JPS58189321A - Manufacture of high tension and high toughness steel material - Google Patents
Manufacture of high tension and high toughness steel materialInfo
- Publication number
- JPS58189321A JPS58189321A JP7125682A JP7125682A JPS58189321A JP S58189321 A JPS58189321 A JP S58189321A JP 7125682 A JP7125682 A JP 7125682A JP 7125682 A JP7125682 A JP 7125682A JP S58189321 A JPS58189321 A JP S58189321A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- toughness
- steel material
- less
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、高張力高靭性鋼材、特に、鋼管、条鋼、棒
鋼などの製造法に関するものであって、従来、調質型(
焼入(以下Qという)−焼戻(以下Tという)タイプの
もの)で問題となっていた靭性を改善すること、および
、上記Q−T処理のうち、T処理工程を省くことによっ
て、操業能率の向上を図ることを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-tensile and high-toughness steel materials, particularly steel pipes, long steel bars, and steel bars.
By improving the toughness that was a problem with the quenching (hereinafter referred to as Q)-tempering (hereinafter referred to as T) type, and by omitting the T treatment process of the Q-T treatment mentioned above, we have improved the operational efficiency. The purpose is to improve efficiency.
Q・T型の鋼材は低い炭素当量(Ceq )で、高張力
化が可能なため、制御圧延(以下CRと云う)が適用で
きない領域−例えば厚肉高張力管−での鋼材製造法とし
て知られている。しかし一般にその靭性についてはCR
材に比べると劣っているのが現状であり、例えばガスA
?イブラインの脆性破壊伝播阻止基準の評価法として採
用されているDWTT(落電試験)の特性についても、
3211II+板厚で85 % S A T T (3
hear Area TransitionTempe
rature )は、通常、0℃以上と劣ッテオリ、従
来からQT材を扱う上で問題であった。Since Q/T type steel has a low carbon equivalent (Ceq) and can be made to have high tensile strength, it is known as a steel manufacturing method in areas where controlled rolling (hereinafter referred to as CR) cannot be applied, such as thick-walled high-tensile steel pipes. It is being However, in general, CR
Currently, it is inferior to other materials, such as gas A.
? Regarding the characteristics of DWTT (electrical drop test), which is adopted as an evaluation method for Eveline's brittle fracture propagation prevention criteria,
3211II + plate thickness: 85% S A T T (3
hear Area Transition Tempe
The temperature (rature) is usually 0° C. or higher, which is a problem when handling QT materials.
これらの靭性面の問題点に対してCR+QT法(特開昭
51−14814号公報等参照) 、QQ’T法(特開
昭55−9’7423号公報等参照)、くり返しQT法
(八木等、鉄と鋼vat 66 (1980)N[L4
S590)など、前組織の細粒化あるいは熱処理による
組織の細粒化によって改善を試みた例はあるが、これら
はいずれも熱処理工程が多く(最低でもQ及びT)、操
業能率上は必ずしも適切なものではなく、現場操業の立
場からは問題であった。To solve these toughness problems, the CR+QT method (see JP-A-51-14814, etc.), the QQ'T method (see JP-A-55-9'7423, etc.), and the repeated QT method (Yagi et al. , Tetsu to Hagane VAT 66 (1980) N[L4
There are examples of attempts to improve the structure by making the previous structure finer or making the structure finer by heat treatment, such as S590), but these all involve a large number of heat treatment steps (at least Q and T), and are not necessarily appropriate in terms of operational efficiency. This was not a problem, but rather a problem from the standpoint of on-site operations.
そこでこの発明は以上のような問題を解消すべくなされ
たもので、
C:0.002〜0.06%、
Si : 0.05〜0.8%、
Mn:0.8〜2.2%、
Nb:0.01〜0.1係、
N : 0.002〜0.008 %。Therefore, this invention was made to solve the above problems, and includes: C: 0.002 to 0.06%, Si: 0.05 to 0.8%, Mn: 0.8 to 2.2%. , Nb: 0.01-0.1%, N: 0.002-0.008%.
