[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58190605A - Three-stage combustion in restricting nox for performing desulfurization simultaneously - Google Patents

Three-stage combustion in restricting nox for performing desulfurization simultaneously

Info

Publication number
JPS58190605A
JPS58190605A JP57071977A JP7197782A JPS58190605A JP S58190605 A JPS58190605 A JP S58190605A JP 57071977 A JP57071977 A JP 57071977A JP 7197782 A JP7197782 A JP 7197782A JP S58190605 A JPS58190605 A JP S58190605A
Authority
JP
Japan
Prior art keywords
combustion chamber
primary
combustion
supplied
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57071977A
Other languages
Japanese (ja)
Other versions
JPS6131363B2 (en
Inventor
Yoshitoshi Sekiguchi
善利 関口
Kiichi Nagaya
長屋 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57071977A priority Critical patent/JPS58190605A/en
Publication of JPS58190605A publication Critical patent/JPS58190605A/en
Publication of JPS6131363B2 publication Critical patent/JPS6131363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To improve an efficiency of desulfurization of the discharging combustion gas by a method wherein a furnace is divided into a primary combustion chamber and a second combustion chamber and then a desulfurization agent is applied in the primary combustion chamber. CONSTITUTION:A primary combustion chamber 22 is kept at a high temperature higher than that of fluidizing point of the ash, a primary fuel 25 is burned to make the ash to its molten condition and then discharged from the outlet port 38. Then, the primary discharging combustion gas from the primary combustion chamber 22 is supplied to the secondary combustion chamber 23 through the duct 24, excessive secondary fuel 27 is supplied from the secondary fuel nozzle 28 and burned while the secondary combustion region 34 being held in the reducing atmosphere and at the same time alkaline substance is supplied from the desulfurization agent supplying nozzle 30 as desulfurization agent 29 so as to desulfurize the gas. Then, the secondary discharging combustion gas is burned at the third combustion region 35 by supplying the secondary air 31 from the secondary air nozzle 32. The non-combustion material contained in the gas is completely burned and oxidized and thereafter discharged to the outside of the furnace.

Description

【発明の詳細な説明】 本発明は脱atX時に行うNOx抑制三段礁焼法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-stage reef firing method for NOx suppression performed during atX removal.

従来、灰分の争い燃料の燃焼排ガスを脱硫する方法〇一
つに、炉内へ直接アルカリ(多くは粉体で)を供給し、
硫酸塩あるいは・重硫酸塩として吸収除去する方法があ
る。しかしながら、この方法では炉内湿度が高い場合 CaO+502+1/202−”CaSO4・・・= 
(1)Na 20+ SO2+ 1/202−Na 2
504  °”””” (2)などの反応は起夛にくく
なり第1図に示す炉内温度と脱硫率の1lll係からも
明らかなように1(XX)℃以上の温度においてはpQ
硫率が低下するという問題があった。一方、還元′#囲
気中では CaO+H2S−Ca5+H20・−−−−−−−・(
3)Nu204H25刊(a2S+H20・・・・・・
・・・(4)Na O+SO+3C−Na S+3CO
””・(6)2     2        2 などの硫化物を作る反応が主反応とな夛、これら。
Conventionally, one method of desulfurizing combustion exhaust gas from fuel with conflicting ash content is to supply alkali (often in powder form) directly into the furnace.
There is a method of absorbing and removing it as sulfate or bisulfate. However, with this method, if the humidity inside the furnace is high, CaO+502+1/202-"CaSO4...=
(1) Na 20+ SO2+ 1/202-Na 2
504 °"""" Reactions such as (2) are difficult to occur, and as is clear from the relationship between the furnace temperature and desulfurization rate shown in Figure 1, pQ decreases at temperatures above 1 (XX) °C.
There was a problem that the sulfur rate decreased. On the other hand, in the reducing atmosphere, CaO+H2S-Ca5+H20・---------・(
3) Published by Nu204H25 (a2S+H20...
...(4) NaO+SO+3C-NaS+3CO
The main reaction is the reaction that creates sulfides such as (6) 2 2 2.

