JPS58199724A - Manufacture of ferrite - Google Patents
Manufacture of ferriteInfo
- Publication number
- JPS58199724A JPS58199724A JP57082758A JP8275882A JPS58199724A JP S58199724 A JPS58199724 A JP S58199724A JP 57082758 A JP57082758 A JP 57082758A JP 8275882 A JP8275882 A JP 8275882A JP S58199724 A JPS58199724 A JP S58199724A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- metal
- alkoxide
- alkali metal
- chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compounds Of Iron (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、磁性材料として用いられるフェライトさらに
は、その微粉末の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ferrite used as a magnetic material and to a method for producing fine powder thereof.
従来のフェライトの製造方法は、2価の金属の酸化物と
3価の鉄の酸化物を粉末状態で混合して、例えば130
0℃〜1500℃に加熱して反応させることによるもの
であった。しかし、このような方法では固体粒子の混合
物を反応させることによる本質的な組成の不均一性と、
高温反応を必要とするため得られるフェライトの粒子径
が大きく、粒度分布も大きいために、高性能、高信頼性
の微細加工の可能な高寸法精度の材料を製造することが
できなかった。また、従来方法によると、原料となる酸
化物を混合して高温で反応させた時に、粒子どうしが接
触している表面間の反応、拡散でしかフェライト層が形
成されず、粒子の深部は元のままであるので、均一性の
高いフェライトを得るには、加熱反応と粉砕の作業を繰
り返さなければならない。このため、製造に長時間を要
する上、大がかりな粉砕装置が必要であり、かつ高温を
保持するために大型の炉が必要となる。さらに、粉砕と
加熱を繰り返すため、異物混入が避けられず、高純度の
ものが得にくいという欠点があった。The conventional method for producing ferrite is to mix a divalent metal oxide and a trivalent iron oxide in powder form, for example, 130
This was done by heating the reaction to 0°C to 1500°C. However, such methods suffer from inherent compositional heterogeneity due to reacting mixtures of solid particles;
Because high-temperature reactions are required, the resulting ferrite has a large particle size and a large particle size distribution, making it impossible to produce a material with high dimensional accuracy that can be microfabricated with high performance and reliability. In addition, according to the conventional method, when the raw material oxides are mixed and reacted at high temperature, the ferrite layer is only formed by reaction and diffusion between the surfaces where the particles are in contact with each other, and the deep part of the particles is Therefore, in order to obtain highly uniform ferrite, the heating reaction and crushing operations must be repeated. Therefore, it takes a long time to manufacture, requires a large-scale crushing device, and requires a large furnace to maintain high temperatures. Furthermore, since pulverization and heating are repeated, contamination with foreign substances is inevitable, making it difficult to obtain highly pure products.
本発明はこのような問題点に鑑み、液相に於ける低温(
約100℃前後以下)反応によって製造するようにした
もので、反応に大がかりな装置を要せず、分子サイズの
微粒子で高純度のフェライトを製造する方法を提供する
ことを目的としてなされたものである。In view of these problems, the present invention has been developed to reduce the temperature (low temperature) in the liquid phase.
It is produced by a reaction (approximately 100℃ or less), and was developed with the aim of providing a method for producing high-purity ferrite using molecular-sized fine particles without requiring large-scale equipment for the reaction. be.
本発明は、金属アルコキシドを用いる方法であり・Mx
”y (OR) 、 (ただし町はアルカリ金属、感
は2価の金属または3価の鉄、Rはアルキル基)と、M
% (OR)、L(ただしM″z は2価の金属または
3価の鉄)または金属M−の塩化物の1種以上のものと
を混合して約100℃前後以下の例えば60′c〜80
’c程度で還流して反応させることにより、M′yM
τ(OR)n の金属アルコキシドを生成させ、これ
を加水分解してフェライトを生成させ、該フェライトを
溶媒から分離することによりフェライトの分子サイズの
微粉末を得ることを特徴とする。The present invention is a method using a metal alkoxide, Mx
``y (OR), (where Machi is an alkali metal, sen is a divalent metal or trivalent iron, R is an alkyl group), and M
% (OR), L (where M″z is a divalent metal or trivalent iron) or one or more chlorides of the metal M−, and the mixture is heated at a temperature of about 100°C or less, e.g. 60′c. ~80
By refluxing and reacting at about 'c, M'yM
It is characterized in that a metal alkoxide of τ(OR)n is produced, this is hydrolyzed to produce ferrite, and the ferrite is separated from a solvent to obtain a fine powder with the molecular size of ferrite.
