[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS58197788A - Manufacture of distribution feedback type semiconductor laser - Google Patents

Manufacture of distribution feedback type semiconductor laser

Info

Publication number
JPS58197788A
JPS58197788A JP57080617A JP8061782A JPS58197788A JP S58197788 A JPS58197788 A JP S58197788A JP 57080617 A JP57080617 A JP 57080617A JP 8061782 A JP8061782 A JP 8061782A JP S58197788 A JPS58197788 A JP S58197788A
Authority
JP
Japan
Prior art keywords
layer
type
gainasp
grown
periodic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57080617A
Other languages
Japanese (ja)
Inventor
Osamu Mikami
修 三上
Hiroshi Nakagome
弘 中込
Tadashi Saito
正 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57080617A priority Critical patent/JPS58197788A/en
Publication of JPS58197788A publication Critical patent/JPS58197788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a distribution feedback type laser with oscillating wave length at designed value subject to favorable yield by a method wherein, after GaInAsP active layer and a guide layer is preliminarily grown, a cyclic structure as a double hetero structure is formed on GaInAsP layer. CONSTITUTION:An N type InP layer 12, no additive layer 13, P type GaInAsP guide layer 14 are liquid epitaxially grown on (001) surface of N type Inp substrate 11. A resist film is interference exposed by means of He-Cd layer and developed to form a mask further etching a layer 14 to form a cyclic structure 15 (period 4,700Angstrom ) with stripes in parallel with the direction of (-110). Next N type InP layer 16 and P type GaInAsP layer 17 are laminated and a current narrowing structure is introduced to complete a distribution feedback type laser. In such a constitution, the cyclic structure provided on GaInAsP layer 14 with less P component resistant to dissociation of P i.e. thermal deteroration will not be destroyed even if the layer 16 is grown at 590-520 deg.C favorably controlling oscillating wave length to obtain the oscillating wave length at designed value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光通信に用いられるGa1nAsP/夏nPの
分布fI#量形生形半導体レーデ装置造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a Ga1nAsP/summer nP distribution fI# quantity-shaped biosemiconductor radar device used in optical communications.

〔発明の技術的背景〕[Technical background of the invention]

ImPを基板として用い九〇a I IIAIP/I 
nP系ダブルヘテロ構遺の半導体レーデ装置は、波長1
〜16μ鯛に発振波長を有する丸め、九ファイノ苛通信
用光源として注目されている。中でも、周期構造(回折
格子)を適用した分布帰還形半導体レーデ装置は、直流
動作時は勿−のこと、変一時においても単−波長動作が
得られること力為ら、次世代O1m水準通信用光源とし
て脚光をあびている。一方、石英系光ファイ・奇の極低
損失領域である波長1.5μ講帯における長距離・人容
食伝送を可能にするためには、単一波長発振の得られる
半導体レーデ装置の出現が望まれている。
Using ImpP as a substrate 90a I IIAIP/I
The nP double-hetero structure semiconductor radar device has a wavelength of 1.
It is attracting attention as a light source for round and nine-fine communications with an oscillation wavelength of ~16μ. Among them, distributed feedback type semiconductor radar devices using a periodic structure (diffraction grating) are suitable for next-generation O1m level communication because they can obtain single-wavelength operation not only during DC operation but also during transition. It is in the spotlight as a light source. On the other hand, in order to enable long-distance transmission in the 1.5μ wavelength range, which is the extremely low loss region of silica-based optical fibers, the advent of semiconductor radar equipment that can obtain single wavelength oscillation is required. desired.