の反応によって生成した硫化物は高温において龜安定で
ある。そこで、NOx抑制燃焼法の一つとして知られて
いる空貿二段燃焼法を用いて一次燃焼域を還元燃焼させ
、この−次燃焼域へ還元剤を供給する方法が考えられた
The sulfide produced by this reaction is stable at high temperatures. Therefore, a method has been considered in which the primary combustion zone is subjected to reductive combustion using the air-flow two-stage combustion method, which is known as one of the NOx suppression combustion methods, and a reducing agent is supplied to this secondary combustion zone.

第3図#′i係る空気二段燻焼法に炉内脱lIk、法を
組合わせた方法を用いる火炉を示し、燃焼¥−[郁VC
燃料(1)を噴出する燃料ノズル(2)が設けられると
ともにその上部近傍に2次空気(3)を噴出する2次空
気ノズル(4)が設けられてお)、また燃焼室下部の前
記燃料ノズル(2)に対抗する位置には脱硫剤(5)の
供給ノズル(6)が設けられている。(7)は燃料ノズ
ル(2)および2次空気ノズル(4)へそれぞれ1大空
! (8)、2次空気(1)を導入する風箱である。係
る構成で、1次燃a! R(9)で燃料(1)を還元燃
焼させかつ該1次燃lla域(9)K脱硫剤(5)とし
てアルカリを供給して燃焼させ、1次燃11*(9)の
燃焼排ガスをさらに2次燃焼斌輔で燃焼させる。しかし
この方法でに、1次燃焼域(9)で生成した硫化物の大
部分は、過に1の二次空気(3)が供給され未燃分の完
全燃焼が行われる二次燃焼域(2)で、再び酸化され捕
捉したSを、CaS+3/202−CaO+SO2・・
・・・・・・・(6)NaS+3/202−NaO+S
O3・・・・・・・・・(7)などO反応により放出す
る丸めに、従来の脱硫法そこで、−火燃焼at−a元雰
囲気で、かつ灰の流動点以上に高I!iK保ち、生成し
た硫化物と灰を熔融状塾で、−次燃焼室から取り出す方
法が考えられ友。
Figure 3 #'i shows a furnace using a method that combines the air two-stage smoking method with the in-furnace removal method, and shows the combustion
A fuel nozzle (2) for ejecting fuel (1) is provided, and a secondary air nozzle (4) for ejecting secondary air (3) is provided near the upper part of the fuel nozzle (2), and a secondary air nozzle (4) for ejecting secondary air (3) is provided near the upper part of the fuel nozzle (2), and the fuel nozzle (4) is provided near the upper part of the fuel nozzle (2) for ejecting fuel (1). A supply nozzle (6) for the desulfurizing agent (5) is provided at a position opposite to the nozzle (2). (7) is 1 empty each to fuel nozzle (2) and secondary air nozzle (4)! (8) is a wind box that introduces secondary air (1). With such a configuration, the primary combustion a! The fuel (1) is reductively combusted in R (9), and an alkali is supplied as a K desulfurizing agent (5) to the primary combustion area (9) to burn it, and the combustion exhaust gas of the primary combustion 11*(9) is It is then combusted in a secondary combustion chamber. However, with this method, most of the sulfides generated in the primary combustion zone (9) are removed from the secondary combustion zone (9), where an excessive amount of secondary air (3) is supplied and unburned matter is completely combusted. 2), the oxidized and captured S is converted into CaS+3/202-CaO+SO2...
・・・・・・・・・(6) NaS+3/202-NaO+S
The conventional desulfurization method is used to reduce the amount of O3 released by the O reaction, such as (7), in the original atmosphere of -flame combustion, and with a high I content above the pour point of the ash! It is possible to conceive of a method of preserving iK and removing the generated sulfide and ash from the combustion chamber in a molten state.