以下本発明を、Zn フェライト、CuフェライトNi
フェライトの合成に例1をとり、その実験例を述べ
る。Hereinafter, the present invention will be described as Zn ferrite, Cu ferrite Ni
Example 1 will be used to synthesize ferrite, and an experimental example will be described.
(Zn フェライトの合成〕
(1) NaZn (OE t) 5 の合成金属
Na0.1モルをエタノール(EtoH) 100m
1に加えて約70′Cで約1時間還流(エタノールを加
熱し、加熱により生じたエタノール蒸気を冷却して液化
してエタノール液中に戻す処理)し、これによりNa0
Et を生成させた。このNa0Et を含むエタ
ノール溶液に、0.04モルのZnC42をエタノール
100 m(l に溶解した溶液を加えて約70℃で
約20時間還流させ、下記式の反応を進行させた(なお
、上記ZnCj?、、は、エタノールに溶解する前に、
付着水を除くだめに200℃で3時間加熱処理して無水
としたものである)。(Synthesis of Zn ferrite) (1) 0.1 mol of synthetic metal Na of NaZn (OE t) 5 was added to 100 m of ethanol (EtoH).
1 and refluxed at about 70'C for about 1 hour (a process in which ethanol is heated, the ethanol vapor generated by heating is cooled and liquefied, and returned to the ethanol liquid).
produced Et. To this ethanol solution containing Na0Et, a solution of 0.04 mol of ZnC42 dissolved in 100 m (l) of ethanol was added and refluxed at about 70°C for about 20 hours to proceed with the reaction of the following formula (note that the above ZnCj ?,, before dissolving in ethanol,
In order to remove the adhering water, it was heat-treated at 200°C for 3 hours to make it anhydrous.)
2 Z n Cl 2 + 5 N a OE t→N
aZn2(OEt) 5+4NaCj?次にエタノール
を減圧下で蒸発させて除去し、その代りに溶媒としてベ
ンゼン200 mll を加え、ベンゼンに不溶である
N a Cl!を戸別し、NaI!:Zn との複合エ
トキシドNaZn2(OEt)5が溶解しているベンゼ
ン溶液を得た。2 Z n Cl 2 + 5 N a OE t→N
aZn2(OEt) 5+4NaCj? Next, ethanol was removed by evaporation under reduced pressure, and 200 ml of benzene was added as a solvent in its place, and N a Cl!, which is insoluble in benzene, was added. going door to door, NaI! : A benzene solution in which complex ethoxide NaZn2(OEt)5 with Zn was dissolved was obtained.
(2) Fe (OEt) 3の合成無水のFeCj
?315 gをエタノール150mjl! とベンゼ
ン100m1 の混合溶媒に溶解し、乾燥アンモニアガ
スを下記の反応が終了するまで約70℃で約1時間通じ
た。なお、この工程では、ベンゼンは必ずしも混合する
必要はない。(2) Synthesis of Fe (OEt) 3 Anhydrous FeCj
? 315 g to 150 mjl of ethanol! and benzene (100 ml), and dry ammonia gas was passed through the mixture at about 70° C. for about 1 hour until the reaction described below was completed. Note that in this step, benzene does not necessarily need to be mixed.
F e C(13+ 3 E t OH+ 3 NH3
→Fe (OEt) 3°+3NH4(j!その後、前
記(1)と同じ方法で溶媒をベンゼン250m4? に
置換し、不溶なNH4Cl”if別し、純粋なFe(O
Et)3が溶解しているベンゼン溶液にした。F e C(13+ 3 E t OH+ 3 NH3
→Fe (OEt) 3°+3NH4(j! Then, in the same manner as in (1) above, the solvent was replaced with 250 m4 of benzene, the insoluble NH4Cl"if was separated, and pure Fe(O
A benzene solution containing Et)3 was prepared.