とコロテ、最近、波長1.5 A11llのGa111
ムmP/InP分布帰還形半導体レーデ装置の室温連続
発振力孟暢告されている。かかる半導体レーザ装置は次
のような方法によシ製造されている。まず、第1図(&
)に示す如くm型1mF基板J(D表向Vこ周期構造2
を加工する。次いで、該基板Jの周期構造JIIK1回
の液相成兼サイクルによυn型Gal+aムsPのガイ
ド層1、Ga1aムmPの活性層4、p型1mPのクフ
、ド層5及びp型GaI鳳ムmPのキヤツ!層Cを順次
連続的に成長させる(第1図(b)図示)、こうして形
成されたダブルヘテロ構造のウェーは通常の埋込み構造
等の電流狭窄機構の採用によりレーザ発振が得られてい
る。前記ガイド層3は、活性層4よシ大きいパント°ギ
ヤ、fを有しておシ、光は活性層4とガイド層JKIた
がりて伝播するようになっている。一方、注入されたキ
ャリアは活性層4中に閉じ込められ〜いわゆるS@pa
rat@Confin@m@ntH@t@restru
@tur* (8CH)構造が採用されている上述した
如く、単一波長動作を可能にする分布帰還用周期構造は
n型InP基板1に加工されている。このように周期構
造を加工した基板を採用できる理由は、Ga1nAsP
/IaP系半導体レーデ装置においては、InP基板が
発振波長に対し。
and Corote, recently, Ga111 with a wavelength of 1.5 A11ll.
The continuous oscillation power at room temperature of mP/InP distributed feedback type semiconductor radar devices has been reported. Such a semiconductor laser device is manufactured by the following method. First, Figure 1 (&
), m-type 1 mF substrate J (D surface V periodic structure 2
Process. Next, by one liquid phase formation cycle of the periodic structure JIIK of the substrate J, a guide layer 1 of υn type Gal+am sP, an active layer 4 of Ga1am mP, a Khu, do layer 5 of p type 1 mP, and a p type GaI film are formed. MmP's cat! The layers C are successively grown (as shown in FIG. 1(b)), and the thus formed double heterostructure wafer achieves laser oscillation by employing a current confinement mechanism such as a conventional buried structure. The guide layer 3 has a larger punt gear, f, than the active layer 4, so that light propagates through the active layer 4 and the guide layer JKI. On the other hand, the injected carriers are confined in the active layer 4 ~ so-called S@pa
rat@Confin@m@ntH@t@restru
The @tur* (8CH) structure is employed. As mentioned above, the periodic structure for distributed feedback that enables single wavelength operation is processed into the n-type InP substrate 1. The reason why a substrate with a periodic structure processed in this way can be used is that Ga1nAsP
/In IaP-based semiconductor radar devices, the InP substrate has a different wavelength than the oscillation wavelength.

て透明である点及びIMPの屈折率がGaInAsPよ
シ小さいためである。した今って、既述の妬く1回の液
相エピタキシャル成長サイクルによりダブルへテロ構造
のウェハが製作できることになる。
This is because IMP is transparent and has a smaller refractive index than GaInAsP. Therefore, it is now possible to fabricate a double heterostructure wafer using just one liquid phase epitaxial growth cycle as described above.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上記従来の製造方法は液相エピタキシャ
ル成長C)8階で次のような問題があった・ 第1の問題点は、InP基板に加工された周期構造が液
相エピタキシャル成長の段階で全く或いはほとんど消滅
してしまうことである。補則構造の周期は回折の次数に
よって異なるが、効率の高い1次を用いた場合、発振波
長1.5^mに対し240ntng度である。また、そ
の深さは高々100 armである。このような微小な
周期構造が、液相エピタキシャル成長における成長用溶
液の種結晶の溶かし込み中、或いは第1層のGaImA
aPガイド層3の成長中に消滅してしまう。
However, the above conventional manufacturing method has the following problems in liquid phase epitaxial growth C) 8th floor.The first problem is that the periodic structure processed on the InP substrate is completely or almost completely removed during the liquid phase epitaxial growth stage. It is to disappear. The period of the complementary structure differs depending on the order of diffraction, but when using the highly efficient first order, it is 240 ntng degrees for an oscillation wavelength of 1.5 m. Also, its depth is at most 100 arms. Such a minute periodic structure is formed during the dissolution of the seed crystal in the growth solution during liquid phase epitaxial growth, or during the formation of the first layer of GaImA.
It disappears during the growth of the aP guide layer 3.

この原因は結晶成長時において、核成長温度でのPの蒸
気圧が高いことに起aするInP基板の熱劣化によるも
のと考えられる。このようなことから、従来法にあって
は半導体レーデ装置の製造歩留シが極めて悪い。
This is thought to be due to thermal deterioration of the InP substrate caused by the high vapor pressure of P at the nucleus growth temperature during crystal growth. For this reason, the production yield of semiconductor radar devices using the conventional method is extremely poor.

W、20問題として、発振波長の制御性がある。W, 20 The problem is the controllability of the oscillation wavelength.

