[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58214316A - Filter for purifying exhaust gas - Google Patents

Filter for purifying exhaust gas

Info

Publication number
JPS58214316A
JPS58214316A JP57098244A JP9824482A JPS58214316A JP S58214316 A JPS58214316 A JP S58214316A JP 57098244 A JP57098244 A JP 57098244A JP 9824482 A JP9824482 A JP 9824482A JP S58214316 A JPS58214316 A JP S58214316A
Authority
JP
Japan
Prior art keywords
filter
exhaust gas
partition wall
downstream side
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57098244A
Other languages
Japanese (ja)
Inventor
Etsuji Nomura
野村 悦治
Kazuo Oibe
及部 一夫
Kazuma Matsui
松井 数馬
Masanori Fukutani
福谷 正徳
Kazuyuki Ito
和幸 伊藤
Naoto Miwa
直人 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP57098244A priority Critical patent/JPS58214316A/en
Publication of JPS58214316A publication Critical patent/JPS58214316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To make it possible to regenerate a filter in good efficiency, by partially providing a partition wall through which an exhaust gas is not passed in a filter to uniformly transmit combustion heat to the downstream side by the warmth holding action of said partition wall. CONSTITUTION:An exhaust gas is flowed into a cell 2 opened at the upstream side and sealed at the downstream side by an embedded seal 4 from the upstream side of a filter 10 and passes a partition wall 5 to be flowed into a cell 1 sealed at the upstream surface by an embedded seal 3 and opened at the downstream side. In this case, fine particles in the exhaust gas are adhered to an collected by the partition wall 5. In the filter 10, a partition wall 6 through which the exhaust gas is not almost passed because adjacent cells 2 are together sealed by the embedded seal 4 at the downstream side is provided. Therefore, when the filter 10 is heated by a heater at the regeneration time of the filter 10, fine particles adhered to the upstream surface of the filter 10 are burnt and, because this combustion heat is transmitted to the further downstream side by the partition wall 6, the fine particles adherd to the downstream side are reheated and regeneration efficiency becomes well.

Description

【発明の詳細な説明】 本発明は、ディーゼルエンジンから排出される排気ガス
中に含まれる炭素を主成分とする微粒子を補集するフィ
ルタに関し、さらに詳しくは、該フィルタの電気的加熱
再生を容易にし得る様にしたフィルタ構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a filter that collects fine particles mainly composed of carbon contained in exhaust gas discharged from a diesel engine, and more particularly, the present invention relates to a filter that collects fine particles mainly composed of carbon contained in exhaust gas discharged from a diesel engine, and more particularly, the present invention relates to a filter that collects fine particles mainly composed of carbon contained in exhaust gas discharged from a diesel engine. This invention relates to a filter structure that allows for

従来、この様な目的に使用されるフィルタとしては、第
1図及び第2図に示す如く、 排気ガスの流路に平行に配設された多数の柱状中空孔1
.2と、該柱状中空孔を区画する通気性を有する隔壁5
とから成り、前記の柱状中空孔の片端は、封止部材3,
4によって封止されており、隣接する柱状中空孔は、そ
れぞれ、逆方向に開口している様ないわゆるハニカム状
のフィルタが知られている。このフィルタは、このハニ
カム形状のフィルタの流入口から排気ガスを流入し、前
記隔壁5に排気ガスを通過さμ“ることによって、微粒
子を該隔壁に補集しようとするものである。そして、こ
のフィルタによって補集された微粒子を燃焼させて浄化
し、フーfルタを再生り゛るに際して、上流側付近に、
電気ヒータを配設して、小電力で効率よく燃焼させるこ
とが要望されている。ところが、従来公知のハニカム形
状のフィルタは、上流側に開口する中空孔2と下流側に
開口する中空孔1の数が、はぼ等しくとられ−Cいる。
Conventionally, filters used for this purpose include a large number of columnar hollow holes 1 arranged parallel to the exhaust gas flow path, as shown in Figures 1 and 2.
.. 2, and a partition wall 5 having air permeability that partitions the columnar hollow hole.
and one end of the columnar hollow hole is a sealing member 3,
A so-called honeycomb-shaped filter is known in which the adjacent columnar hollow holes are sealed by a filter 4 and in which adjacent columnar hollow holes are opened in opposite directions. In this filter, exhaust gas flows in from the inlet of the honeycomb-shaped filter, and by passing the exhaust gas through the partition wall 5, particulates are collected on the partition wall.And, When regenerating the filter by burning and purifying the particulates collected by this filter, near the upstream side,
There is a demand for efficient combustion with small electric power by installing an electric heater. However, in the conventionally known honeycomb-shaped filter, the number of hollow holes 2 opening on the upstream side and the number of hollow holes 1 opening on the downstream side are approximately equal.