JI41mFi係る空気二段燃焼法に炉内脱流法と灰燵
料ノズル鱒および脱硫剤(ハ)としてアルカリを噴出す
る脱硫剤供給ノズル(至)が設けられ、2次燃焼室(2
)Kは2次空気(ロ)を噴出する2次空気ノズル(至)
が設けられている。(至)は前記燃料ノズル<nK1次
空気−を導入する風箱である。係る構成で、1火煙焼室
atbを灰の流動点以上の高温に保持して燃料(至)を
燃焼させかつ脱硫剤供給ノズル(至)からアルカリ(2
)を供給して#a焼させる。これによシ灰及び硫化物を
熔融状態として1次燃焼室(ロ)下部に設けられ要略融
物取出口(2)からJIXシ出し、一方、前記1次燃焼
室(2)の1次燃焼排ガスは2次燃焼室(6)に供給し
、該2次燃焼室(6)で2次空気Mを供給し、て2次燃
焼させる。しかし、この方法では、一般ttC灰は珪酸
が主成分であシ供給したアルカリα1の大部分は、この
珪酸と反応し複雑な珪酸塩の化合物を造ってしまい脱硫
効果が少ないという間伊かめ、)だ。
The two-stage air combustion method for JI41mFi is equipped with an in-furnace deflow method and a desulfurization agent supply nozzle (to) that spouts out an alkali as a desulfurization agent (c), and a secondary combustion chamber (2).
) K is the secondary air nozzle (to) that blows out secondary air (b)
is provided. (to) is a wind box that introduces the fuel nozzle <nK primary air. With such a configuration, one fire and smoke combustion chamber atb is maintained at a high temperature higher than the pour point of ash to burn the fuel, and an alkali (2
) and bake #a. As a result, the ash and sulfides are molten and taken out from the JIX from the molten material outlet (2) provided at the bottom of the primary combustion chamber (b), while the primary combustion in the primary combustion chamber (2) is carried out. The exhaust gas is supplied to a secondary combustion chamber (6), and in the secondary combustion chamber (6), secondary air M is supplied for secondary combustion. However, with this method, the main component of general ttC ash is silicic acid, and most of the alkali α1 supplied reacts with this silicic acid to form complex silicate compounds, resulting in less desulfurization effect. )is.