At:0.01〜0.08%、
を含有し、更に必要に応じて、
Cu:1.0%以下、Ni : 3.O%以下、Cr:
1.0%以下、Mo二0.8%以下、V : 0.1%
以下、Ti:0.03%以下、B : 0.003 %
以下、およびCa:0.01 %以下の1種又は2種以
上を含有し、残部がFeおよび不可避不純物からなる鋼
材を、AC3点以上に加熱して焼入れを行ない、焼戻処
理を行なわないようにした高張力高靭性鋼材の製造法と
したことに特徴を有する。Contains At: 0.01 to 0.08%, and if necessary, Cu: 1.0% or less, Ni: 3. 0% or less, Cr:
1.0% or less, Mo2 0.8% or less, V: 0.1%
Below, Ti: 0.03% or less, B: 0.003%
A steel material containing one or more of the following and Ca: 0.01% or less, with the balance consisting of Fe and unavoidable impurities, is heated to AC 3 or higher and quenched, so that no tempering treatment is performed. This method is unique in that it is a manufacturing method for high-tensile, high-toughness steel materials.
本発明の構成は大きく分けて次の2点から成る。The configuration of the present invention is roughly divided into the following two points.
1 まずC量を0.061以下にして、焼入性を低下さ
せ、Qtま(焼入まま)で、細粒のベイナイト(十一部
フエライト)主体の組織とすること(C量の低下による
強度低下の補償は地上外あるいはMo r Vなどの合
金添加で補う)。1 First, reduce the amount of C to 0.061 or less to reduce the hardenability, and create a structure consisting mainly of fine-grained bainite (11 parts ferrite) up to Qt (as-quenched) (due to the decrease in the amount of C). The reduction in strength can be compensated for by adding alloys such as off-ground or Mor V).
2、焼戻処理工程を省略すること。2. Omit the tempering process.
以下、大径溶接鋼管を例にとって本発明を説明する。The present invention will be explained below by taking a large diameter welded steel pipe as an example.
従来、調質型鋼の一般的C量は、0.10%以上であっ
て、その前提は“焼きをできるだけ入れる′ととにあっ
た。しかし板厚が厚くなると成分系にもよるが必ずしも
靭性は良好でなく、むしろ不完全焼入組織のほうが優れ
ている。Conventionally, the general C content of heat-treated type steel has been 0.10% or more, and the premise has been to "inject as much hardening as possible."However, as the plate thickness increases, the toughness does not necessarily increase, depending on the composition system. is not good; in fact, the incompletely quenched structure is better.
因みに32閣板厚鋼材(C−0−258i −1,35
Mn−0,02Nb−0,04V−0,03At)にお
いて、Qまま及びQT後の引張強度(jS)、靭性(v
Tr、s )に及はすC量の影響を第1図に示す。熱処
理条件としてはQ:950℃×2分保持後水中焼入、T
:640℃×6分保持後空冷である。これによるとC量
が減少するにしたがって、靭性は向上し、かつQままと
QT後の差は小さくなる。すなわちC量が低下すると、
焼戻による靭性変化は小さくなり、Qままでも高レベル
の靭性が得られることがわかる。一方強度に関しては、
C量が低下するに従ってTSは低下し、かつ靭性挙動と
同様に、QlまとQT後の差が小さくなる。すなわち焼
入性は劣っても焼戻による強度変化も小さくなる。以上
よりC量が低下してくると、Qtまでも靭性(vTrs
)は良好であり、勿論強度に関してもQt後よりは有利
であることがわかる。第2図(a) (b)に、第1図
におけるc o、o a % (第2図(a))および
C0111%(第2図(b))のものを選んでそのQま
まのミクロ組織を示す。Cが従来レベルの0.11%−
のものはQtまにてマルテンサイト+ベイナイトを呈し
ているのに対し、CO,03%のものではQままで既に
細かなベイナイト+フェライト組織を呈していることが
わかる。すなわち、CCTカーブでベイナイトノーズが
短時間側に位置するような成分系(Lowc系)では、
結果としてベイナイト主体の組織が得られQままでも靭
性は向上する。By the way, 32 cabinet thick steel material (C-0-258i -1,35
Mn-0,02Nb-0,04V-0,03At), tensile strength (jS), toughness (v
Figure 1 shows the influence of the amount of C on Tr,s). The heat treatment conditions are Q: quenching in water after holding at 950℃ for 2 minutes, T
: Air cooling after holding at 640°C for 6 minutes. According to this, as the amount of C decreases, the toughness improves, and the difference between as-Q and after-QT becomes smaller. In other words, when the amount of C decreases,