一般に周期構造の周期をA 、 GaInAsPガイド
層3、活性層4の層厚および屈折率から決定される勢価
屈折率を”offとすると、分布帰還形し二デの発振波
長λは、λ−2J m、11/m ’ (m :―折の
次数:1,2.3・・・)で与えられる。周期構造の周
期はレーず光を用いた干渉光学系の位置精度に依存する
が、比較的精度高く製作Iることが可能である。これに
対し、等勧屈折率鳳offは設計通9の値を得ることが
難かしい。
Generally, if the period of the periodic structure is A, and the refractive index determined from the layer thickness and refractive index of the GaInAsP guide layer 3 and active layer 4 is "off," then the oscillation wavelength λ of the distributed feedback type is λ- It is given by 2J m, 11/m' (m: -order of folding: 1, 2.3...).The period of the periodic structure depends on the positional accuracy of the interference optical system using laser light, It is possible to manufacture it with relatively high precision.On the other hand, it is difficult to obtain a value of 9 according to the design for the equirefractive index OFF.

それは液相エピタキシャル成長によるエビタキャル層の
膜厚にバラツキを伴なうからである。
This is because the thickness of the epitaxial layer varies due to liquid phase epitaxial growth.

このため、あらかじめ基板に周期構造を加、1してお〈
従来の構造では設計通りの発振波長を侍ることが困難で
あった。
For this reason, add a periodic structure to the substrate in advance.
With conventional structures, it was difficult to maintain the oscillation wavelength as designed.

〔発明の目的〕[Purpose of the invention]

本発明は設計値通りの発振波長をセする分角帰還形半導
体レーデ装置を高歩重りで製造し得る方法を提供″しよ
うとするものでめる。
The present invention is directed to providing a method for manufacturing a minute feedback type semiconductor radar device that sets an oscillation wavelength as a designed value with a high production weight.

〔発明の概要〕[Summary of the invention]

本発明は予めGaInAaPの活性層、ガイド層を成長
した後、熱劣化しにくいGaInAaP四元層に周期構
造を形成し、ダブルへテロ構造とすることによって、設
計値通ルの発振波長を有する分布帰還形半導体レーデ装
置を^慶賀りで製造することt骨子とする。
In the present invention, after growing a GaInAaP active layer and a guide layer in advance, a periodic structure is formed in a GaInAaP quaternary layer that is resistant to thermal deterioration, and a double heterostructure is obtained. The key point is to manufacture the feedback type semiconductor radar device in Keigari.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の実施例を第2図(息)〜(e)を診照し
て説明する。
Next, embodiments of the present invention will be described with reference to FIGS. 2(e) to 2(e).

まず、(001)の鳳型InP基板IJ上にカーーンメ
ードを備えた通常の液相エピタキシャル成長装置itを
用いて例えば厚さ0.2μmの馳型1mIP/42ファ
層12、厚さ0.2μmのノンドーグGa1eムmP活
性層11及び厚さ0.2 sm Op型Ga1mAsP
尤ガイド層14t一連続してエピタキシャル成長させf
C(第2図(a)図が)、この時の各層is、zs、i
4の成長開始諷廣は夫々610℃、592C15917
℃に、降下温度は0.6℃/分に、設定した。成長させ
たr占性層13及び光ガイド層ノ4のフォトルミネッセ
ンス波長は夫々1.5Jl肩、1.2声調であっ友。
First, using a normal liquid phase epitaxial growth apparatus IT equipped with a carn-made structure, a (001) 0.2 μm thick 1 m IP/42 F layer 12 and a 0.2 μm thick non-doped layer 12 are grown on a (001) 0.2 μm thick InP substrate IJ. Ga1mAsP active layer 11 and thickness 0.2 sm Op type Ga1mAsP
The guide layer 14t is continuously epitaxially grown.
C (as shown in Figure 2(a)), each layer is, zs, i at this time
The growth start temperature of 4 is 610℃, 592C15917 respectively.
The temperature drop was set at 0.6°C/min. The photoluminescence wavelengths of the grown r-occupied layer 13 and light guide layer 4 were 1.5 Jl and 1.2 tones, respectively, and were similar.