本発明はこのような問題を解決することを目的とし、燃
料及び空気をそれぞれ分割供給する三段燃焼法において
、火炉を少なくとも1次燃焼室と2次燃焼室に分割し、
前記1次燃焼室ケ灰の流動点以上の高温に保持して該1
次燃焼室で1次燃半十スを2次燃焼室へ供給し、該2次
燃焼室で過fllJの2次燃料を供給して2次燃焼域を
還元雰囲気に保持しながら燃焼させるとともに脱硫剤を
供給して脱硫を行い、この彼、その徒流から2次空気を
供給して3次燃焼を行って2次燃焼排ガス中に含まれる
未燃分を完全に燃焼、酸化させることを特徴とする脱硫
を同時に行うNow抑制三段燃焼法を提供することによ
ってその目的全達成するものでめシ、これにより従来方
法より燃焼排ガスの脱@、半を向上することができるも
のでおるう 以下本発明の方法をその一実、弛例を示す図面に基づい
て詳細に説明する。第5図は本発明VC体る方法を用い
次火炉を示し、該火炉は1次燃焼室翰と2次懲焼室翰に
分割され、1次燃焼室■に接続されたダクト(至)は2
次f!!&焼室翰のi′部中央に連通ずるように接続さ
れている。1次燃焼室員上部Vこは燃料(2)t7噴出
する燃料ノス・しくニ)が設けられ、2次燃焼室−には
その下部に2次燃?+■を噴出する2次燃糾ノス°ル・
鱒が設けられるとともに該2次燃料ノズル−の上部近傍
に脱硫剤CA1に噴出する脱硫剤供給ノスル…が設けら
れ、さらに2次燃焼室−上部の111記脱硫剤供給ノズ
・し団の上方位置に2次空気6Mを噴出するZ次空気ノ
ズル〜Qが設けられている。従って、1次燃焼軍(2)
に1次燃料ノズル翰によって燃焼を行う1次燃焼域(ト
)がt構成され、2次燃焼室四下部に2次燃料ノズ・し
く至)により燃焼を行う2次m焼緘徊が形成され、2次
燃焼室■上部にFi2次空気ノズルに)により燃焼を行
う3 />C燃焼域(至)が形成されることになる。こ
れにより2火煙焼室磐の上部#i3次燃焼室(至)とな
る。67)1よ前記燃料ノズル(ホ)K1次空気(ロ)
を導入する風箱、(至)は1火煙焼室@の[端部に設け
られf?:、熔融灰取出1]−ζ′ある。
The present invention aims to solve such problems, and in a three-stage combustion method in which fuel and air are separately supplied, the furnace is divided into at least a primary combustion chamber and a secondary combustion chamber,
1 by maintaining the primary combustion chamber at a high temperature above the pour point of the ash.
In the secondary combustion chamber, half a dozen primary fuels are supplied to the secondary combustion chamber, and in the secondary combustion chamber, excess fllJ of secondary fuel is supplied to burn while maintaining the secondary combustion area in a reducing atmosphere and desulfurization. This system is characterized by supplying a chemical agent to perform desulfurization, and supplying secondary air from the flow to perform tertiary combustion to completely burn and oxidize the unburned content contained in the secondary combustion exhaust gas. By providing a now-suppressed three-stage combustion method that simultaneously performs desulfurization and desulfurization, all of these objectives can be achieved. The method of the present invention will be explained in detail based on the drawings showing one example and one example. Fig. 5 shows a secondary furnace using the VC assembly method of the present invention, the furnace is divided into a primary combustion chamber and a secondary combustion chamber, and a duct connected to the primary combustion chamber is 2
Next f! ! & It is connected so as to communicate with the center of the i' part of the grilling chamber. The upper part of the primary combustion chamber is equipped with a fuel (2) t7 jetting fuel nozzle, and the secondary combustion chamber is equipped with a secondary combustion chamber at its lower part. A secondary combustion nozzle that spouts +■
A desulfurizing agent supply nozzle for injecting the desulfurizing agent CA1 is provided near the top of the secondary fuel nozzle, and a desulfurizing agent supply nozzle for injecting the desulfurizing agent CA1 is further provided at a position above the 111th desulfurizing agent supply nozzle group in the upper part of the secondary combustion chamber. A Z-order air nozzle ~Q that blows out 6M of secondary air is provided. Therefore, the primary combustion force (2)
A primary combustion area (T) is formed in which combustion is performed by the primary fuel nozzle, and a secondary combustion area (T) is formed in the lower part of the secondary combustion chamber to perform combustion by the secondary fuel nozzle. , a 3/>C combustion zone (to) is formed in which combustion is carried out by the secondary combustion chamber 2 (Fi secondary air nozzle at the top). This becomes the #i tertiary combustion chamber (towards) the upper part of the second fire and smoke combustion chamber. 67) 1, the fuel nozzle (e), K primary air (b)
The wind box that introduces the wind box (to) is installed at the [end] of the fire and smoke chamber @f? :, molten ash removal 1]-ζ'.