It can be seen that the change in toughness due to tempering is small, and a high level of toughness can be obtained even at Q. On the other hand, regarding strength,
As the C content decreases, TS decreases, and the difference between QI and QT decreases, similar to the toughness behavior. In other words, although the hardenability is poor, the change in strength due to tempering is also small. As the C content decreases from the above, the toughness (vTrs
) is good, and of course it is seen that it is more advantageous than after Qt in terms of strength. In Figures 2(a) and (b), the values of co, o a % (Figure 2(a)) and C0111% (Figure 2(b)) in Figure 1 are selected and microscopy with the same Q is shown. Indicates organization. C is 0.11% below the conventional level.
It can be seen that the sample exhibits martensite + bainite up to Qt, whereas the sample containing 03% CO already exhibits a fine bainite + ferrite structure even at Qt. In other words, in a component system (Lowc system) in which the bainite nose is located on the short time side in the CCT curve,
As a result, a structure consisting mainly of bainite is obtained, and the toughness is improved even if Q remains unchanged.
このことが本発明の大きな特徴の1つとなっている。This is one of the major features of the present invention.
一方、第1図より、靭性を向上させるためにC量を減す
ると、反面強度は低下してくる。その場合、強度補償の
観点から、励9M01vなどを必要強度レベルに応じて
添加するのが本発明の考え方である。第3図は、32■
板厚鋼材に゛りいて、QままにおけるCeq [=C十
Mn/6+ (Cu+Ni )/15 +よれば、Cが
低くなっても他元素の添加によってCeqを一定基準以
上にすれば、必要な強度は維持できることがわかる。例
えばAPI5LXの引張シ強さくT S)i格から、X
60ではCeq≧0.25. X70ではCeq ’!
0.275となる。一方、靭性レベルは、従来成分の
QTではvTrsが、−60℃よりも高温側にあるので
、このレベルより靭性を改善させるにはCeq り帆3
7好ましくはCeq <0.33に収める必要がある。On the other hand, as shown in FIG. 1, when the amount of C is reduced in order to improve toughness, the strength decreases. In that case, from the viewpoint of intensity compensation, the idea of the present invention is to add excitation 9M01v or the like according to the required intensity level. Figure 3 shows 32■
According to the formula Ceq [=C0Mn/6+ (Cu+Ni)/15+] for thick steel materials, even if C becomes low, if Ceq is made above a certain standard by adding other elements, the required amount can be achieved. It can be seen that the strength can be maintained. For example, from API5LX's tensile strength T S) i case,
60, Ceq≧0.25. Ceq'! on X70!
It becomes 0.275. On the other hand, with respect to the toughness level, vTrs of the conventional QT component is on the higher temperature side than -60℃, so to improve the toughness beyond this level, Ceq Riho 3
7 Preferably, it is necessary to keep Ceq <0.33.
尚、前記Ceqの式には関与していないB添加鋼につい
てもvTs + TsとCeqの関係は、図示の通り成
立っている。Note that the relationship between vTs + Ts and Ceq holds true as shown in the figure, even for B-added steel that is not involved in the Ceq equation.
以上のことを考慮して以下に成分の限定理由を記す。Considering the above, the reasons for limiting the components are described below.