次いで、Ga1aAsP光ガイド層140表面にレノス
トをスピンナーコートし、更にH・−Cdレーデの44
16に光を用いた干渉露光法によりレジスト膜を露光し
、現偉処理してレジスト/母ターン(図示せず)を形成
した後、該レジスト・9ターンをマスクとして光ガイド
層14表面を臭素と水とリン酸の混液により選択エツチ
ングして(丁10)方向と平行した周期47001の縞
状の周期構造J5を形成した(第2図(b)図が)、2
次いで、通常の洗滌処理を施した後、同様な液相エピタ
キシャル成長装置を用いて光ガイド層140周期構造1
5が形成された面にp型ImPグラ、ド層16及びp 
vGjInAaPキャッノ層itを連続的に成長させて
ダブルへテロ構造のウニ・・を製作した(第2図(、)
図示)。この後、該ウェハに通常のストライブ電極構造
、或いは埋込み構造等の電流狭窄機構を導入することに
より分布帰還形半導体レーデ族f(図示せず)を製造し
た。
Next, the surface of the Ga1aAsP light guide layer 140 was spinner coated with Renost, and further coated with 44% of H.-Cd Rede.
In step 16, the resist film is exposed to light by an interference exposure method using light, and a resist/mother turn (not shown) is formed by a photolithography process. Using the resist 9 turns as a mask, the surface of the light guide layer 14 is coated with bromine. A striped periodic structure J5 with a period of 47001 parallel to the (10) direction was formed by selective etching with a mixture of water and phosphoric acid (Fig. 2(b)).
Next, after performing a normal cleaning treatment, the optical guide layer 140 periodic structure 1 is grown using a similar liquid phase epitaxial growth apparatus.
5 is formed with a p-type ImpP layer 16 and a p-type ImpP layer 16 and p
A double heterostructure sea urchin was fabricated by continuously growing the vGjInAaP cap layer it (Fig. 2 (,)
(Illustrated). Thereafter, a distributed feedback type semiconductor Lede family f (not shown) was manufactured by introducing a current confinement mechanism such as a conventional stripe electrode structure or a buried structure into the wafer.

しかして、上述した本発明方法によればP(リン)成分
が少なくPの解離の少ない、つまり熱劣化に強いGaI
mAaP光ガイド層1光圧41層145を形成し、この
上にp型InPクラ、ド層IIiを液相エピタキシャル
成長を行なうため、熱劣化による周期構造15の消滅を
防止できる。
Therefore, according to the method of the present invention described above, GaI which has a low P (phosphorus) component and less dissociation of P, that is, is resistant to thermal deterioration.
Since the mAaP optical guide layer 1 optical pressure 41 layer 145 is formed and the p-type InP layer IIi is liquid-phase epitaxially grown thereon, it is possible to prevent the periodic structure 15 from disappearing due to thermal deterioration.

事実、11IPクラ、#P層ノ#の成長開始温度を5e
oc〜520℃の範囲で変化させても光ガイド層14表
面の周期構造15は保存されていた。
In fact, the growth starting temperature of #1IP layer #P layer is set to 5e.
The periodic structure 15 on the surface of the light guide layer 14 was preserved even when the temperature was changed in the range of oc to 520°C.

また、周期構造15の消滅をより確実に防止できる。即
ち、2回目の液相エピタキシャル成長での第1段階にお
いては、InPクラ、ド層16を成長するため、従来法
の如く周期構造上に1型QaIロムsP、fイド層を成
長させる場合に比べて低温領域での成長が可能となる。
Further, eradication of the periodic structure 15 can be more reliably prevented. That is, in the first stage of the second liquid phase epitaxial growth, the InP clad layer 16 is grown, so compared to the conventional method in which type 1 QaI ROM sP and f oid layers are grown on the periodic structure. This makes it possible to grow at low temperatures.

P(リン)の千両蒸気圧は温度に対して指数関数的に変
化することから、従来の六百数十度から100℃低い五
6数十度に成長温度を下げられることはPの蒸気量を相
当低減でき、熱劣化を更に抑制できる。しかも、従来の
場合、InP基板に低温領域でGaln人−P活性層を
成長させると、In溶媒へのPの溶解度が低下すること
から活性層中のPの飽和量が極端に少なくなるという問
題があるが、本発明の場合、!!IPを成長させるため
前述した低温領域での成長が十分可能となる。また、G
aImムmP光ガイド層14上にInPn成金させる際
、固液相の非平衡によるGa1nAsP光ガイド層14
の溶は出し問題も解消できる利点を有する。
Since the vapor pressure of P (phosphorus) changes exponentially with temperature, the fact that the growth temperature can be lowered from the conventional 600-odd degrees to 56-odd degrees, 100 degrees Celsius lower, is due to the amount of P vapor. can be considerably reduced, and thermal deterioration can be further suppressed. Moreover, in the conventional case, when a Galn-P active layer is grown on an InP substrate at a low temperature, the solubility of P in the In solvent decreases, resulting in an extremely low saturation amount of P in the active layer. However, in the case of the present invention,! ! In order to grow IP, growth in the aforementioned low temperature region is fully possible. Also, G
When depositing InPn on the aImP light guide layer 14, the Ga1nAsP light guide layer 14 due to non-equilibrium of the solid-liquid phase.
It has the advantage of solving the problem of dissolution.