係る構成で次に動作を述べる。先ず、1火煙焼室四を灰
の流動点以上の高温に保持し7て1火煙杆c18を燃焼
させ、これにより天を@職状獅に[7τ熔ら 融成取出口(至)がぶり出す。この溶融灰汀1次燃焼排
ガスに含まれるダストの大部分を含む。このとき1次燃
料ノズルに)への1次空気(ロ)の供給を1 t′に燃
料四の理論空気量以上供給すると一火煙焼域一優を酸化
宥囲貿として吸熱管等の腐食を避けることができる。次
に1次燃焼室(2)の1火煙焼徘4+スオダクトーを介
して2次燃焼室(2)へ供給し、該2次燃焼室(2)で
過−Jの2火煙料@1に2次m料ノズルに)から供給し
て、2次燃焼域(至)を題元雰囲気に裸持しながら燃焼
させる。またこのとき悦碩剤供給ノズル曽から脱硫剤−
としてアルカリを供給し脱硫會行わしめる。そうすると
1次燃焼排ガスは、1次燃焼室(2)で既に含まれるダ
ストの大部分を@融しえ灰と接触することによって除去
されているのて、供給されたアルカリは、灰中の珪酸に
よって消費されるのを大巾KIIC少された状態で、有
効に!Q硫を行う。なお2次燃料(2)として灰分の少
ない燃料を用いる−と、脱硫剤9I4はさらに灰中の珪
酸によって消費されるのを減少されるので、より脱硫効
果をあげることができる。干して次に2次燃焼排ガスを
、3火燃焼V、(至)で2次空気ノズル■から2次空気
−を供給して3次燃焼させ、その中に含まれる未燃分を
完全に燃焼、酸化した後、炉外に排出する。
The operation of this configuration will be described next. First, 1 fire and smoke combustion chamber 4 is held at a high temperature above the pour point of the ash, and 1 fire and smoke rod c18 is burned, thereby turning the sky into @job status [7τmelt to melting outlet (to) It bursts out. This molten ash slag contains most of the dust contained in the primary combustion exhaust gas. At this time, if the primary air (b) is supplied to the primary fuel nozzle for 1 t' in excess of the theoretical air amount for fuel 4, the first fire and smoke area will be oxidized and the heat absorption pipes will be corroded. can be avoided. Next, it is supplied to the secondary combustion chamber (2) via the primary combustion chamber (2)'s 1 fire smoke incineration 4 + gas duct, and in the secondary combustion chamber (2), the (to the secondary m-fuel nozzle), and burns while exposing the secondary combustion zone (to) to the main atmosphere. At this time, the desulfurizing agent is
As a result, alkali is supplied and desulfurization is carried out. Then, the primary combustion exhaust gas has already melted most of the dust contained in the primary combustion chamber (2) and removed by contacting with the ash, so the supplied alkali is removed by the silicic acid in the ash. It becomes effective with a little amount of KIIC consumed by! Perform Q-sulfur. Note that when a fuel with a low ash content is used as the secondary fuel (2), the consumption of the desulfurizing agent 9I4 is further reduced by the silicic acid in the ash, so that a greater desulfurizing effect can be achieved. After drying, the secondary combustion exhaust gas is tertiary-combusted by supplying secondary air from the secondary air nozzle ■ at 3-fire combustion V, (to), and the unburned content contained therein is completely combusted. , after being oxidized, it is discharged outside the furnace.

@@図は本発明に係る方法の他の実施例を示し、前記第
5図の火炉の2次燃焼室に)の構成を逮えた%Oである
。該2次燃焼室−は、1次燃焼室(2)に接続されたダ
クト−がそのト部側部に造血するように接続されており
、またF端部にはt孝捧糞社硫化物取出口(至)が設け
られている。他の構成は、前記実施例と同じである。
@@The figure shows another embodiment of the method according to the present invention, in which the structure of the secondary combustion chamber of the furnace shown in FIG. 5 is used. The secondary combustion chamber has a duct connected to the primary combustion chamber (2) connected to the side of the F end so as to form blood, and a sulfide duct connected to the F end of the secondary combustion chamber. An outlet is provided. The other configurations are the same as in the previous embodiment.

係る構成で、1火煙焼室磐においてその古まtしるダス
トの大部分を熔融した灰と接触することによって除去さ
れた1火煙#1排ガ)Lを2次燃焼室(ハ)へ供給し、
該2次燃焼室に)を灰の流動点点」;の品温に保持して
2次燃料(ロ)を燃焼させる。また呪徊剤四としてアル
カリをこのとき供給ノズル■から供給する。そしてアル
カリと硫黄化合物との反に5によシ生成し喪硫化物とわ
ずかの灰分の混合物を硫化物取出ローから収シ出し、一
方、2次燃焼排ガスは3次燃焼域(至)で2次空気ノズ
ル(2)から2次空気@を供給して3次燃焼させ、その
甲に含まれる未燃分を完全に燃焼、酸化し友後、炉外V
C排出する。これら2次燃焼および3次燃焼時の排ガス
の動きは、第6wJば)の矢印に示すように回転しなが
ら上昇する。これにより前記従来例のと仁ろで述べた(
ら1)式とi(π)式O逆戻I6は防がれることになる
。なお硫化物を熔融して取〉出す以外に、例えば衝突板
を2次燃焼室(2)内に般1あるいは充填物音投入する
等の他の手段により、生成し、た崎。
With such a configuration, most of the old dust in the first fire and smoke combustion chamber is removed by contacting with the molten ash and the first fire and smoke #1 exhaust gas) L is transferred to the secondary combustion chamber (c). supply to
In the secondary combustion chamber, the secondary fuel (b) is combusted while maintaining the temperature of the ash at the pour point of the ash. Also, at this time, an alkali is supplied as a cursing agent 4 from the supply nozzle (2). In contrast to alkali and sulfur compounds, a mixture of mourning sulfides and a small amount of ash is produced and collected from the sulfide removal row, while the secondary combustion exhaust gas is produced in the tertiary combustion zone (toward). Secondary air is supplied from the secondary air nozzle (2) for tertiary combustion, and the unburned matter contained in the instep is completely burned and oxidized.
C discharge. The movement of the exhaust gas during these secondary and tertiary combustions rotates and rises as shown by the arrow in the 6th wJ. As a result, as mentioned in the conventional example (
(1) formula and i(π) formula O reversion I6 will be prevented. In addition to melting and removing the sulfide, the sulfide can be generated by other means such as, for example, injecting a collision plate into the secondary combustion chamber (2) or a filler.