(1)C
Cは第3図に示す如く、0.06 %を越えると、Qま
までvTrs>−60℃となり、従来Q拳T材で得られ
る靭性レベルよシ改善できないことから、上限は0.0
6 %とする。下限については、下げれば下げる程、強
度が出にくく、他元素の補充が必要だが靭性を改善する
には低い方がよい。従って、実操業上から下限を帆00
2%と定めた。(1) As shown in Figure 3, if C exceeds 0.06%, vTrs > -60°C with Q unchanged, and the toughness level obtained with conventional Q-T material cannot be improved, so the upper limit is 0.0
6%. As for the lower limit, the lower it is, the harder it is to develop strength and the supplementation of other elements is necessary, but in order to improve toughness, a lower limit is better. Therefore, from the viewpoint of actual operation, the lower limit is set to 00.
It was set at 2%.
(2) 5i
Siは脱酸効果の点から0.051以上とするが、0.
8チを越えると靭性に悪影響を及ぼすので帆8チを上限
とした。(2) 5i Si is set to 0.051 or more from the viewpoint of deoxidizing effect, but 0.051 or more.
If the sail exceeds 8 inches, it will have a negative effect on the toughness, so 8 inches is the upper limit for the sail.
(3) Mn
MnはCを低減したときの強度補償元素として重要であ
り、少なくとも帆8チ以上は必要である。(3) Mn Mn is important as a strength compensating element when C is reduced, and at least 8 inches of sail is required.
また上限は第3図の靭性上の配慮(Ceqり帆37)か
ら考えて2.2チとした。Further, the upper limit was set at 2.2 inches in consideration of toughness (Ceq Riho 37) shown in Figure 3.
(4) Nb
Nbは制御圧延の際の組織の微細化(即ち、熱処理前組
織の細粒化)、ひいてはQまま靭性に効果があることか
ら、少なくとも0.01 %は添加するものとし、多量
に添加すると鋼塊の表面疵の問題が発生するので0.1
%を上限とする。(4) Nb Since Nb is effective in refining the structure during controlled rolling (i.e., refining the structure before heat treatment) and in turn improving Q-toughness, it should be added in an amount of at least 0.01%. If it is added to the steel ingot, surface flaws will occur, so
The upper limit is %.
(5) At
Atは脱酸剤として有効であり、またA!Nとして、Q
加熱時の結晶粒の粗大化を防止する効果があることから
、少なくとも帆01%以上とする。また、Bを含有する
場合は、Q加熱時にBNのNと結びついて固溶Bをつく
らせ、鋼の焼入性を高める効果もあるが、0.08%を
越えると鋼塊の表面疵発生の恐れがあるためo、o s
%を上限とする。(5) At At is effective as a deoxidizing agent, and A! As N, Q
Since it has the effect of preventing coarsening of crystal grains during heating, it should be at least 01% or more. In addition, when B is contained, it combines with N in BN during Q heating to form solid solution B, which has the effect of increasing the hardenability of the steel, but if it exceeds 0.08%, surface defects will occur on the steel ingot. o, o s because there is a risk of
The upper limit is %.
(6)N
Nは、AtNとして焼入加熱温度でのオーステナイト粒
を微細に保つために、少くとも、0.002チは必要で
あり又o、o o s sを超えて含有せしめると靭性
を害するので0.002〜o、o o s %とした。(6) N N, as AtN, is required in an amount of at least 0.002 mm in order to keep the austenite grains fine at the quenching heating temperature, and if it is contained in an amount exceeding o, o o s s, the toughness will be deteriorated. Since it is harmful, it was set at 0.002 to 0.0s%.
本発明における対象鋼は前記組成を基本成分とするもの
であるが、必要とする強度等の調整のために、上記成分
の他にさらにCu 、 Ni 、 Cr 、 Mo 、
V。The target steel in the present invention has the above composition as a basic component, but in addition to the above components, Cu, Ni, Cr, Mo,
V.