このため、上流開口部より流入した排気ガスは、隔壁5
を通過して下流側へ流れ、下流開口部より流出する。
Therefore, the exhaust gas flowing in from the upstream opening is transferred to the partition wall 5.
It flows downstream through the , and flows out from the downstream opening.

したがって、全隔壁は、排気ガスが通過する様になって
いるため、上流側で燃焼さけた熱は、排気ガスの流れと
共に、空気中に放出され、下流側開口部より外部へ逃散
する。これにより、下流側に位置する隔壁は、加熱再生
温度に達するのが困難となり、下流側に補集された微粒
子を燃焼させて除去゛するのが困M′cあった。
Therefore, since exhaust gas passes through all the partition walls, the heat that is avoided by combustion on the upstream side is released into the air along with the flow of exhaust gas, and is dissipated to the outside through the downstream opening. This makes it difficult for the partition wall located on the downstream side to reach the heating regeneration temperature, making it difficult to burn and remove the particulates collected on the downstream side.

本発明は、従来のこの様な欠点を改良づる目的でなされ
たものであって、排気ガスが通過しない隔壁を、フィル
タ内に一部設【ノ〔、この隔壁の保温作用によって、下
流側に、一様に燃焼熱を伝達さけて、フィルタの効率の
良い再生を図ることを目的とする。
The present invention was made for the purpose of improving the above-mentioned drawbacks of the conventional technology, and includes a partition wall through which exhaust gas does not pass through, which is partially provided inside the filter. , the purpose is to uniformly avoid the transfer of combustion heat and achieve efficient regeneration of the filter.

即ち、従来のフィルタにおい−〔は、隣接づる中空孔が
、上流側と下流側とで交互に規則正しく封止されている
のに対し、本発明は、上記の如き排気ガスが通過しない
隔壁を設けるために、一部の中空孔において、相互に隣
接する中空孔の下流側を共に封止するように構成したち
のぐある。
That is, in contrast to conventional filters in which adjacent hollow holes are regularly and alternately sealed on the upstream side and downstream side, the present invention provides a partition wall through which exhaust gas does not pass through. Therefore, some of the hollow holes are configured so that the downstream sides of adjacent hollow holes are sealed together.

ここにおいて、中空孔の数、形状は、限定されない。Here, the number and shape of the hollow holes are not limited.

全隔壁のうち、上記の本発明に係る排気ガスを透過させ
ない隔壁の割合は、微粒子の補集効率、圧力損失、燃焼
効率、保温効率等を総合して決められる。本発明に係る
隔壁を多く設ければ、保温効率は、高いが、補集効率が
低下し圧力損失が大きくなり、また、すくな過ぎれば、
補集効果が大きく、圧力損失が小さいが、保温効果が小
さく、燃焼効率が小さくなる。したがって、最適の割合
が存在する。その割合は、従来公知のハニカムフィルタ
において望ましくは1/10から315程度である。
Among all the partition walls, the proportion of the partition walls that do not allow the exhaust gas to pass through according to the present invention is determined by taking into account particulate collection efficiency, pressure loss, combustion efficiency, heat retention efficiency, etc. If a large number of partition walls according to the present invention are provided, the heat retention efficiency will be high, but the collection efficiency will be reduced and the pressure loss will be large, and if there are too few partition walls,
The collection effect is large and the pressure loss is small, but the heat retention effect is small and the combustion efficiency is low. Therefore, an optimal ratio exists. The ratio is desirably about 1/10 to 315 in conventionally known honeycomb filters.