化物を捕集してvI&#化物が3次燃焼域(至)へ流入
するのを防ぐことも脱硫率を上けるうえでより好ましい
、ま友、上記各実施例のいずれの場合においても脱硫剤
と燃料Fi同時に供給することができる。
In order to increase the desulfurization rate, it is more preferable to collect compounds and prevent them from flowing into the tertiary combustion zone. and fuel Fi can be supplied simultaneously.

第2図は、従来方法と本発明方法との脱硫率の逮いをあ
られし喪もので、図からも明らかなように本発明方法に
よれば、従来量も優れていた空気二段蛎焼決に炉内脱流
法と灰熔融収り出し法を組合わぜ友方沫よりさらに脱硫
率を増し得ることが分かる。
Figure 2 shows the difference in the desulfurization rate between the conventional method and the method of the present invention. It can be seen that by combining the in-furnace deflow method and the ash melt recovery method, it is possible to further increase the desulfurization rate compared to Tomokata.

以上本発明の方法によれば、炉内温度が高い場合でも脱
硫率を低下させることがなく、また−大喝焼室に脱硫剤
を供給しないので、灰の主成分である珪酸と脱硫剤を反
応させて複雑な珪酸塩の化合物を造ってしまい脱硫効果
を少なくするということがなく、従来方法より燃焼排ガ
スの脱硫率を陶土することができる。
As described above, according to the method of the present invention, the desulfurization rate does not decrease even when the temperature inside the furnace is high, and since the desulfurization agent is not supplied to the large roasting chamber, silicic acid and the desulfurization agent, which are the main components of the ash, are removed. This method does not cause the reaction to produce complex silicate compounds that reduce the desulfurization effect, and the desulfurization rate of combustion exhaust gas can be lowered compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炉内へ直接アルカリを供給して脱硫する方法に
概づく炉内温度と脱硫率の関係をあられす図、第2図は
本発明に係る方法及び従来の各種方法(おける当量比と
脱硫率の関係全あられす図、第3図は従来の空気二段燃
焼法に炉内脱&1.法を組合わせ丸方法に基つく火炉の
縦断軸面図、wj4図は従来の空気二段燃焼法に炉内脱
硫法およびNu融取り出し法を組合わせた方法に基づく
火炉の縦11r傭面図、@5図、第6図は本発明の一実
施例會示し、それぞれ本発明方法に係る火炉の概略kl
krIlIIIIi図である。 代理人    森   本   義   弘     
邸江q 1う間部58−190605(4) 第1図 炉内温度(・C) (%)*υ智 第3図 第4図 3 第5図 第6図 (イ) (ロ) 手続補正書(自利 昭和57年6月/〆U 特許庁長官殿 ■、事件の表示 昭和 57  作詩 許 願第  71977    
Ij2、発明の?1称 脱硫を同時に行うNOx抑制三段燃焼法3、補正をする
者 事件との関係  特許出願人 名称 (511)日立造船株式会社 4、代 理 人 住 所 〒SSO大阪市西区立売堀1丁目6番17号ア
マノビル電話大阪06 (532) 4025番(代)
氏名  (6808)弁理出前 本 義 弘5、   
      の日付(発送日)昭和  年  月  日 6補正により増加する発明の数 7、補正の対象 ■明細書の発明の詳細な説明の楠 (1)第2頁第20行目 「還元剤」とめるを「脱硫剤」に6「正する。 (2)第3頁第7行目 「対抗」とあるを「対向」に訂正する。
Figure 1 shows the relationship between the temperature inside the furnace and the desulfurization rate in the method of desulfurization by directly supplying alkali into the furnace, and Figure 2 shows the method according to the present invention and various conventional methods (equivalent ratio Fig. 3 is a longitudinal cross-sectional view of a furnace based on the circle method, which combines the conventional air two-stage combustion method with the in-furnace de-sulfurization method, and Fig. 4 shows the conventional air two-stage combustion method. The longitudinal 11r diagram of a furnace based on a method combining the stage combustion method, in-furnace desulfurization method and Nu melting method, @Figure 5 and Figure 6 show one embodiment of the present invention, and each is related to the method of the present invention. Furnace outline kl
FIG. Agent Yoshihiro Morimoto
Teie q 1 Uma part 58-190605 (4) Fig. 1 Furnace temperature (・C) (%) *υchi Fig. 3 Fig. 4 Fig. 3 Fig. 5 Fig. 6 (a) (b) Procedure amendment Calligraphy (Juri June 1981/〆U To the Commissioner of the Patent Office■, Indication of the incident Showa 57 Poem No. 71977
Ij2, invention? Three-stage combustion method for NOx suppression with simultaneous first-order desulfurization 3, relationship with the amended case Name of patent applicant (511) Hitachi Zosen Corporation 4, Agent Address: SSO 1-6, Tachiuribori, Nishi-ku, Osaka No. 17 Amano Building Telephone Osaka 06 (532) 4025 (Main)
Name (6808) Yoshihiro Moto 5,
Date (shipment date) Showa year Month Day 6 Number of inventions increased by amendment 7, subject of amendment ■ Kusunoki (1) Detailed explanation of the invention in the specification (1) Page 2, line 20, "Reducing agent" stop. Correct 6 "Desulfurizing agent". (2) In the 7th line of page 3, correct "opposite" to "opposite".