Ti、B、Caの1種又は2種以上を含有させてもよい
。One or more of Ti, B, and Ca may be contained.
Cuは強度を増加させるとともに、耐候性、耐水素誘起
割れなどの観点から添加してもよいが、多すぎると熱間
加工性を害するため1.0%を上限とする。Cu may be added from the viewpoints of increasing strength, weather resistance, hydrogen-induced cracking resistance, etc., but since too much Cu impairs hot workability, the upper limit is set at 1.0%.
Niは調質鋼においても強度靭性を得る有効な元素であ
り、かつCu疵を防止させる作用もあるが、溶接時の高
温割れの可能性が増すため及び高貴な元素であるため、
3.0%を上限とする。Ni is an effective element for obtaining strength and toughness in tempered steel, and also has the effect of preventing Cu flaws, but because it increases the possibility of hot cracking during welding and because it is a noble element,
The upper limit is 3.0%.
Crは強度改善に効くが、多すぎると靭性を劣化させる
ため1.0チを上限とする。Cr is effective in improving strength, but too much Cr deteriorates toughness, so the upper limit is set at 1.0 cm.
Moも鋼の強度向上および組織のベイナイト化に寄与す
るが、多すぎると却って靭性あるいは溶接性を害するか
ら0.8 %を上限とする。Mo also contributes to improving the strength of steel and making the structure bainitic, but if it is too large it will actually impair toughness or weldability, so the upper limit is set at 0.8%.
■も鋼の強度確保にとって重要な元素であるが、多すぎ
ると靭性に悪影響を与えるため、0.1%を上限とする
。(2) is also an important element for ensuring the strength of steel, but too much of it will adversely affect toughness, so the upper limit is set at 0.1%.
TiはここではTiNとして母地に微細析出させ、Q加
熱時のオーステナイト粒の粗大化を防止して靭性確保に
効かずこと、および、Bを入れる場合の、BのNからの
庇護の目的で添加するものであり、0.03%を上限と
する。Here, Ti is finely precipitated in the matrix as TiN to prevent coarsening of austenite grains during Q heating and to ensure toughness, and to protect B from N when B is added. The upper limit is 0.03%.
Bは極低C領域の焼入性の低下(強度の低下)を補うも
のであるが、多すぎると靭性を害するので30 ppm
を上限とする。B compensates for the decrease in hardenability (decreased strength) in the extremely low C region, but too much B impairs toughness, so it is added to 30 ppm.
is the upper limit.
Caは硫化物系介在物を球状化して耐水素誘起割れ性の
改善に効果を有するが、100 pPmを越えるとカル
シウムオキシサルファイドクラスターを形成しむしろ水
素割れ性は劣化するため1100ppを上限とする。Ca has the effect of spheroidizing sulfide-based inclusions and improving hydrogen-induced cracking resistance, but if it exceeds 100 ppm, calcium oxysulfide clusters are formed and the hydrogen cracking property deteriorates, so the upper limit is set at 1100 ppm.
次に、上記成分を有する鋼の圧延条件は、後工程の熱処
理時に組織を細粒化して靭性を改善する意味で、制御圧
延が有効であシ、望ましくは未再結晶温度以下で50%
以上の圧下率を確保した#1うがよいが、必ずしも限定
するものではない。Next, regarding the rolling conditions for steel having the above-mentioned components, controlled rolling is effective in improving toughness by refining the structure during heat treatment in the post-process, and preferably 50% below the non-recrystallization temperature.
It is preferable to use #1 gargle which ensures the above rolling reduction ratio, but it is not necessarily limited to this.
又鋼材のQ処理は、工業的には誘導加熱により短時間加
熱(急速加熱)短時間保持が、オーステナイト粒の粗大
化を防止する点からも望ましいが、この点についても必
ずしも限定するものではない。In addition, for industrial Q treatment of steel materials, short-time heating by induction heating (rapid heating) and short-time holding is desirable from the viewpoint of preventing coarsening of austenite grains, but this is not necessarily limited. .