以下、本発明を、実施例に基ずいて詳述する。Hereinafter, the present invention will be explained in detail based on Examples.

第3図は、本発明に係る円筒状のハニカム形状の微粒子
補集フィルタを、排気ガス流路の上流側から見た平面図
である。正方形状の各中空孔(以下「セル]という)の
うち、破線で描いたヒル1は、第4図に示Jように上流
面で埋栓3によって封止されており、実線で描いたセル
2は、下流面で埋栓4によって封止されている。隔壁5
および6は、通気性を右づるセラミックから成っており
、排気ガスは、上流側入口よりセル2に流入し、隔壁5
を通過し、下流側に開口するセル1に流入するので、排
気ガス中の微粒子は隔壁5に何着し、補集される。隔壁
6は、隣接づるセル2が、下流側で、共に埋栓4によっ
て封止されているため排気ガスが、はとんど透過しない
。この様な、隔壁6は、第3図、第4図で黒く塗りつぶ
して、図示されている。第3図から分る様に、この様な
隔壁6が、フィルタの断面上一様に規則的に分布してい
る。
FIG. 3 is a plan view of the cylindrical honeycomb-shaped particulate filter according to the present invention, viewed from the upstream side of the exhaust gas flow path. Among the square hollow holes (hereinafter referred to as "cells"), the hill 1 drawn with a broken line is sealed with a plug 3 on the upstream side as shown in Fig. 4, and the cell drawn with a solid line is 2 is sealed with a plug 4 on the downstream side.The partition wall 5
and 6 are made of ceramic that controls air permeability, and the exhaust gas flows into the cell 2 from the upstream inlet, and the partition wall 5
The particulates in the exhaust gas arrive at the partition wall 5 and are collected. Since the adjacent cells 2 are both sealed by the plugs 4 on the downstream side, the exhaust gas hardly passes through the partition wall 6. Such partition walls 6 are illustrated in black in FIGS. 3 and 4. As can be seen from FIG. 3, such partition walls 6 are uniformly and regularly distributed over the cross section of the filter.

本実施例の場合、全隔壁に対する該隔壁6の占める割合
は、約115である。排気ガスの透過リ−る隔壁5は、
微粒子の補集に寄与し、排気ガスの透過しない隔壁6は
、上流側で着火燃焼させた燃焼熱を保存し、下流側に伝
達させ、下流側のフィルタの再生を効率良く行うのに寄
与−りる。
In the case of this embodiment, the ratio of the partition walls 6 to the total partition walls is about 115. The partition wall 5 through which exhaust gas permeates,
The partition wall 6, which contributes to the collection of particulates and does not allow exhaust gas to pass through, stores the combustion heat ignited and combusted on the upstream side, transmits it to the downstream side, and contributes to efficient regeneration of the filter on the downstream side. Rir.

第5図は本発明のフィルタ10〈第3,4図、図示)を
用いた微粒子補集装置の一例を示づものである。フィル
タ10はシール材11および緩衝材12を介してステン
レス製のシェル13により挟持されている。シェル13
の両端部にはパイプ14およびフランジ15が溶接され
ており、フランジ15により図示しないエンジンの排気
管と接続される。フィルタ10の上流面には、ハニカム
状の押え部材16ににつて電気ヒータ17が押圧設置さ
れている。ヒータ17は、第6図に示づように4個あり
、各々、フィルタ10の1/4領域を覆っている。ヒー
タ17の一端は、電気絶縁体のスリーブ18を貞通する
端子19より外部に取出され通電できるようになってい
る。また、もう一方の端20は、シェル13に接合され
これを介してアースされている。ヒータの数が複数個に
なっているのは、ヒータの消費電力をむやみに大きくで
きないためで、フィルタ10を再生(イリ着した微粒子
を燃焼浄化)させるのに、複数個のヒータに順次間欠的
に通電していくという方式を採用することによって消費
電力の節減を図るためである。
FIG. 5 shows an example of a particulate collection device using the filter 10 (shown in FIGS. 3 and 4) of the present invention. The filter 10 is held between a stainless steel shell 13 with a sealing material 11 and a buffer material 12 in between. shell 13
A pipe 14 and a flange 15 are welded to both ends thereof, and the flange 15 is connected to an exhaust pipe of an engine (not shown). An electric heater 17 is mounted on the upstream surface of the filter 10 and pressed against a honeycomb-shaped holding member 16 . There are four heaters 17 as shown in FIG. 6, and each heater 17 covers 1/4 area of the filter 10. One end of the heater 17 is taken out from a terminal 19 that passes through an electrically insulating sleeve 18 so that it can be energized. Further, the other end 20 is joined to the shell 13 and grounded through this. The reason why there are multiple heaters is that the power consumption of the heaters cannot be increased unnecessarily, and in order to regenerate the filter 10 (burn and purify the dirty particles), multiple heaters are used intermittently one after another. This is to reduce power consumption by adopting a method in which electricity is applied to the terminals.