Claims (1)

【特許請求の範囲】[Claims] 1、燃料及び空気をそれぞれ分割供給する三段燃焼法に
おいて、火炉を少なくとも1次燃焼室と2次燃焼室に分
割し、前記1次燃焼室を灰の流動点以上の高温に保持し
て該1次燃焼室で1次燃料を燃焼させ、これにより灰を
1次燃焼室からg融状態で取9出し、次(前記1次燃焼
室の1次燃焼排ガスt−2次燃焼室へ供給し、該2次燃
焼室で過剰の2次燃料を供給して2次燃焼域を還元雰囲
気に保持しながら燃焼させるとともに脱硫剤を供給して
脱硫を行い、この後、その後流から2次空気を供給して
3次燃焼を行って2次燃焼排ガス中に含まれる未燃分を
完全に燃焼、酸化させることを特徴とする脱a1に同時
に行うNOx抑制三段燃焼法。
1. In the three-stage combustion method in which fuel and air are supplied separately, the furnace is divided into at least a primary combustion chamber and a secondary combustion chamber, and the primary combustion chamber is maintained at a high temperature higher than the pour point of the ash. The primary fuel is combusted in the primary combustion chamber, whereby the ash is taken out from the primary combustion chamber in a molten state, and then (the primary combustion exhaust gas from the primary combustion chamber is supplied to the secondary combustion chamber). In the secondary combustion chamber, excess secondary fuel is supplied to burn the secondary combustion area while maintaining it in a reducing atmosphere, and a desulfurizing agent is supplied to perform desulfurization, and after this, secondary air is removed from its wake. A NOx suppression three-stage combustion method that simultaneously performs a1 removal, which is characterized by supplying and performing tertiary combustion to completely burn and oxidize unburned components contained in secondary combustion exhaust gas.
JP57071977A 1982-04-28 1982-04-28 Three-stage combustion in restricting nox for performing desulfurization simultaneously Granted JPS58190605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57071977A JPS58190605A (en) 1982-04-28 1982-04-28 Three-stage combustion in restricting nox for performing desulfurization simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57071977A JPS58190605A (en) 1982-04-28 1982-04-28 Three-stage combustion in restricting nox for performing desulfurization simultaneously