焼入加熱温度までの昇熱速度は、3℃/ Bee以上速
ければ速い程好ましく、当該温度での保定時間は、10
分以内とすることが好ましい。又、焼入れにおける冷却
速度は、10℃/see以上とするととが好ましい。尚
、大径鋼管などシーム溶接部又はその他の鋼材における
溶接部などの溶接部を有する鋼材にあっては、溶接工程
完了後Q処理を行うことが、当該溶接部もQ処理を受け
るので好ましいことは説明する優でもない。The faster the heating rate up to the quenching heating temperature is 3°C/Bee or more, the better, and the retention time at the temperature is 10
It is preferable to set it within minutes. Further, the cooling rate during quenching is preferably 10° C./see or higher. In addition, for steel materials with welded parts such as seam welded parts such as large diameter steel pipes or welded parts in other steel materials, it is preferable to perform Q treatment after the welding process is completed because the welded part will also undergo Q treatment. I'm not good at explaining.
次いで、本発明を、大径溶接鋼管に適用した実施例につ
いて説明する。Next, an example in which the present invention is applied to a large diameter welded steel pipe will be described.
表1に示す組成を有する鋼板(従来例、本発明実施例)
をUOE方式によし鋼管形状に成形し溶接した後、95
0℃まで、誘導加熱によって、2〜b
2分間保持後、常温まで、15〜20℃7’secの冷
却速度で焼入れした。尚、従来例は、さらに640〜6
70℃でほぼ6分間保定め焼戻しくT)処理を行なった
。その結果を表1に合わせて示す。Steel plate having the composition shown in Table 1 (conventional example, example of the present invention)
After forming into a steel pipe shape using the UOE method and welding, 95
After being held for 2 to 2 minutes by induction heating to 0°C, it was quenched to room temperature at a cooling rate of 15 to 20°C for 7'sec. In addition, the conventional example is further 640 to 6
T) treatment of holding and tempering at 70° C. for approximately 6 minutes was performed. The results are also shown in Table 1.
表1から、従来例では、いずれもシャルピーのsosw
面遷移温度は一60℃以上、DWTT85*5ATTは
0℃以上とあまり芳しくないことがわかる。−力木発明
実施例の如くc量を低減したものは、Qままにおいても
靭性は良好でありs vTrs#i−60℃以下、DW
TT85%5ATTも0℃以下と従来に比べ改善されて
いることがわかる。強度については、X65.X70の
高グレードのものを実施例としたが、必要とする強度が
低いほど、靭性(例えばvTrs)はよシ向上すること
は第3図より明らかである。なお、本発明鋼は、従来よ
りも低C系であるため、溶接性だけでなく、不安定延性
破壊特性にも優れていることは容易に推定できる。また
本発明鋼は、Qままで良好な性能が得られるので、焼戻
処理工程を省くことが可能であり、操業能率上も好まし
い。From Table 1, in the conventional example, Charpy's sosw
It can be seen that the surface transition temperature is -60°C or higher, and DWTT85*5ATT is not very good as it is 0°C or higher. - Strength wood with a reduced amount of c, such as the example of the invention, has good toughness even when Q is maintained, s vTrs#i - 60°C or less, DW
It can be seen that the TT85%5ATT is also below 0°C, which is an improvement over the conventional method. Regarding strength, X65. Although a high grade X70 was used as an example, it is clear from FIG. 3 that the lower the required strength, the better the toughness (for example, vTrs). In addition, since the steel of the present invention has a lower C content than the conventional steel, it can be easily inferred that it is excellent not only in weldability but also in unstable ductile fracture characteristics. Further, since the steel of the present invention can obtain good performance even with Q as it is, it is possible to omit the tempering treatment step, which is preferable in terms of operational efficiency.
以上説明したように、この発明においては、高張力高靭
性鋼材を効率よく製造することができる。As explained above, in the present invention, high tensile and high toughness steel materials can be efficiently manufactured.