第5図のような構成において、フィルタ10に排気ガス
中の微粒子が補集それ、その量が一定以上になると、ヒ
ータ17に通電され、ヒータ17は加熱される。ヒータ
17が加熱されると、その熱によりフィルタ10に付着
した微粒子が燃焼される。この場合第1図および第2図
に示すような従来のハニカム構造体においては、ヒータ
の熱にJ:って、まずフィルタの上流面に付着した微粒
子が燃焼し、その燃焼熱は、ある程億下流側へ伝達され
、F流域に付着した微粒子を加熱することになる。しか
し、大部分の熱は、隔壁5を介してセル1を流れる排気
ガスによって、直接持ち運びさられてしよう。このため
、下流に付着した微粒子が十分加熱されず、再生効率が
悪くなる。
In the configuration shown in FIG. 5, when the filter 10 collects particulates in the exhaust gas and the amount exceeds a certain level, the heater 17 is energized and heated. When the heater 17 is heated, the particulates attached to the filter 10 are burned by the heat. In this case, in the conventional honeycomb structure shown in Figs. 1 and 2, the heat of the heater causes the particulates attached to the upstream surface of the filter to burn, and the combustion heat is released to a certain extent. This is transmitted to the downstream side and heats the fine particles adhering to the F basin. However, most of the heat will be carried away directly by the exhaust gas flowing through the cell 1 via the partition wall 5. For this reason, the fine particles adhering downstream are not sufficiently heated, resulting in poor regeneration efficiency.

しかるに本発明のフィルタにおいては、下流域と直接連
通しない隔壁6を適当に分散配設することにより、隔壁
6に付着した微粒子の燃焼熱は、排気ガスによって下流
口から放散されることなく熱量を保存し、下流側に付着
した微粒子を再加熱することになり、再生効率が良くな
る。
However, in the filter of the present invention, by properly distributing the partition walls 6 that do not directly communicate with the downstream region, the heat of combustion of the particulates attached to the partition walls 6 is not dissipated from the downstream port by the exhaust gas, and the amount of heat is reduced. The fine particles that have been stored and adhered to the downstream side are reheated, improving regeneration efficiency.

第7図は、直径ioomm、長さ100mm、#100
メツシュのハニカム構造体において、一定時間ヒータに
通電して加熱した後のフィルタ中央部および上流面にJ
3いて、時刻の経過に対して測温した結果を示したもの
である。ここで、再生条件(微粒子付M量、排気ガス流
速、ヒータ電力)は同一にしである。従来のフィルタは
、第7図(a )に、本発明に係るフィルタは、第7図
(1))に、それぞれ結果が示されている。本発明に係
るフィルタの方が、温度が高く、よく燃焼していること
がわかる。目視による再生効率についても、従来のもの
では上流面から深さ20mm秤度しか再生されでいない
のに対し、本発明に係るフィルタにおいては、最上流面
の表面付近をのぞいて、すべての領域が再生された。
Figure 7 shows diameter ioomm, length 100mm, #100
In the mesh honeycomb structure, after heating the heater for a certain period of time, J
3 shows the results of temperature measurements over time. Here, the regeneration conditions (amount of M attached with particulates, exhaust gas flow rate, heater power) are kept the same. The results of the conventional filter are shown in FIG. 7(a), and the results of the filter according to the present invention are shown in FIG. 7(1). It can be seen that the filter according to the present invention has a higher temperature and burns better. Regarding the regeneration efficiency visually, the conventional filter can only regenerate to a depth of 20 mm from the upstream surface, whereas the filter according to the present invention can regenerate all areas except for the vicinity of the most upstream surface. Regenerated.