(3) Znフェライトの合成
前記(1)で得たNaZn2(OEt) 5のベンゼン
溶液と、前記(2)で得たFe (OEt) 3のベン
ゼン溶液をZn:Feのモル比が1:2となるように混
合し、約70でで約1時間還流し、その後充分な量の温
水を加えて温度を下げることなく約70℃で約1時間還
流することにより加水分解を行い、zn フェライト
を沈澱物として生成させた。そしてその沈澱物を含むベ
ンゼン溶液を瀘過して反応により生じだNaoHを含む
ベンゼン溶液から沈澱物を戸別し、蒸留水で充分に水流
した後、70℃で乾燥した。(3) Synthesis of Zn ferrite The benzene solution of NaZn2(OEt) 5 obtained in the above (1) and the benzene solution of Fe (OEt) 3 obtained in the above (2) were mixed at a Zn:Fe molar ratio of 1:2. The mixture is mixed so that It was formed as a precipitate. Then, the benzene solution containing the precipitate was filtered, and the precipitate was separated from the benzene solution containing NaoH produced by the reaction, thoroughly rinsed with distilled water, and then dried at 70°C.
このようにして得られた試料のX線回折分析結果はZn
Fe2O4であった。また、200℃、400℃、60
0℃、800でで仮焼(酸化雰囲気中、以下同じ)した
ものは、同様の分析でZnFe、、04であることが確
認され、不牝物相はどの温度においても見い出されなか
った。The results of X-ray diffraction analysis of the sample obtained in this way indicate that Zn
It was Fe2O4. Also, 200℃, 400℃, 60℃
The material calcined at 0° C. and 800°C (in an oxidizing atmosphere, the same applies hereinafter) was confirmed to be ZnFe,.04 by similar analysis, and no infertile phase was found at any temperature.
[Cuフェライトの合成〕
(1) Cu (OMe) 2の合成前記ZnC6□
と同様に付着水を除いたCuCA’20.005モルを
メタノール(MeOH) 100 m(l に溶解
し、これに0.014モルの金属Li (理論量の約
3倍)を加え、60′c〜70′cで還流し反応させ、
これにより、Cu (OMe) 2とLickを成させ
た。この場合Li をメタノールに溶解還流(70t
、lh)し、Li のアルコキシド(Li OMe
) を含む溶液を造り、該溶液にCuC62を添加、
還流してCu (OMe) 2を造るようにしても良い
が、このCu(OMe)2は常温に於て固体でベンゼン
、トルエン、3−ペンタノンなどの有機溶媒に不溶であ
る。この溶液(では残−〇(Li OMe ) を
含有しているが、Cu のアルコキシドは前述のように
不溶であるから戸別等によ砂分離できるがLiCj?は
混在することになる。[Synthesis of Cu ferrite] (1) Synthesis of Cu (OMe) 2 The above ZnC6□
Similarly, 20.005 mol of CuCA' from which attached water was removed was dissolved in 100 m (l) of methanol (MeOH), 0.014 mol of metal Li (approximately three times the theoretical amount) was added, and 60'c Reflux and react at ~70'C,
As a result, a lick was formed with Cu (OMe) 2. In this case, Li was dissolved in methanol and refluxed (70t
, lh) and Li alkoxide (Li OMe
), and adding CuC62 to the solution,
Although Cu(OMe) 2 may be produced by refluxing, Cu(OMe) 2 is solid at room temperature and insoluble in organic solvents such as benzene, toluene, and 3-pentanone. Although this solution contains residual -〇(LiOMe), the Cu alkoxide is insoluble as mentioned above, so it can be separated into sand from door to door, etc., but LiCj? will be mixed therein.