Publications (2)

Publication Number Publication Date
JPS58190605A true JPS58190605A (en) 1983-11-07
JPS6131363B2 JPS6131363B2 (en) 1986-07-19

Family

ID=13476024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57071977A Granted JPS58190605A (en) 1982-04-28 1982-04-28 Three-stage combustion in restricting nox for performing desulfurization simultaneously

Country Status (1)

Country Link
JP (1) JPS58190605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566098A1 (en) * 1984-06-14 1985-12-20 Mitsubishi Heavy Ind Ltd COMBUSTION APPARATUS WITH FUSED SCORIES
JPS6196319A (en) * 1984-10-16 1986-05-15 Hitachi Zosen Corp Method of low nox combustion to be performed along with desulfurization
JPS61208411A (en) * 1985-03-14 1986-09-16 Hitachi Zosen Corp Two-stage combustion method to suppress nox development with simultaneous desulphurization
JPH01111108A (en) * 1987-07-30 1989-04-27 Trw Inc Combustion apparatus for fine particle carbonaceous fuel containing sulfur and combustion method
US5131335A (en) * 1989-12-27 1992-07-21 Saarbergwerke Aktiengesellschaft Process for reducing nitric oxide emission during the combustion of solid fuels

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566098A1 (en) * 1984-06-14 1985-12-20 Mitsubishi Heavy Ind Ltd COMBUSTION APPARATUS WITH FUSED SCORIES
JPS6196319A (en) * 1984-10-16 1986-05-15 Hitachi Zosen Corp Method of low nox combustion to be performed along with desulfurization
JPH0211813B2 (en) * 1984-10-16 1990-03-15 Hitachi Shipbuilding Eng Co
JPS61208411A (en) * 1985-03-14 1986-09-16 Hitachi Zosen Corp Two-stage combustion method to suppress nox development with simultaneous desulphurization
JPH044484B2 (en) * 1985-03-14 1992-01-28
JPH01111108A (en) * 1987-07-30 1989-04-27 Trw Inc Combustion apparatus for fine particle carbonaceous fuel containing sulfur and combustion method
US5131335A (en) * 1989-12-27 1992-07-21 Saarbergwerke Aktiengesellschaft Process for reducing nitric oxide emission during the combustion of solid fuels

Also Published As

Publication number Publication date
JPS6131363B2 (en) 1986-07-19

Similar Documents

Publication Publication Date Title
JPS61107925A (en) Method of reducing sulfur product in exhaust gas from combustion chamber
JPH06238118A (en) Operation method of dust collector for waste combustion gas
JPS58190605A (en) Three-stage combustion in restricting nox for performing desulfurization simultaneously
JPH0549617B2 (en)
GB2160301A (en) Combustion apparatus
CA1309571C (en) Method and apparatus for reducing sulfur dioxide content in flue gases
JPS58190606A (en) Desulfurization using three-stage combustion
DE4409057C2 (en) Method for operating a pressurized circulating fluidized bed combustion operated with lignite for a combined cycle power plant
JPS5821163B2 (en) Fluidized bed combustion control method
JPS58190607A (en) Combustion with low nox performing desulfurization simultaneously
TWI822774B (en) Methods for controlling bed agglomeration in fluidized-bed boilers
DK1068475T3 (en) Method of combustion or gasification in a circulating fluidized bed
JPH0159489B2 (en)
JPS6319762B2 (en)
US4664042A (en) Method of decreasing ash fouling
JPH0211813B2 (en)
CA1325363C (en) Method to enhance removal of sulfur compounds by slag
JPS61208411A (en) Two-stage combustion method to suppress nox development with simultaneous desulphurization
JPS6146392Y2 (en)
FI81970C (en) Process and plant for removing sulfur from the flue gases from a solid fuel power plant
US4253926A (en) Utilization of high sulphur fuels without air pollution
JPS5833368Y2 (en) Fluidized bed combustion equipment
JPH0211812B2 (en)
CN107702083A (en) A kind of Intelligent adjustment boiler
JPS599004B2 (en) Fluidized bed combustion control method