本実施例において、セルの形状は、第3図に示す如く四
角形であったが第8図及び第9図に示すように、六角形
状のセルを有゛するハニカム構造体であっても良い。第
8図および第9図において斜線を施こしたセルにおいて
は、上流面で埋栓が施こしてあり、他のセルは上流面に
埋栓が施こしである。黒く塗りつぶした部分が、排気ガ
スの透過が小さい隔壁6′cある。全隔壁に対する隔壁
6の占有率は、第8図のものが1/3で第9図のものが
1/2である。従って第8図と第9を比較すると下流側
に排気ガスが透過しない隔壁6は、第9図の方が多くな
り、再生効率は良い。ただし、排気ガスの通過面積は減
少するので、エンジンに装着した場合の排圧上昇が大き
くなるので、下流域に直接連通しない隔壁6の割合をい
くらにづるかということに関しては、エンジン出力、再
生条件といったものとの適合が必要である。
In this embodiment, the cells have a rectangular shape as shown in FIG. 3, but may be a honeycomb structure having hexagonal cells as shown in FIGS. 8 and 9. The hatched cells in FIGS. 8 and 9 are plugged on the upstream surface, and the other cells are plugged on the upstream surface. The blacked-out portion is the partition wall 6'c through which exhaust gas permeation is small. The occupation ratio of the partition walls 6 to all the partition walls is 1/3 in the case of FIG. 8 and 1/2 in the case of FIG. 9. Therefore, when comparing FIG. 8 and FIG. 9, the number of partition walls 6 through which exhaust gas does not permeate to the downstream side is greater in FIG. 9, and the regeneration efficiency is better. However, since the area through which exhaust gas passes decreases, the exhaust pressure will increase when installed in the engine, so when determining the proportion of the partition wall 6 that does not directly communicate with the downstream region, it is important to consider engine output, regeneration, etc. It is necessary to meet certain conditions.

次に第2実施例につき説明する。前実施例に33いては
埋栓の配置法が規則的であったが、本実施例では第10
図に示す様に、F流域に直接連通しない隔!I!6を、
ヒータによって加熱される単位であるフィルタの1/4
領域において、それぞれの領域の中央部分に集中させで
ある(黒色で塗りつぶしlζ部分)これは、第6図のよ
うなヒータ配置で使用する場合には、ヒータの中心部、
覆なわち燃焼する際の燃焼中心部の保温性能を上げるこ
とをねらったものである。これによって小電力によって
燃焼効率を上昇させることができる。
Next, a second embodiment will be explained. In the previous example, the method of arranging the plugs was regular, but in this example, the method of placing the plugs was regular.
As shown in the figure, a gap that does not directly connect to the F basin! I! 6,
1/4 of the filter, which is the unit heated by the heater
This means that when using the heater arrangement as shown in Fig. 6, the center of the heater is
In other words, the aim is to improve the heat retention performance of the combustion center during combustion. As a result, combustion efficiency can be increased with small electric power.

以上の実施例においてフィルタの断面形状はすべて円形
としたが角形であっても長円形であつ【も良い。形状に
は限定されない。
In the above embodiments, the cross-sectional shapes of the filters are all circular, but they may also be rectangular or oval. It is not limited to shape.