(2) Fe (OEt) 、の合成前記Zn フェ
ライトの場合と同様の方法でF e (OE を入ノヘ
ンセン溶液を得た。(2) Synthesis of Fe (OEt) A Nohensen solution containing Fe (OE) was obtained in the same manner as in the case of Zn ferrite.
(3) Cu フェライトの合成
前記(1)で得たLiceを含むCu (OMe) s
を前記(2)で得たFe (OEt) 3のベンゼン溶
液にCu : Fe が1=2となるように混合して
約3時間約70 ’c〜80′cで還流し、その後温水
を加えて再び1時間約80′C〜90′Cで還流し、濾
過によッテLiclと溶媒を除き、蒸留水で充分洗浄し
、7oでで乾燥した。(3) Synthesis of Cu ferrite Cu (OMe) containing the Lice obtained in (1) above
was mixed with the benzene solution of Fe (OEt) 3 obtained in (2) above so that Cu:Fe was 1=2 and refluxed at about 70'C to 80'C for about 3 hours, then hot water was added. The mixture was refluxed again at about 80'C to 90'C for 1 hour, LiCl and the solvent were removed by filtration, thoroughly washed with distilled water, and dried at 7oC.
この乾燥物を、200 ’c、400 ’c、600
’c、800’c、1000℃で仮焼してX線回折分析
を行った所、400℃までの仮焼では非晶質となり、6
00 ′c以上の仮焼で結晶質のCuFe2O4である
ことが確かめられた。また、1ooo′Cの仮焼では同
時にCuOの存在が確かめられた。結晶系は正方晶系で
あった。また、示差熱分析の結果、490℃に最終ピー
クが現われた。This dried material was dried at 200'c, 400'c, 600'c.
'c, 800'c, and X-ray diffraction analysis after calcination at 1000°C revealed that it became amorphous when calcined up to 400°C.
It was confirmed that it was crystalline CuFe2O4 by calcining at a temperature of 00'c or higher. In addition, the presence of CuO was confirmed at the same time in the calcining of 1ooo'C. The crystal system was tetragonal. Further, as a result of differential thermal analysis, a final peak appeared at 490°C.
なお、前述の操作でLi 量を0.04モルに増やした
所、400℃までの仮焼では前記の場合と同様に非晶質
、600℃以上の仮焼で正方晶系でなく立方晶系となり
、かつ600 ’c以上の仮焼でCuOが現われ、示差
熱分析の最終ピークは520℃となった。In addition, when the Li amount was increased to 0.04 mol in the above operation, calcination up to 400°C resulted in an amorphous state as in the previous case, and calcination at 600°C or above resulted in a cubic system instead of a tetragonal system. CuO appeared after calcination at 600'C or higher, and the final peak of differential thermal analysis was 520C.
[Niフェライトの合成]
金属NaとEtOHとからナトリウムエトキシド(Na
0Et)を作シ、このNa0Etの1モルに対し、前記
Zu フェライトの合成の実験例で説明した方法で作
ったFe(OEt)3のベンゼン溶液を%モル加えて約
70℃で約1時間還流を行い、ナトリウム鉄複合エトキ
シド(NaFe (OEt)4)を合成した。[Synthesis of Ni ferrite] Sodium ethoxide (Na
0Et) was prepared, and to 1 mole of this Na0Et, % mole of a benzene solution of Fe(OEt)3 prepared by the method explained in the experimental example for the synthesis of Zu ferrite was added, and the mixture was refluxed at about 70°C for about 1 hour. was carried out to synthesize sodium iron composite ethoxide (NaFe (OEt)4).
l;
この複合エトキシドNiC62を鉄1モルに対して捧ヘ
モル加え、約70〜80℃で約4時間還流させてNa
とNi との置還反応を行わせて、N1(Fe(O
Et)4’]2を合成した。反応終了後、沈澱物として
生成したNa(J?をp過により除去し、再び還流を行
い、続いて大過剰の水を加えて加水分解を行い、約80
′cで約1時間還流を続けた後、沈澱物を戸別し、前記
と同様に蒸留水で洗浄し、70℃で乾燥した。l; Add hemol of this composite ethoxide NiC62 to 1 mole of iron and reflux at about 70 to 80°C for about 4 hours to dissolve Na
By performing a substitution reaction between and Ni, N1(Fe(O
Et)4']2 was synthesized. After the reaction, the Na(J?) produced as a precipitate was removed by p-filtration, refluxed again, and then a large excess of water was added to perform hydrolysis.