第1図は、Qtま、およびQT後の鋼板における一層量
と、Ta r vTrs との関係を示す図、第2図
(a) (b)は、C量が各々異なったQまま鋼板の顕
微鏡組織写真、第3図は、Qまま鋼板における、Ceq
と、Tsと、vTrsとの相関をC量刑に示した図であ
る。
出願人 日本鋼管株式会社
代理人 堤 敬太部 外1名
第1図
et c@ム)
第3図
手続補正書(自発)
昭和57年6月7日
特許庁長官 島 1)春 樹 殿
1、事件の表示
特願昭57− 71256 号
2、発明の名称
高張力高靭性鋼材の製造法
3、補正をする者
事件との関係 特許比1F1人
住所 東京都千代田区丸の内−丁目1番2号mA<Am
> 日本鋼管株式会社
代表者 金 尾 實
自 発
6、補正の対象
(1)明細書、第6頁、発明の詳細な説明の項、第3行
、
「示す。」とあるを、
[示す(第2図Ca) (b)共に、倍率は400倍)
。」と訂正する。
(2)別紙の通シ委住状1通を提出します。
以上Figure 1 is a diagram showing the relationship between the amount of carbon in the steel plate after Qt and QT and Ta r vTrs, and Figures 2 (a) and (b) are micrographs of steel plates with different C contents. The structure photograph, Figure 3, shows the Ceq
It is a diagram showing the correlation between , Ts, and vTrs in C sentence. Applicant Nippon Steel Tube Co., Ltd. Agent Keita Tsutsumi and 1 other person Figure 1 et c@mu) Figure 3 Procedural amendment (voluntary) June 7, 1980 Commissioner of the Japan Patent Office Shima 1) Haruki Tono 1, Case Indication of Patent Application No. 57-71256 No. 2, Name of the invention Process for manufacturing high tensile and high toughness steel materials 3, Relationship to the case of the person making the amendment Patent ratio 1F 1 person Address 1-2 Marunouchi-chome, Chiyoda-ku, Tokyo mA< Am
> Representative Minoru Kaneo of Nippon Kokan Co., Ltd. 6. Subject of amendment (1) Specification, page 6, Detailed explanation of the invention, line 3, ``Show'' should be replaced with ``Show.'' Figure 2 Ca) (b) Both magnification is 400x)
. ” he corrected. (2) Submit one attached letter of commission. that's all
Claims (1)
01〜0.08 % 。 を含有し、更に必要に応じて、 Cu:1.0%以下、Ni:3.0%以下、Cr:1−
O1以下、Mo : 0.8 %以下、V : 0.1
%以下、Ti:0.03 %以下、B : 0.00
3 %以下、およびca:0.01%以下の1種又は2
種以上を含有し、残部がFeおよび不可避不純物からな
る鋼材を、Aca点以上に加熱して焼入れを行ない−、
焼戻処理を行なわないようにしたことを特徴とする高張
力高靭性鋼材の製造法。[Claims] C: 0.002 to 0.06%, Si: 0.05 to 0.8% 1 Mn: 0.8 to 2-2'%, Nb: 0.01 to 0.1% , N: 0.002~o, o o schi, A/,: 0.
01-0.08%. Cu: 1.0% or less, Ni: 3.0% or less, Cr: 1-
O1 or less, Mo: 0.8% or less, V: 0.1
% or less, Ti: 0.03% or less, B: 0.00
3% or less, and ca: 0.01% or less of type 1 or 2
A steel material containing at least 100% Fe and the remainder consisting of Fe and unavoidable impurities is heated to a temperature above the Aca point and quenched.