以上、要するに、本発明は、微粒子補集用フィルタの中
空孔を区画Jる隔壁において、排気ガスが透過し、下流
側に開口する中空孔に流出し、透過時に微粒子を補集づ
る隔壁と、排気ガスの透過量が小さく、下流側に開口し
ていない隣接中空孔を区画する隔壁とを、ある割合で、
一様に又は局所的に設ける様に、中空孔の端部を封止し
たものである。このため、排気ガスの透過■が小さい隔
壁は、燃焼熱を排気ガス中に放散させることなく、保温
効果バ優れ、熱を下流側へ有効に伝達覆る作用をする。
In summary, the present invention provides a partition wall that partitions the hollow hole of a particulate-collecting filter, through which exhaust gas permeates, flows out into the hollow hole opening on the downstream side, and collects particulates during permeation; A partition wall that partitions an adjacent hollow hole that has a small amount of exhaust gas permeation and is not open to the downstream side, at a certain ratio,
The ends of the hollow holes are sealed either uniformly or locally. Therefore, a partition wall with a small permeation of exhaust gas has an excellent heat retention effect without dissipating combustion heat into the exhaust gas, and functions to effectively transfer heat to the downstream side.

従って本フィルタは下流部まで有効に燃焼再生させるこ
とができ極めて再生効率が良い。
Therefore, this filter can effectively perform combustion and regeneration up to the downstream portion, and has extremely high regeneration efficiency.

また、上記の隔壁を一部に設けであるので、微粒子袖集
効率を低下さゼることなく、かつ圧力損失を大ぎくづる
ことがない。
Further, since the above-mentioned partition wall is provided in a portion, the efficiency of collecting fine particles is not reduced, and the pressure loss is not significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のハニカム構造をしたフィルタ、第2図
は、第1図にお1ノる■−■矢視断面図、第3図は、本
発明に係る一実施例のフィルタの上流側からみl〔平面
図、第4図は、第3図におけるIV−IV矢MfIi面
図。、第5図は本発明に係る実施例のフィルタを装置し
た電気的加熱再生手段を有づる微粒子補集装置の排気ガ
スの流出路に沿ってとった断面図、 第6図は、第5図にお(〕るVl −Vl矢視断面図、
第7図は、燃焼特性を測定したグラフで、同図(a )
は、従来タイプのフィルタ、同図(b)は、本発明に係
る実施例のフィルタCの測定結果である。第8図、第9
図は、同実施例に係る中空孔の断面形状及び本発明に係
る隔壁の分布を示した他の例、 第10図は、第2実施例にお【ノる、本発明に係る隔壁
の分布図である。 1.2・・・・・・中空孔(セル)、 3.4.・・・・・・埋栓 5・・・・・・隔壁 6・・・・・・本発明に係る隔壁 10・・・・・・フ
ィルタ特許出願人  日本電装株式会社 代理人  弁理士  大 川  穴 間     藤  谷    條 同     丸  山  明  大 梁1図 第2図 第3図 /2 :(5 第6図 :、)r 7図 (a)           (b)
FIG. 1 shows a filter with a conventional honeycomb structure, FIG. 2 shows a sectional view taken along the arrow 1 in FIG. 1, and FIG. 3 shows an upstream filter of an embodiment of the present invention. Viewed from the side 1 [Plan view, FIG. 4 is a view taken along the IV-IV arrow MfIi in FIG. 3. , FIG. 5 is a cross-sectional view taken along the exhaust gas outlet path of a particulate collector having an electric heating regeneration means equipped with a filter according to an embodiment of the present invention, and FIG. Vl-Vl arrow sectional view,
Figure 7 is a graph showing the combustion characteristics.
1 shows the measurement results for a conventional type filter, and FIG. Figures 8 and 9
The figure shows another example showing the cross-sectional shape of the hollow hole according to the same embodiment and the distribution of the partition walls according to the present invention. FIG. 10 shows the distribution of the partition walls according to the present invention according to the second embodiment. It is a diagram. 1.2... Hollow hole (cell), 3.4. ...Plug 5 ...Partition wall 6 ...Partition wall according to the present invention 10 ...Filter patent applicant Nippondenso Co., Ltd. Agent Patent attorney Ana Okawa Hajime Fujitani Jo Akira Maruyama Beam 1 Figure 2 Figure 3/2: (5 Figure 6:,)r Figure 7 (a) (b)