After continuing to reflux for about 1 hour at 'C', the precipitate was separated, washed with distilled water in the same manner as above, and dried at 70°C.
この加水分解生成物はX線回折の結果は非晶質であった
。この生成物を200℃、400℃、600’c、80
0’cで仮焼した所、200″Cでは非晶質、400℃
以上でNiFe2O4d忍された。This hydrolysis product was found to be amorphous by X-ray diffraction. This product was mixed at 200°C, 400°C, 600'c, 80°C.
Calcined at 0'C, amorphous at 200''C, 400℃
With the above, NiFe2O4d has been subdued.
この加水分解生成物の示差熱分析の結果は、100℃に
吸熱ピーク、280 ’cに発熱ピーク、330℃に重
量減少を伴なう発熱ピークがあった。The results of differential thermal analysis of this hydrolysis product showed an endothermic peak at 100°C, an exothermic peak at 280'C, and an exothermic peak accompanied by weight loss at 330°C.
なお、Na の量を変えて実験を行った所、NaO量が
化学量論比であるときは仮焼することによってN i
F e204 とFe2O3が得られ、NaO量が化
学量論比の15倍であるときはNiFe2O4のみの回
折パターンであった。これは、Ni[Fe (OEt)
4)2が化学量論比では全量が反応せず、化学平衡に達
するだめであると考えられる。In addition, when we conducted an experiment by changing the amount of Na, we found that when the amount of NaO was in the stoichiometric ratio, the Ni
When Fe204 and Fe2O3 were obtained and the amount of NaO was 15 times the stoichiometric ratio, the diffraction pattern was only for NiFe2O4. This is Ni[Fe (OEt)
4) It is thought that if 2 is in a stoichiometric ratio, the entire amount will not react and chemical equilibrium will not be reached.
C,Coフェライトの合成〕
前記Ni フェライトの合成と同様の手順でNiCe
2の代りにCock2を用いてCo フェライトの合
成を行った。この場合、加熱分解生成物の示差熱分析の
結果は、100℃に吸熱ピーク、260℃の発熱ピーク
のみで330℃の発熱ピークがなく、重量減少は100
℃の吸熱ピークの所のみであった。Synthesis of C, Co ferrite] NiCe was synthesized using the same procedure as the synthesis of Ni ferrite.
Co ferrite was synthesized using Cock2 instead of Cock2. In this case, the results of differential thermal analysis of the thermal decomposition product show that there is only an endothermic peak at 100°C, an exothermic peak at 260°C, and no exothermic peak at 330°C, and the weight loss is 100°C.
It was found only at the endothermic peak of °C.
また、200′cまでの仮焼では非晶質であり、400
℃以上の仮焼でCoFe2O4が確認され、またCo(
Fe (OEt)n )2の場合にもNaO量が1.5
倍のときCoFe2O4のみの回折パターンが得られた
。In addition, it is amorphous when calcined up to 200'c, and
CoFe2O4 was confirmed by calcination at temperatures above ℃, and Co(
Also in the case of Fe(OEt)n)2, the amount of NaO is 1.5
When the magnification was doubled, a diffraction pattern of only CoFe2O4 was obtained.
このような、Ni及びCo フェライトの製造方法ハN
i 及U Coの各エトキシドがベンゼン、エタノール
等に不溶であるため各塩化物を利用し、該塩化物をFe
のアルカリ金属との複合エトキシド溶解溶媒に混合溶
解還流にょシ前記アルカリ金属に反応置換させるように
したのであるが、が\る製造方法の手法は前述、Cu
フェライト製造の場合にも、Cu エトキシドが不溶で
ある所がらCu C(!2を用いて同様に適用できるこ
と明らかである。This method of manufacturing Ni and Co ferrite is described below.