更に、本発明方法ではGaInAsP活性層13及びG
a1mAsP光ガイド層14を形成し、それらのエピタ
キシャル成長膜厚を知った上で該光ガイド層14表面に
周期構造15の加工を行なうことができる。つまり、活
性層13及び光がイド層14からなる光導波構造の等価
屈折率”vffを知っ九後、形成すべき周期構造150
周期全決定すればよいため、発振波長の制御性が良好と
なり設計値通りの発振波長を有する半導体し・−ず装置
を得ることができる。
Furthermore, in the method of the present invention, the GaInAsP active layer 13 and the G
After forming the a1mAsP optical guide layer 14 and knowing the epitaxial growth film thickness thereof, it is possible to process the periodic structure 15 on the surface of the optical guide layer 14. In other words, after knowing the equivalent refractive index "vff" of the optical waveguide structure consisting of the active layer 13 and the light id layer 14, the periodic structure 150 to be formed is
Since it is only necessary to determine the entire period, the controllability of the oscillation wavelength is good, and a semiconductor single crystal device having the oscillation wavelength as designed can be obtained.

なお、上記実施例においては周期構造の形成を臭素と水
とリン酸からなる混液を用いる湿式1、チング法を採用
して行なったが、ドライエ、デンダ法により周期構造を
形成してもよい。
In the above embodiments, the periodic structure was formed using a wet method using a mixed solution of bromine, water, and phosphoric acid, but the periodic structure may also be formed using a dryer method or a Dender method.

〔発明の効果〕〔Effect of the invention〕

以上鮮述した如く、本発明によればエピタキシャル成長
時での周期構造の消滅を防止できると共に発振波長を良
好に制御でき、もって光ファイ・奇遇信用光源として好
適な設置V値通りの発振波長を有する分布帰還形半導体
レーザ装置を高歩留りで製造できる等顕著な効果を奏す
る。
As clearly stated above, according to the present invention, it is possible to prevent the periodic structure from disappearing during epitaxial growth, and the oscillation wavelength can be well controlled, so that the oscillation wavelength matches the installation V value suitable for optical fibers and optical sources. This method has remarkable effects such as being able to manufacture distributed feedback semiconductor laser devices with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1) 、 (b)は従来法による分布帰還形半
導体レーデ装置のウェー・の製造工程を示す断面図、#
!2図(倶)〜(e) Fi本発明の実施例における分
布帰還形半導体レーデ装置のウェー・の製造工程を示す
断面図である。 11− n型1rsP JGi板、2−n型ImPパ、
ファ層、13・・・ノンドー;/’Ga1nAsP活性
層、14・・・p型GaInAiP光ガイド層、J 5
 ・・・周期構造、1i−p型1mPクラ、ド層、17
 =−p 槃hInAsPキャ、!層。 出願人代理人  弁理士 鈴 江 武 彦第15CI 第2図
FIGS. 1(1) and 1(b) are cross-sectional views showing the manufacturing process of a distributed feedback semiconductor radar device using a conventional method.
! FIGS. 2(a) to 2(e) are cross-sectional views showing the manufacturing process of a distributed feedback semiconductor radar device in an embodiment of the present invention. 11-n type 1rsP JGi plate, 2-n type ImpP plate,
F layer, 13...Nondo;/'Ga1nAsP active layer, 14...p-type GaInAiP light guide layer, J5
...periodic structure, 1i-p type 1mP clad layer, do layer, 17
=-p 槃hInAsPkya,! layer. Applicant's agent Patent attorney Takehiko Suzue 15CI Figure 2

Claims (1)