Claims (1)

【特許請求の範囲】 1ノ1気ガスの流路に平行な多数の柱状中空孔を有し、
その柱状中空孔の、いずれか片端が封止されているハニ
カム形状の排気ガス浄化用フィルタであって、隣接する
2つの前記柱状中空孔を区画づる隔壁は、前記排気ガス
浄化用フィルタの排気ガス流出端面上において共に封止
されている柱状中空孔を区画りる隔壁と、 隣接する2つの柱状中空孔のうら少なくとも一方が、前
記排気ガス浄化用フィルタの排気ガス流出端面上におい
て封止されていない柱状中空孔を区画す゛る隔壁とから
成ることを特徴とする排気ガス浄化用フィルタ。
[Claims] Having a large number of columnar hollow holes parallel to the gas flow path,
A honeycomb-shaped exhaust gas purifying filter in which one end of the columnar hollow holes is sealed, and a partition wall that partitions two adjacent columnar hollow holes is a filter for exhaust gas purification of the exhaust gas purifying filter. A partition wall defining columnar hollow holes that are both sealed on the outflow end surface, and at least one of the two adjacent columnar hollow holes are sealed on the exhaust gas outflow end surface of the exhaust gas purifying filter. 1. A filter for purifying exhaust gas, comprising a partition wall that partitions columnar hollow holes.
JP57098244A 1982-06-08 1982-06-08 Filter for purifying exhaust gas Pending JPS58214316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098244A JPS58214316A (en) 1982-06-08 1982-06-08 Filter for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098244A JPS58214316A (en) 1982-06-08 1982-06-08 Filter for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS58214316A true JPS58214316A (en) 1983-12-13

Family

ID=14214541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098244A Pending JPS58214316A (en) 1982-06-08 1982-06-08 Filter for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS58214316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155115U (en) * 1984-09-17 1986-04-14
JP2007111585A (en) * 2005-10-18 2007-05-10 Hitachi Metals Ltd Ceramic honeycomb filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155115U (en) * 1984-09-17 1986-04-14
JPH0352974Y2 (en) * 1984-09-17 1991-11-19
JP2007111585A (en) * 2005-10-18 2007-05-10 Hitachi Metals Ltd Ceramic honeycomb filter
JP4600826B2 (en) * 2005-10-18 2010-12-22 日立金属株式会社 Ceramic honeycomb filter

Similar Documents

Publication Publication Date Title
US4519820A (en) Fitter apparatus for purifying exhaust gases
US5144798A (en) Regenerative particulate trap system for emission control
US4548625A (en) Exhaust gas cleaning device for diesel engines
JPH10121941A (en) Exhaust emission control device
JPS5867914A (en) Purification device for fine carbon particles of internal-combustion engine
JPS58214316A (en) Filter for purifying exhaust gas
JPH0631133Y2 (en) Exhaust gas purification filter
JPH0115684B2 (en)
JP3147356B2 (en) Exhaust gas particulate purification equipment
JPH0430329Y2 (en)
JP3401946B2 (en) Exhaust particulate processing equipment for internal combustion engines
JPH0634570Y2 (en) Exhaust gas purification device for internal combustion engine
JPH0741859Y2 (en) Exhaust gas purification device for internal combustion engine
JPS6320806Y2 (en)
JP3201114B2 (en) Exhaust particulate filter for internal combustion engine
JP3111828B2 (en) Exhaust particulate processing equipment for internal combustion engines
JPS6235854Y2 (en)
JPH087053Y2 (en) Particulate filter
JPH04279715A (en) Exhaust gas purifying device for internal combustion engine
JPH04298625A (en) Filter regeneration device for internal combustion engine
JPH0121127Y2 (en)
JPH0618028Y2 (en) Reverse-flow regeneration type diesel particulate purification device
JPS5872609A (en) Fine particle collective purifier
JPH0515528Y2 (en)
JPS6338330Y2 (en)