Since each ethoxide of i and U Co is insoluble in benzene, ethanol, etc., each chloride is used, and the chloride is
The composite ethoxide with the alkali metal was mixed in a dissolving solvent and refluxed to react and replace the alkali metal.
It is clear that Cu C (!2) can be similarly applied to the production of ferrite, since Cu 2 ethoxide is insoluble.
また、Mg フェライ) (Mg F e204 )
の製造の場合にはMg をメタノールとベンゼンとの混
合溶液に添加還流してMgのエトキシド(Mg (OM
e) t ) 溶解溶液を造り、之を前述Znフェライ
ト製造の際に説明したFe エトキシド(Fe (OE
t) s )を溶解したベンゼン溶液を混合して還流反
応させ、次いで加水分解して炉別、乾燥さらには仮焼す
ることによシ製造されるもので、乾燥物及び仮焼温度4
00℃迄のものは非晶質であったが、600℃及び80
0℃で仮焼したものは何れも結晶性が確認できた。Also, Mg Ferrai) (Mg Fe204)
In the case of production, Mg is added to a mixed solution of methanol and benzene and refluxed to produce Mg ethoxide (Mg (OM
e) t) A dissolving solution was prepared, and this was carried out using Fe ethoxide (Fe (OE
t) It is manufactured by mixing a benzene solution containing s) and subjecting it to a reflux reaction, followed by hydrolysis, furnace separation, drying and calcination, and the dry product and calcination temperature 4
The temperature up to 00℃ was amorphous, but the temperature up to 600℃ and 80℃ was amorphous.
Crystallinity was confirmed in all samples calcined at 0°C.
なお、上記各実験例で得られたフェライト粉末の径は何
れも百ないし数百オングストローム程度の細かいもので
あった。Note that the diameter of the ferrite powder obtained in each of the above experimental examples was as small as one hundred to several hundred angstroms.
表1はNiFe2O,とMgFe2O,について、従来
品と本発明によるものの磁気特性を対比に示すものであ
る。なお磁気特性の試験は、供試粉末をガラス管に充填
して行った。MgFe、 O,については実施例では述
べ′p−ハうに、、これはMgとMeOHとベンゼンと
を2時間還流してMg (OMe) tを生成した溶液
を作り、これとF e (OE t) sのベンゼン溶
液とを1時間還流し、水を加えて加水分解を行い、沈澱
物を乾燥して仮焼したものである。Table 1 shows a comparison of the magnetic properties of conventional products and those according to the present invention for NiFe2O and MgFe2O. The magnetic properties were tested by filling a glass tube with the sample powder. Regarding MgFe, O, as mentioned in the example, this is done by refluxing Mg, MeOH, and benzene for 2 hours to create a solution that generates Mg (OMe) t, and then combining this with Fe (OE t ) and the benzene solution of s were refluxed for 1 hour, water was added to perform hydrolysis, and the precipitate was dried and calcined.
本発明においては、3価の鉄と複合酸化物を形成する2
価の金属は一種である場合に限られない。 ゛アルカリ
金属の複合アルコキシドに対し、金属アルコキシドまた
は塩化物の2種以上のものを適宜の組成比で混合して反
応させることにより、アルカリ金属を除いた3種以上の
金属の固溶体を含むフェライトを作ることができ、その
混合量を変えることによって最終のフェライト中の鉄以
外の金属の割合を変えることができる。In the present invention, divalent iron that forms a composite oxide with trivalent iron is
The number of valent metals is not limited to one type.゛By mixing and reacting two or more metal alkoxides or chlorides with an alkali metal complex alkoxide at an appropriate composition ratio, a ferrite containing a solid solution of three or more metals excluding the alkali metal can be produced. By changing the mixing amount, the proportion of metals other than iron in the final ferrite can be changed.
本発明において用いられるアルカリ金属としては、Na
やLi 以外にに等も用いる。The alkali metal used in the present invention includes Na
In addition to and Li, ni, etc. are also used.