【特許請求の範囲】[Claims] Ga1nAsP/夏nPよりなる半導体レーデ装置の製
造において、Gax’Int−x’Asy’P1−y’
 (但し、O(x’(1*0 < y’< 1  を示
す)からなる活性層表面に該活性層よシ大きいバンドギ
ャップを有するGaxIml−xAsyPl−y (但
し、0(x(1,0(y(1を示す)からなるガイド層
を形成し、更に該ガイド層表面に周期構造を加工した後
、ダブルへテロ構造を形成したことを特徴とする分布帰
還形半導体レーデ装置の製造方法。
In manufacturing a semiconductor radar device made of Ga1nAsP/NatsunP, Gax'Int-x'Asy'P1-y'
(However, GaxIml-xAsyPl-y, which has a larger bandgap than the active layer on the surface of the active layer consisting of O(x' (1*0 <y'< 1) (however, 0(x(1,0 A method for manufacturing a distributed feedback semiconductor radar device, comprising forming a guide layer consisting of y (indicating 1), further processing a periodic structure on the surface of the guide layer, and then forming a double heterostructure.
JP57080617A 1982-05-13 1982-05-13 Manufacture of distribution feedback type semiconductor laser Pending JPS58197788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080617A JPS58197788A (en) 1982-05-13 1982-05-13 Manufacture of distribution feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080617A JPS58197788A (en) 1982-05-13 1982-05-13 Manufacture of distribution feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS58197788A true JPS58197788A (en) 1983-11-17

Family

ID=13723298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080617A Pending JPS58197788A (en) 1982-05-13 1982-05-13 Manufacture of distribution feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58197788A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0182508A2 (en) * 1984-10-22 1986-05-28 Sharp Kabushiki Kaisha A semiconductor laser device
EP0192451A2 (en) * 1985-02-19 1986-08-27 Sharp Kabushiki Kaisha A semiconductor laser device
US4665528A (en) * 1983-12-14 1987-05-12 Hitachi, Ltd. Distributed-feedback semiconductor laser device
US4775980A (en) * 1983-12-14 1988-10-04 Hitachi, Ltd. Distributed-feedback semiconductor laser device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062783A (en) * 1973-10-05 1975-05-28
JPS5736884A (en) * 1980-08-13 1982-02-27 Nec Corp Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062783A (en) * 1973-10-05 1975-05-28
JPS5736884A (en) * 1980-08-13 1982-02-27 Nec Corp Semiconductor laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665528A (en) * 1983-12-14 1987-05-12 Hitachi, Ltd. Distributed-feedback semiconductor laser device
US4775980A (en) * 1983-12-14 1988-10-04 Hitachi, Ltd. Distributed-feedback semiconductor laser device
EP0182508A2 (en) * 1984-10-22 1986-05-28 Sharp Kabushiki Kaisha A semiconductor laser device
US4745615A (en) * 1984-10-22 1988-05-17 Sharp Kabushiki Kaisha Semiconductor laser device with a diffraction grating
EP0192451A2 (en) * 1985-02-19 1986-08-27 Sharp Kabushiki Kaisha A semiconductor laser device
US4745616A (en) * 1985-02-19 1988-05-17 Sharp Kabushiki Kaisha Semiconductor laser device with a diffraction grating

Similar Documents

Publication Publication Date Title
JPS58197788A (en) Manufacture of distribution feedback type semiconductor laser
JPH01214089A (en) Method of forming diffraction lattice in semiconductor material and photoelectric device with the diffraction lattice manufactured by the method
US20050185909A1 (en) Buried heterostructure device fabricated by single step MOCVD
JPH021386B2 (en)
JP2013051319A (en) Method of manufacturing optical semiconductor laser element
US6503768B2 (en) Method for monolithic integration of multiple devices on an optoelectronic substrate
JP2000031596A (en) Semiconductor laser and its manufacture
JP2004063633A (en) Method of manufacturing semiconductor laser
US6551936B2 (en) Method of etching patterns into epitaxial material
JP3047049B2 (en) Method of manufacturing buried semiconductor laser
JPH02283084A (en) Manufacture of semiconductor laser
JPH0316288A (en) Semiconductor laser element and manufacture thereof
JP2563397B2 (en) Method of manufacturing semiconductor laser device
JPS61244083A (en) Manufacture of semiconductor laser
JPH0271575A (en) Optical integrated circuit
JPS63156386A (en) Manufacture of semiconductor light emitting device
JPH0697591A (en) Manufacture of semiconductor laser
JPH01120086A (en) Manufacture of semiconductor laser device
JPS61179525A (en) Vapor growth method
JP2839696B2 (en) Semiconductor laser device and method of manufacturing the same
JPH09186391A (en) Compound semiconductor device and manufacture thereof
JPH04243183A (en) Semiconductor laser and manufacture thereof
JPH05235463A (en) Distributed feedback type semiconductor laser device and fabrication thereof
JPH04155987A (en) Semiconductor distribution feedback laser device and its manufacture
JPS6053011A (en) Manufacture of semiconductor laminated construction