A method for producing high-tensile and high-toughness steel material, characterized in that no tempering treatment is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7125682A JPS58189321A (en) | 1982-04-30 | 1982-04-30 | Manufacture of high tension and high toughness steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7125682A JPS58189321A (en) | 1982-04-30 | 1982-04-30 | Manufacture of high tension and high toughness steel material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58189321A true JPS58189321A (en) | 1983-11-05 |
Family
ID=13455445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7125682A Pending JPS58189321A (en) | 1982-04-30 | 1982-04-30 | Manufacture of high tension and high toughness steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58189321A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103643145A (en) * | 2013-11-20 | 2014-03-19 | 江苏天舜金属材料集团有限公司 | 600MPa grade-and-more high-strength building steel bar and duct piece application method thereof |
CN105088098A (en) * | 2015-09-07 | 2015-11-25 | 江苏天舜金属材料集团有限公司 | High-strength steel bar and method for controlling power strength of concrete civil defense structure through high-strength steel bars |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5397922A (en) * | 1977-02-08 | 1978-08-26 | Nippon Kokan Kk <Nkk> | Manufacture of non-refined high tensile steel |
JPS5524932A (en) * | 1978-08-08 | 1980-02-22 | Nippon Steel Corp | Manufacture of bainite tough hardening steel |
JPS5625923A (en) * | 1979-08-07 | 1981-03-12 | Kawasaki Steel Corp | Production of non-refining high tensile steel with superior low temperature toughness |
-
1982
- 1982-04-30 JP JP7125682A patent/JPS58189321A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5397922A (en) * | 1977-02-08 | 1978-08-26 | Nippon Kokan Kk <Nkk> | Manufacture of non-refined high tensile steel |
JPS5524932A (en) * | 1978-08-08 | 1980-02-22 | Nippon Steel Corp | Manufacture of bainite tough hardening steel |
JPS5625923A (en) * | 1979-08-07 | 1981-03-12 | Kawasaki Steel Corp | Production of non-refining high tensile steel with superior low temperature toughness |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103643145A (en) * | 2013-11-20 | 2014-03-19 | 江苏天舜金属材料集团有限公司 | 600MPa grade-and-more high-strength building steel bar and duct piece application method thereof |
CN105088098A (en) * | 2015-09-07 | 2015-11-25 | 江苏天舜金属材料集团有限公司 | High-strength steel bar and method for controlling power strength of concrete civil defense structure through high-strength steel bars |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5657026B2 (en) | High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof | |
JP5089224B2 (en) | Manufacturing method of on-line cooling type high strength steel sheet | |
JP2005256037A (en) | Method for producing high strength-high toughness-thick steel plate | |
JPH07278656A (en) | Production of low yield ratio high tensile strength steel | |
JP4507669B2 (en) | Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness | |
JP2005187853A (en) | Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part | |
JP4926447B2 (en) | Manufacturing method of high strength steel with excellent weld crack resistance | |
JP2005068478A (en) | Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding | |
JP5515954B2 (en) | Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JPS62170459A (en) | High tension steel plate for high heat input welding | |
JPS6043433A (en) | Manufacture of clad steel plate with superior corrosion resistance and toughness | |
JP4038166B2 (en) | Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof | |
JPH09256037A (en) | Production of thick high tensile strength steel plate for stress relieving annealing treatment | |
JP3863413B2 (en) | High toughness high tension non-tempered thick steel plate and manufacturing method thereof | |
JP6237681B2 (en) | Low yield ratio high strength steel plate with excellent weld heat affected zone toughness | |
JPS58189321A (en) | Manufacture of high tension and high toughness steel material | |
EP2801638B1 (en) | Steel material for high-heat-input welding | |
JPH11172374A (en) | Bent pipe with high strength and high toughness, and its production | |
JP3313440B2 (en) | High corrosion resistance high strength clad steel and method for producing the same | |
JPS6293312A (en) | Manufacture of high tensile steel stock for stress relief annealing | |
JP2014198867A (en) | High tensile steel sheet excellent in heat affected zone toughness | |
JP2546888B2 (en) | Manufacturing method of high-strength steel sheet with excellent weldability and toughness | |
JP2005002476A (en) | Weld joint | |
JPH0543765B2 (en) |