このように、本発明の方法は、−たんアルカリ金属と2
価の金属(鉄を含む)または3価の鉄との複合アルコキ
シドを作り、これと3価の鉄または2価の金属の塩化物
またはアルコキシドとを反応させることにより、アルカ
リ金属の代シにフェライトを形成する金属を置換させて
加水分解を行わせる方法であシ、この置換反応と加水分
解を利用することによって反応を液相で進行させること
が可能であり、これにより生成物であるフェライトは超
微細粉粒でその均一化と高純度化、ひいては高性能化と
高信頼性が得られる。また本発明によれば、粉砕や高温
加熱が不要になることから、これらの大がかりな装置が
不要にな9、また作業の繰り返しが不要になるので、製
造時間の短縮が図れる。また本発明によれば焼成プロセ
スを用いなくとも結晶質のフェライトを得ることも可能
となるので、磁気テープのような高分子材料との複合化
によって焼成プロセス(炉)を使わずに製品・代理人
弁理士 若田勝−
手続補正書(方式)
1、事件の表示
昭和57年 特許願第 82758号2、発明の名
称 フェライトの製造方法3、 補正をする者
事件との関係 特許出願人
4、代理人
住 所 千葉県市用市市用南1丁目1番8号612室6
、補正により増加する発明の数 0In this way, the method of the present invention combines -tan alkali metal and two
By making a composite alkoxide with a valent metal (including iron) or trivalent iron and reacting this with a chloride or alkoxide of trivalent iron or divalent metal, ferrite can be produced as a substitute for an alkali metal. This is a method in which hydrolysis is performed by replacing the metal forming Ultra-fine powder enables uniformity and high purity, which in turn provides high performance and reliability. Further, according to the present invention, since pulverization and high-temperature heating are not necessary, these large-scale devices are not required9, and repeating operations is not required, so that manufacturing time can be shortened. Furthermore, according to the present invention, it is possible to obtain crystalline ferrite without using a firing process, so by combining it with a polymeric material such as magnetic tape, it is possible to produce products and substitutes without using a firing process (furnace). Man
Patent attorney Masaru Wakata - Procedural amendment (method) 1. Indication of the case 1982 Patent Application No. 82758 2. Title of the invention Method for manufacturing ferrite 3. Person making the amendment Relationship with the case Patent applicant 4. Agent Address: Room 6, 612, 1-1-8 Minami, Ichiyo, Chiba Prefecture
, the number of inventions increased by amendment 0
Claims (1)
、MIyは2価の金属または3価の鉄、Rはアルキル基
)と、M:(OR)m(ただしM−は2価の金属または
3価の鉄)または金属MS の塩化物の1種以上のもの
とを混合して還流して反応させることにより、M’ M
′′(OR)nの金属アルコキシドを生成させ、こz れを加水分解してフェライトを生成させ、該フェライト
を溶媒から分離することによりフエライ微粉末を得るこ
とを特徴とするフェライトの製造方法。[Claims] M, r: MIy(OR)t (where M is an alkali metal, MIy is a divalent metal or trivalent iron, R is an alkyl group), and M: (OR)m (wherein M- is a divalent metal or trivalent iron) or M' M
A method for producing ferrite, which comprises producing a metal alkoxide of ``(OR)n, hydrolyzing this to produce ferrite, and obtaining fine ferrite powder by separating the ferrite from a solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57082758A JPS58199724A (en) | 1982-05-17 | 1982-05-17 | Manufacture of ferrite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57082758A JPS58199724A (en) | 1982-05-17 | 1982-05-17 | Manufacture of ferrite |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3210018A Division JPH0680610B2 (en) | 1991-07-27 | 1991-07-27 | Ferrite manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58199724A true JPS58199724A (en) | 1983-11-21 |
JPH059375B2 JPH059375B2 (en) | 1993-02-04 |
Family
ID=13783336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57082758A Granted JPS58199724A (en) | 1982-05-17 | 1982-05-17 | Manufacture of ferrite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58199724A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS623020A (en) * | 1985-06-25 | 1987-01-09 | Sentan Kako Kikai Gijutsu Shinko Kyokai | Production of ferrite |
