 9... Water feed pump, 10... F-85 turbine,
11... Generator, 12... Condenser, 13... Condenser/liquid supply tank 19.20... F-85 exhaust pipe, 21-...
・Recovery liquid pipe, 22...Liquid supply pipe, 23...Deaerator heating steam pipe-7? 1 8) (
Claims (1)
の低温部を有機媒体ランキンサイクルで処理すると共に
、前記水サイクルの給水を前記有機媒体サイクルのター
ビン排気により加熱することを特徴とする二流体サイク
ル。■ A two-fluid system characterized in that the high-temperature part of the heat source is treated with a water Rankine cycle, the low-temperature part of the heat source is treated with an organic medium Rankine cycle, and the feed water of the water cycle is heated by the turbine exhaust of the organic medium cycle. cycle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9649482A JPS58214606A (en) | 1982-06-05 | 1982-06-05 | Two fluid cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9649482A JPS58214606A (en) | 1982-06-05 | 1982-06-05 | Two fluid cycle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58214606A true JPS58214606A (en) | 1983-12-13 |
Family
ID=14166634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9649482A Pending JPS58214606A (en) | 1982-06-05 | 1982-06-05 | Two fluid cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58214606A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61149507A (en) * | 1984-12-24 | 1986-07-08 | Hisaka Works Ltd | Heat recovery device |
WO2013035822A1 (en) * | 2011-09-09 | 2013-03-14 | 国立大学法人佐賀大学 | Steam power cycle system |
EP2653670A1 (en) * | 2012-04-17 | 2013-10-23 | Siemens Aktiengesellschaft | Assembly for storing and emitting thermal energy with a heat storage device and a cold air reservoir and method for its operation |
JP6193523B1 (en) * | 2016-12-12 | 2017-09-06 | 株式会社 ユーリカ エンジニアリング | Power generation system |
JP2018514686A (en) * | 2015-04-16 | 2018-06-07 | ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド | Hybrid power generation system using supercritical carbon dioxide cycle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4937745A (en) * | 1972-08-11 | 1974-04-08 | ||
JPS50983A (en) * | 1973-05-05 | 1975-01-08 | ||
JPS50154573A (en) * | 1974-05-31 | 1975-12-12 | ||
JPS53103063A (en) * | 1977-02-15 | 1978-09-07 | Nichibi Kk | Production of woven fabric having high extensibility |
-
1982
- 1982-06-05 JP JP9649482A patent/JPS58214606A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4937745A (en) * | 1972-08-11 | 1974-04-08 | ||
JPS50983A (en) * | 1973-05-05 | 1975-01-08 | ||
JPS50154573A (en) * | 1974-05-31 | 1975-12-12 | ||
JPS53103063A (en) * | 1977-02-15 | 1978-09-07 | Nichibi Kk | Production of woven fabric having high extensibility |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61149507A (en) * | 1984-12-24 | 1986-07-08 | Hisaka Works Ltd | Heat recovery device |
WO2013035822A1 (en) * | 2011-09-09 | 2013-03-14 | 国立大学法人佐賀大学 | Steam power cycle system |
JP2013057305A (en) * | 2011-09-09 | 2013-03-28 | Saga Univ | Steam power cycle system |
KR20140060353A (en) * | 2011-09-09 | 2014-05-19 | 야스유키 이케가미 | Steam power cycle system |
EP2754861A4 (en) * | 2011-09-09 | 2015-07-01 | Yasuyuki Ikegami | Steam power cycle system |
US9945263B2 (en) | 2011-09-09 | 2018-04-17 | Saga University | Steam power cycle system |
EP2653670A1 (en) * | 2012-04-17 | 2013-10-23 | Siemens Aktiengesellschaft | Assembly for storing and emitting thermal energy with a heat storage device and a cold air reservoir and method for its operation |
WO2013156284A1 (en) * | 2012-04-17 | 2013-10-24 | Siemens Aktiengesellschaft | System for storing and outputting thermal energy having a heat accumulator and a cold accumulator and method for the operation thereof |
CN104302876A (en) * | 2012-04-17 | 2015-01-21 | 西门子公司 | System for storing and outputting thermal energy having heat accumulator and cold accumulator and method for operation thereof |
JP2018514686A (en) * | 2015-04-16 | 2018-06-07 | ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド | Hybrid power generation system using supercritical carbon dioxide cycle |
JP6193523B1 (en) * | 2016-12-12 | 2017-09-06 | 株式会社 ユーリカ エンジニアリング | Power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4891369B2 (en) | Power generation equipment using geothermal fluid | |
KR20170102793A (en) | Gas-steam combined cycle centralized heat supply device and heat supply method | |
RU2570131C2 (en) | Operating method of thermal power plant | |
KR20130086397A (en) | The power efficiency improvement by using absorption heat pump in power plant system | |
SU1521284A3 (en) | Power plant | |
CN110593977A (en) | Dual-working-medium Rankine cycle waste heat power generation method and system and generator | |
JP3905967B2 (en) | Power generation / hot water system | |
US4004424A (en) | Method for limiting back pressure on steam turbine | |
JPS58214606A (en) | Two fluid cycle | |
CN107489468A (en) | A kind of low-concentration gas power generation system based on intermittent combustion | |
CN210948820U (en) | Dual-working-medium Rankine cycle waste heat power generation system and generator | |
JP7290520B2 (en) | ORC power generation system | |
JPS5744712A (en) | Waste-heat recovering system for heat engine | |
RU2001136004A (en) | The method of operation of a thermal power plant | |
RU2067668C1 (en) | Combined-cycle plant operation process | |
JPS57212308A (en) | Cycle of condensing type steam turbine engine provided with steam compressor and apparatus thereof | |
RU32578U1 (en) | Device for energy recovery of low-temperature coolants | |
RU2143638C1 (en) | Circuit arrangement for steam generators to recover low-potential heat of stack gases | |
RU2552481C1 (en) | Operating method of thermal power plant | |
RU2689233C1 (en) | Method for increasing energy efficiency of a power plant and device for its implementation | |
RU2220097C2 (en) | Method of utilization of heat emitted in the nitric acid production process | |
KR20120060255A (en) | Apparatus of heat recovery from CO2 capture apparatus using dry regenerable sorbents for power plant | |
RU2560611C1 (en) | Heat power plant operation mode | |
JP6776190B2 (en) | Thermal energy recovery device and thermal energy recovery method | |
SU106105A1 (en) | Method for reducing temperature of heating steam going to regenerative water heaters |