JPH0246705A (en) * | 1988-08-09 | 1990-02-16 | Asahi Chem Ind Co Ltd | Cobalt ferrite magnetic thin film |
JPH036803A (en) * | 1989-06-02 | 1991-01-14 | Matsushita Electric Ind Co Ltd | Ferrite magnetic material and manufacture thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5332806A (en) * | 1976-09-08 | 1978-03-28 | Hitachi Ltd | Production of damping material |
JPS5626726A (en) * | 1979-08-09 | 1981-03-14 | Hitachi Metals Ltd | Manufacture of ferrite powder |
-
1982
- 1982-05-17 JP JP57082758A patent/JPS58199724A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5332806A (en) * | 1976-09-08 | 1978-03-28 | Hitachi Ltd | Production of damping material |
JPS5626726A (en) * | 1979-08-09 | 1981-03-14 | Hitachi Metals Ltd | Manufacture of ferrite powder |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS623020A (en) * | 1985-06-25 | 1987-01-09 | Sentan Kako Kikai Gijutsu Shinko Kyokai | Production of ferrite |
JPH0371377B2 (en) * | 1985-06-25 | 1991-11-13 | Sentan Kako Kikai Gijutsu Shinko Kyokai | |
JPH0246705A (en) * | 1988-08-09 | 1990-02-16 | Asahi Chem Ind Co Ltd | Cobalt ferrite magnetic thin film |
JPH036803A (en) * | 1989-06-02 | 1991-01-14 | Matsushita Electric Ind Co Ltd | Ferrite magnetic material and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH059375B2 (en) | 1993-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
McGeary et al. | Yttrium and lanthanum silyloxide complexes | |
JPS61275108A (en) | Preparation of powder of dielectric substance | |
Li et al. | Mild hydrothermal syntheses and thermal behaviors of hydrogarnets Sr3M2 (OH) 12 (M= Cr, Fe, and Al) | |
JPS58199724A (en) | Manufacture of ferrite | |
Zhong et al. | Synthesis and Structural Determination of a Novel Heterometallic Complex [Sb2 (edta) 2‐µ4‐Co (H2O) 2]· 5.15 H2O | |
JPS6217005A (en) | Preparation of mullite powder having high purity | |
JPS6086026A (en) | Production of composite perovskite compound | |
JPS6054925A (en) | Production of magnetopumbite type ferrite | |
JPH0621026B2 (en) | Fluorine mica production method | |
JPS59169905A (en) | Production of metal double oxide | |
JPS6186422A (en) | Preparation of compound arsenic oxide | |
JPH05299226A (en) | Manufacturing method of ferrite | |
JPH0361610B2 (en) | ||
JPH06654B2 (en) | M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder | |
Alrashidi | Synthesis of lanthanide molybdates via reaction of molybdenum (VI) oxide with aqueous acetate salts | |
Bonnin et al. | Oxychloridoselenites (iv) with cubane-derived anions and stepwise chlorine-to-oxygen exchange | |
JPS63295417A (en) | Compound shown by lualzn6o9 and having hexagonal lamellar structure and its production | |
JPS63195111A (en) | Synthesis of fluorine mica clay | |
JPH0135778B2 (en) | ||
JPS62265119A (en) | Production of fine powder of niobium double oxide | |
JPS623020A (en) | Production of ferrite | |
ENE | CHEMICAL AND STRUCTURAL CHARACTERIZATION OF ZN 2-X CO X SIO 4 (X= 0.5) SOLID SOLUTIONS TYPE SYNTHESIZED BY TWO UNCONVENTIONAL METHODS (SOL-GEL METHOD AND PECHINI METHOD). | |
CN111138496A (en) | Preparation method of novel metal formic acid complex with two-dimensional interpenetrating network structure | |
JPS63282122A (en) | Alkali metal titanate | |
JPS61261217A (en) | Production of magnetoplumbite-type ferrite powder |